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We describe a multiresolution solver for the all-electron local density approximation Kohn-Sham
equations for general polyatomic molecules. The resulting solutions are obtained to a user-specified
precision and the computational cost of applying all operators scales linearly with the number of
parameters. The construction and use of separated forms for opdramesthe Green'’s functions

for the Poisson and bound-state Helmholtz equaji@mable practical computation in three and
higher dimensions. Initial applications include the alkali-earth atoms down to strontium and the
water and benzene molecules. ZD04 American Institute of Physic$DOI: 10.1063/1.1791051

I. INTRODUCTION primitive basis. The second-quantized form of quantum
theory has been especially successful in formulating post-
We describe a multiresolution solver for the all-electronHartree—Fockab initio methods. It is developed by projec-
local density approximatioiLDA) Kohn-Sham equations tion of the differential equations into a fixed, finite basis,
for molecules. The objective of this work is to provide ayielding a purely algebraic problem.
practical approach for computation on general polyatomic  However, the LCAO approximation gives rise to severe
systems without basis set error and with the computationgbroblems for the accurate treatment of large systems. These
cost of applying all operators scaling linearly with the num-problems include the expense of computation with high pre-
ber of parameters. Besides using a multiresolution approaciision, basis set superposition ertbrlinear dependence
a critical step in attaining this objective has been the develproblems in high quality calculations, and the fact that AO
opment of separable representations for kernels of Greenlsasis has still to be designed manually for many problems.
functions® We describe a prototype, orbital-based implemen-The second-quantized formulation contributes indirectly to
tation with test application to closed-shell systems includinghese problems by obscuring the physical interpretation of
the alkali-earth atoms down to strontium, and the water anéxpressions involving two-electron integrals.
benzene molecules. We consider that a demonstration of a Intuitively, it is clear that a multiresolution approach can
practical approach for solution of one-electron methods is amaddress many of these concerns. A systematic approach to
essential precursor to direct numerical solution of two- andnultiresolution constructions started with the development
many-electron problems. of wavelet bases; see Ref. 11 and references therein. For
With only a few notable exceptioris, mainstream mo- numerical applications, the results in Ref. 12 pointed out a
lecular quantum chemistry is performed with the linear com-practical approach to reducing the computational cost. One
bination of atomic orbitals(LCAO) approximation most of the results of Ref. 12 was the introduction of the non-
commonly using atom-centered Gaussian functions. Thesgtandard form(NS form) for representing operators in mul-
methods date back 50 years to the work of Rootidan, tiresolution bases. However, the straightforward generaliza-
Hall,” and Boys® and many of the successes of moderntion of the NS form(or for that matter, the standard forto
guantum chemistry can be attributed to this framework. Bymultiple dimensions is too expensive for practical applica-
capturing the essence of molecules as interacting atoms, tti®ns. Our approach is based on using NS form and separated
LCAO approximation provides a very compact representarepresentations of operators which was first used in Ref. 13
tion of molecular orbitals and yields analytically smooth po-and significantly extended in Ref. 2. The basic point of Ref.
tential energy surfaces. Judicious use of carefully designed is that many apparently nonseparable operators are, in fact,
atomic orbital(AO) basis sets can yield accurate energy dif-separable with a finite but arbitrary precision. Moreover, the
ferences(e.g., binding energigsdespite large errors in the number of terms necessary for such representations is re-
total energy due to cancellation of the intraatomic error. Themarkably small.
use of a Gaussian basis enables efficient computation of the In this paper, we construct and use separable representa-
necessary two-electron integfafsand makes feasible com- tions of Green’s function for the Poisson and bound-state
putations for general polyatomic molecules. In addition,Helmholtz equations. These constructions, combined with
atomic orbitals formed from contractions of primitive Gaus- multiresolution representations, make our approach practical.
sians effectively eliminate the high frequencies in the vicin-  In our approach, we chose to use multiwavelet bases.
ity of the nucleus. The resulting matrix representation of theThis selection has been motivated by a number of contradic-
kinetic energy operator is better conditioned than that in theéory requirements for the basisee Ref. 14 In particular,
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we require orthonormality, the interpolating property, and thethe approach in an appendix provided online within
ability to accommodate boundary conditions while maintain-EPAPS®® Here we just summarize the most salient points.
ing both accuracy and the order of convergence. It turns out Many objectives of this paper are accomplished, at least
that there are no smooth bases that satisfy all of these coim one dimension, by a few central features of the multireso-
ditions. Unexpected positive consequences of using multilution representations. However, additional features are nec-
wavelets with disjoint supports include a family of derivative essary to achieve efficient algorithms in higher
operators with analogs of forward and backward differenceslimensions>
and a useful connection to the so-called discontinuous finite (1) Multiresolution wavelet and multiwavelet expan-
(or spectral elements methods. sions organize functions and operators efficiently in terms of
We note that the Green’s functions for the Poisson angbroximity on a given scale and between the length scales.
bound-state Helmholtz equations can be applied efficiently (2) Simple and efficient algorithms exist to transform
using the fast multipole methoFMM) (see Ref. 15 and between representations at different sca@éN) decompo-
references therejror using multigrid(see Refs. 16—-18Al- sition and reconstructidn
though there are similarities between the key representations (3) There is a simple truncation and adaptive refinement
used in the FMM and our separated representations, there amechanism to maintain the desired accuracy.
also significant differences. In particular, the separated rep- (4) A large, physically significant class of differential
resentations can be used in higher dimensidmisexample, and integral operators is sparse in wavelet/multiwavelet
in computing six-dimensional integral&ind, after making bases. High-order convergence is achieved for solving partial
the approximation, we are still left with analytic expressionsdifferential and integral equations.
for further use. We have not yet made any comparison of (5) Multiwavelet bases with disjoint support maintain
speed between these methods. high-order convergence in the presence of boundary condi-
Previous applications of wavelets and multiresolutiontions or singularities.
analysis to quantum chemistfy?® have almost exclusively Numerical algorithms using wavelet bases are similar to
employed single-component smooth wavelets and have prither transform methods, e.g., Fourier methods, in that vec-
marily focused upon periodic systems with pseudopotentialdors and operators are expanded into a basis and the compu-
Prior investigations employing multiwavelets for electronic tations take place in the new system of coordinates. As in all
structure have been limited in scoff&® Limited applica- transform methods, availability of a fast algorithm for de-
tions of wavelets have been made to molecules including akomposition and reconstruction is critical. However, unlike
electrons, and the largest prior such calculation that we arthe globally defined functions of the Fourier basis, the
aware of is to the oxygen molecéfeemploying a large unit wavelet/multiwavelet bases have localized support, thus per-
cell in a periodic code. More extensive application has beemitting adaptive decomposition of functions and operators
made of multigrid approach&®-32and, most significantly, and efficient accommodation of boundary conditions. More-
the numerical approach of Becké>3* over, due to the vanishing moment property, a large class of
The features that distinguish the current work from pre-operatorgwhich includes those considered in this payt-
vious related efforts are primarily the use @f) separated mit a sparse representation. Using multiwaveletsdiscon-
representations of integral operatof®) multiwavelet bases tinuous multiwavelets®® we achieve a good balance of prop-
with disjoint support;(3) the nonstandard form of operators erties needed for solving partial differential equations
and functions in three dimensions with full local adaptive (PDE9 and integral equation.
refinement; and4) fast application of integral operators to Although we have developed a straightforward imple-
eliminate the iterative solution of differential equations. mentation of multiwavelet bases in dimension 3 for compari-
In the following, we first present some of the mathemati-son purposes, we use a separable representation of integral
cal and numerical methods, and describe in more detail sepéernels(in addition to multiresolution representatigres the
rated representations for operators. A detailed introduction tonain tool to achieve improved performance in three and
multiresolution analysis in multiwavelet bases is deferred tchigher dimensions.
an appendix. Subsequently, we briefly describe the Kohng . .
Sham density functional theopFT) equations and present _Separqble representation of integral kernels
— . i in multiple dimensions
their integral formulation that has several desirable charac-
teristics. Next, we discuss computation of analytic deriva- We use a numerical generalization of separation of
tives of the energy with respect to a parameter in the externaariabled to avoid the computational cost of the straightfor-
potential, and describe the iterative solution scheme and ow¥ard extension of the multiresolution approach to multiple
prototype implementation. Finally, we analyze results of cal-dimensions. For a given errog, we represent an operatdr
culations on several atoms and molecules. with the kernel

K(le,xji;sz,xjé; s ;de'xié)
Il. MATHEMATICAL BACKGROUND

The multiresolution constructions employed in this papelJn dimensiond as

are now fairly standard within the mathematical literature M
(see, e.g., Ref_s. 11, 14,135u'; since they_ may not be fgm_lllar Z SIKll(Xij'i)K|2(Xj27x'é)'"Kld(xjdix'é)v )
to most chemists, we provide a nonrigorous description of =1
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wheres, is a scalars;=---=s,,>0, andK!(xii,xjir) are ker- ;L -
nels of normalizednorm ong operatorsT} in dimensiond T T
=1. We require the error to be less thamamely, and
M 1 (1 (1
T—Z,l sTieThe: T, <e. ) rﬂ;,"”,Ykk,:2’3“J71J71J71GM(2’”(X+I))

We call the scalars, separation values and the intedéithe XD (X)) P jjr (X) Piger (X3)dXq dXpd X3, (6)
separation rank. The smallgégt that yields such a represen-
tation for a givene is the optimal separation rank. We do not where
necessarily need the optimal separated representation, but it
is essential to obtaiM close to the optimal. d)ii,(x)=J di(X+y)di(y)dy, i,i'=0,.k=1, (7
In this paper, we consider operators in space of the di-
mensiond=3; however we plan to use the same approachare cross-correlation functions of the scaling functions.
for d=6 in the future. In dimensiord=2, the separated In order to explain our approach, let us first consider the
representatioril) reduces to a form similar to the singular poisson kernelp=0. Since the Poisson kernel is homoge-

value decomposition, but with an unusual pairing of indicesneous, it is sufficient to set=0 in Eq.(6) and we obtain
Instead of separating the input coordinaX@i(xjé) from the

output coordinatele,sz), we separate directionx(l,xji) rioi;"jj,]kk’:fl fl J‘l ﬁq)ii’(Xl)(bjj’(xz)q)kk!(X?,)
from direction Q‘szxig)- -1/-1/-1
An immediate question arises as to how to obtain and X dx,dX,dXs. 8
work with representationgél). In Ref. 2 it was shown that a
number of important operators have a small separation rand.he total number of coefficients in E¢8), namely,O(k®)
In fact, a multidimensional numerical calculus of operatorsfor each shift index, is too large for a practical method since
of this form is possible and Ref. 2 provides a brief descrip-then the nominal cost of applying matficﬁoﬁl,“ ' ki 1S Pro-
tion of algorithms for this purpose. In this paper we need Eqportional toO(k®).
(1) to represent two operators, the Poisson kernel and the However, for anye>0, the integral in Eq(8) has an
Green’s function for the bound-state Helmholtz operator. Im-approximation with a low separation rank,
portantly, we combine Eq(l) with multiresolution multi- M
wavelet representations. (Ol B E o E™h
Another question is the number of terms in E&). since AR T
it directly affects the efficiency of algorithms. Theoretically,
for operators we are interested in, the separation rank growyhere M=0(—Ine). In representatior(9) the number of
as the logarithm of the range of validity of approximafion coegﬁlments isMk? for each shift index. The separated form
and, in fact, the actual separation ranks we obtain are mercff I'j’ ;; o in Eq. (9) allows us to apply the operator sepa-

Al |
Fjrj”,ZFrk“kf <e, 9)

fully small. rately in each direction, with a nominal computational cost
We consider convolutions with kernels of O(Mk*). Further reduction of the computational cost is
1 e ca_rried out by reducin/! f_or each shift indgx. Better than
G, (X)=— e u=0 3) this, the overall computational cost proportionaMd® may
. 4w x| ' be obtained if sparse and/or low-rank representations are

used for each of the submatrices which are expected to be of
low rank (due to vanishing multipole momentaway from
(—A+u?)G,(x)=8(x), xeR® (4)  the origin.

The procedure of obtaining Eq9) consists of three
steps. First we consider the integral

represented in multivavelet bases. The functidpsatisfies

If u=0, thenGy=G in Eq. (3) is the Poisson kernel. For
#>0, G, is the kernel of the bound-state Helmholtz opera-
tor. 1 2 s 5 25

In order to construct the representation®f in multi- o= \/__f e re*tsyg, (10)
wavelet bases, we need to compute the integrals ™y

Ll . N . and discretize it on an intervgs, i, ;Snax] USiNg the trapezoi-
L i Kk = f GM(X_y)¢i,I1(Xl)¢i/Ji(yl)(ﬁj,lz(xz) dal rule®’ The choice of the intervdlsyi, ,.Smax] and the num-
ber of nodes depend on the desired radge <1 and accu-
X ¢;‘, |’(y2)¢E,|3(X3)¢E’ | (yz)dx dy, (5) racy e. The interval of integration is must be chosen so that
2 3 at the end points the integrand and a sufficient number of its
wherex=(X1,X5,X3), Y=(Y1,Y2.Y3), [=(l1,l5,13), andl’ derivatives are less thanfor all §<r=<1. This simple ap-
=(I1.15,15). The integration in Eq(5) is over the support of proach yields a number of noddsthat for useful ranges of
the scaling functions¢ﬂ,(x)=2”’2¢>i(2”x—l), where i parameters is proportional teln 6 and to—In e. The result,
=0,...k—1, andk is the order of the basis. however, is not near optimal, especially near the end of the

Taking advantage 0B, being a convolution, we obtain interval of integration where is negative’’
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We note that for isotropic kernels, it is sufficient to com-
pute the transition matrix elements for positive translations
only. Values for negative translations are obtained using
symmetries of the basis functiong (x)=(—1) ¢;(1—Xx).

The one-dimensiona(lD) transition matrix elements are
computed and a singular value decomposition is performed
for these matrices. Away from the singularity, the matrices
have very low operator rank.

When applying the operator, a test is performed to see if

relative error

r it is more efficient to use a low-operator-rank form. In 1D,
FIG. 1. Relative error of approximatingritia Eq. (11) in the interval the pregk—eve_n point is a_n operator rank !ess than half Fhe
[107°,1] using an optimal expansion of 52 Gaussians. matrix dimension. In 3D, if the transformations are done in

order of increasing rank, the break-even ratios are about 3/4,
2/3, and 1/2 for the first, second, and third transformations,
We then use an algorithm for constructing a nearly opti-respectively.
mal representation using Ref. 38, where the authors extend Efficient application of the separated kernel requires
the approach in Ref. 39. As a result, we find the generalizedcreening based upon both the magnitude of the coefficients
Gaussian nodes and weights such that of the source function and the coefficients of the nonstandard
form of the three-dimensional operator. We currently esti-
' (11) mate thel? norm of each block of the operator using the
power method, namely, the rapidly convergent iteration

—i — At H
where e is the required maximum relative error within the IAl2=1Mn_x VXn/Xo 1, where x,=A'Ax,_;. Typically,
range and where the number of terrv, is nearly optimal. two to four iterations provide more than one digit precision

The optimization procedure in Ref. 38 also allows us to obStarting from a random initial guess.
tain an approximation

1

M

-p 2

__Z ope M S
m=1

= m

r

1 M I1l. KOHN-SHAM EQUATIONS
P E wme_pnnr2
I m=1

| m

=

: 12

The nonlinear Kohn-Sham equatidesg., Eqs(7.2.7-9
and (7.4.3 in Ref. 1] result from minimization of the DFT
which is sufficient to obtain Eq9) and requires fewer terms. energy functional with respect to variation of the occupied

The third step in obtaning Ed9) is to substitute the orbitals[ ¢;(r),i=1,...N] which define the electron density

approximation in Eq(11) or (12) into Eq.(8) and compute , (here for a closed-shell systém
one-dimensional integrals. A detailed derivation of these rep-

resentations will appear separatély.
For instance, a 52-term representation was constructed to

. . . . . . 75
ltan  relte reison of 10 e MENA0 *A) 1 orcupied il are the owssigentunions ofhe
g9 =011 P g P Kohn-Sham operatofalso here casually referred to as the

ezoidal rule in £q.(10) used 306 terms, which may be Fock operator since the Hartree and Hartree—Fock equations
partially reduced through elementary methd@$he optimal peraic e at
re very similat) which implicitly depends upon the orbitals

representations was then formed using Ref. 38, yielding 5 .
terms for the relative accuracy displayed in Fig. 1. rough the density,

For u>0, the kernelG,, in Eq. (3) is not homogeneous, [—3V2+V(r)]ei(r)=€di(r), (15
so that the approximation should be constructed for each LDA
scale separately which will yield a compact representation of V(1) =Vex1)+Veoul 1) + Ve (1) (16)
the matrix elementgsee Eq(5)] rather than of the kernel as In this paper, the external potentM,, includes only the
a whole. Although this is clearly the most efficient approach attraction of the electrons to the nuclei,
details of which we will present in a sequel, in the prototype

: Z

code we used an expansion that spans all length scales. To V)= _E e (17)
generate the separated representatios pf u#0, we use @ [r=rg
instead of Eq(10) the integral

—_
N

N

p(r>=2i§1 | i(r)]2. (14)

The Coulomb potentiaV/.,,(r) describes the repulsion be-

e M tween electrons,

2 “ 2,25 2.-2s
=— s [ 13 ,
r K f—oc (13 p(r’)

Ir=r’|"

Vea1)= | a1 19
Due to the superexponential decay at both ends of the range,
the trapezoidal rule may be directly applied to this integral toThe current work considers only the standard LDA
obtain the desired separated representafidn.our compu-  approximation;*! for which the exchange-correlation poten-
tations withG,,, we select the range of validity to include tial Vi is a scalar function that depends only upefr).
[0.001/(LZ1a0,1.0], where Z,,,, is the maximum nuclear The Hartree—Fock equations are of similar form, but instead

charge and. is the simulation cell size. of the local exchange correlation potentigl(r) include the
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nonlocal exchange potentifiEq. (2.5.19 in Ref. 1]. Imple-  tors (inverses of the differential operatonwe are concerned

mentation of gradient-corrected functionals, Hartree—Fockvith the large eigenvalues, and, thus, capable of maintaining

exchange, and hybrid potentials will be discussed in future better relative precision. Also the integral operator in Eq.

publications. (19) can be viewed as a preconditioner to improve the rate of
The eigenvalues; are also referred to as the orbital convergence.

energies and will be negative for the occupied orbitals. The  Additional improvements are expected by using alterna-

asymptotic form of the LDA occupied orbitals is obtained by tive bases that are being developed by one ofGi$.) to

substituting the form? exp—ar into Egs.(15) and collecting  provide a more effective representation of band limited

terms at long range. The result is, for a neutral system, functions®®

=.—2¢ andB;=1/a;— 1. The nonlocal exchange potential

causes the asymptotic behavior of the Hartree—Fock

orbital$” to differ from that of the LDA orbitals, but the

actual iterative solutions of the LDA and Hartree—Fock
equations are very similar. The derivative operator can employ both periodic and

zero Dirichlet boundary conditiorté. The Green’s function
[Eqg.(21)] used in the integral equation iteratipiq. (19)] is
for free-space boundary conditions, which are that the wave
In 1962, Kalo§® used the following Lippmann— function and its derivative are zero at infinity. It is important
Schwinger integral formulation to determine via Monte to enforce these boundary conditions during the iterative pro-
Carlo sampling the ground state wave functipmnd corre-  cess, otherwise nonphysical solutions may be amplified. To
sponding eigenvalug, enforce these conditions, we multiply all trial molecular or-
(19) bitals by a simple mask which is a tensor product of the

B. Boundary conditions

A. Integral equation formulation

h=—-2G,Vy, . :
following function:

whereG,, is an integral operator with the kernel being the
Green’s function defined by s(x/7), O0=x<r~

(=V2H+u®)G (r,r")=8(r—r") (20) m(x)=4 1, 7sxs<1-r7 (22)
and u=+—2E. For one particle in three dimensions with s((1=x)/7), 1-7<x<1,
free-space boundary conditions,

’ —3/2 ’ 1\ —1/2 where
Gu(r,r")=(2m) Ky pulr —r"(ufr=r'])
o ar S(x)=x2(3—2x).
e (21
mr The polynomials(x) is the firstB function which is zero at

To determine the wave function, the integral equation is itx=0, 1 atx=1, and also has zero first derivativexat 0, 1.
erated and the eigenvalue adjusted to conserve the norm e currently choose=1/16.
the wave function. In combination with deflati¢gec. V), it The above approach to enforce the boundary conditions
may be used to extract the eigenvectors of the threerequires that the box be large enough for the orbitals or wave
dimensional Hamiltonian. Away from the origin, the bound- function to become negligble. If the box is not large enough,
state Helmholtz Green'’s function is smooth and decays mor#é is not possible to converge the equations to a precision
rapidly than the Green’s function for the Poisson equation. Igreater than the implied truncation of the wave function; the
is therefore very efficiently represented in the multiwaveletenergy is less affected. Although the multiresolution decom-
basis. This integral formulation of the DFT equations is alsgposition can efficiently treat a large box, it may be yet more
commonly used in band structure calculati8hslowever, it efficient to use a smaller box and either match with an
is important to point out that the scattering-stép®sitive  asymptotic form or to include the boundary terms in the
energy Green’s function does not have a sparse representénategral equation. If the wave function and the bound-state
tion in wavelet bases since the function is oscillatory at longHelmholtz Green’s function are substituted into Green’s
range and its higher derivatives do not decay rapidly. theorem, then the integral iteration is modified as follows:

Beyond providing a simple and rapidly convergent itera-
tion to compute the eigenfunctions, this integral equation is
of interest because it does not require the use of derivativéb
operators to determine the wave function. In principle, even
:gfstotal energy may be computed using only integral opera- +f do{G(r,8)Vath(S)A— ¢(S)V.G(r,S),A], 23)

. Q)

In eigenvalue problems a small perturbation of the ma-
trix bounds only the absolute error of the eigenvalues andwheren is an outward unit vector normal to the surface. The
thus, for small eigenvalues the relative precision is worsdirst integral is over the finite simulation volume and the
than it is for the large ones. In using the differential operatorsecond integral is over the surface. The additional terms cor-
we are always concerned with subspaces corresponding tespond to single and double layer contributions. We have
the (relatively) small eigenvalues, whereas for integral opera-not yet implemented this approach.

:—2fﬂdsGﬁ(r,S)V(S)¢f(S)
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IV. ANALYTIC ENERGY DERIVATIVES

ergy with respect to the nuclear coordinates any param-
eter in the external potentjahre straightforwardly evaluated
since the Hellman—Feynman theorem is obeyed up to the
truncation threshold: 1r
JE < Vet

(== 0 0.5 1 1.5 2
7 7 >+O(e), (24)

where Ve, is the external potentidlusually the_ sum of the £ 2. The exact (1) and smoothefiu(r), Eq.(25)] Coulomb potentials.
electron-nuclear and nuclear-nuclear potentials, &Q)],

andq is a parametefe.g., a nuclear coordinateThe energy
for variational models is quadratic in the error in the wave
function due to approximate solution of the equations, and

the gradient is linear in this error. However, both the energy
and the gradient are linear in the basis truncation error. ~ or n=0, 1, 2. These zero moments ensure that the expecta-
tion value of the potential is quite accurate, implying that the

error arising from use of the modified potential is mostly
V. SMOOTHED NUCLEAR POTENTIAL second order. Other forms may be preferable, but this has

If the nuclei are located at dyadic points, the multiwave-P"OVE" satisfactory to date.

let basis can efficiently represent the cusps in orbitals at The parametec determines the range of the modifica-
y rep P Aion to the potential and thus the size of the error in the total

nuclei—the accuracy and high-order convergence are main- . o .

. . . ._energy. From perturbation theory and empirical té€stéving
tained. This is also the case for the singular nuclear potentia] . . . .
except in the vicinity of the nucleus, where many levels of he one-e!ectron gquatlpn to high precigiowe dete_rmlned

' the following relationship between the total eri@ in the

refmem.e'nt may be necessary fOI’.hl@fﬂ)l’mV\'lISQ precision. energy and the smoothing parametdor hydrogenic atoms
The ability of the polynomial basis to attain high values atOf chargez

the interval endpoints is beneficial in representing the singu-
larity, and the integrals used to project the potential into the 0.004 3%
polynomial basis are satisfactorily evaluated by Gauss— C=(—5
Legendre quadrature. Moreover, since the type of singularity z

is known, it is possible to develop quadratures that take thd@ests for the helium isoelectronic Hartree—Fock series
singularity into account, thus reducing further the number oshowed almost exactly twice this error, consistent with
refinement levels. double occupation of the orbital.

If the nuclei are displaced away from dyadic points, the  In Sec. VIIID, we present results comparing the energy
high-order convergence for the wave function breaks dowrand structure of the oxygen core orbital in water with various
near the nucleus, and additional levels of refinement are nesalues of the smoothing parameter.
essary both for the orbitals and the potential. Maintaining
precision in the wave function near the nucleus is importan¥/I. DFT SOLUTION SCHEME
for computation of accurate analytic gradients and other

. . The only necessary inputs are the nuclear coordinates
properties. Also, the Gauss—Legendre quadrature can fail, for . ; . -
. ; o . . and charges, the required final precision, and an initial guess
instance, if a nucleus coincides with a quadrature point.

Since we have not yet implemented adaptive subdivisio for the orbitals which is currently an STO-3@ef. 43 wave

of boxes(i.e., division by factors other than 2ve have cho- function generated with NWChef‘ﬁ.ln .”.“? near futurg, we

. . . ._plan to replace the Gaussian LCAO initial guess with a su-

sen to smooth or band-limit the nuclear potential. Modifying . ) .
: : . perposition of precomputed numerical or Slater-type atomic
the potential, so that both the potential and the resulting or: _ . . . : T
. - orbitals. An appropriate box siz@) for the simulation is
bitals are smooth near the nucleus, eliminates unnecessar . . .
ost readily determined from an estimate of the energy of

fine length scales, which improves the efficiency and accug, highest occupied molecular orbitdHOMO), the ex-

raoc;xtgf calculations especially with the nuclei at nondyadlcpected asymptotic orbital decay of em)’ and
P ' . . the required precision. The smoothing of the nuclear poten-
The electron-nuclear attraction potential ¢) has been . : } . L
LT . tial (Sec. V) is chosen to match the final required precision in
smoothed replacing it withi(r/c)/c wherec is a scalar and
the functionu(r) is the energy.
For a sequence of thresholdss 10 2, 10" °, ... down to
erfr 1 5 a2 the required final precision, we select the basis to be an odd
ur)=——+ ?(e T+l ). (25 order (k) of multiwavelets such that=10?"X. This empiri-
& cally seems the most efficient choice, but this conclusion is
This function is displayed in Fig. 2. Far>6, u(r) differs  implementation dependent. If the order of wavelets is too
from 1k by less than 64-bit machine precision. The firstlow, then the functions are refined more deeply and the inte-
three moments of the error are zero, i.e., gral kernels decay less rapidly. If it is too high, then unnec-

5
Derivatives of the variational Hartree—Fock or DFT en- 4
3
2

fxdrrz*"(u(r)—rfl)zo (26)
0

1/3

(27)
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essary work is done processing matrices that are currenthwhich may be rearranged as
treated as dense and/or full rank. Odd orders are more effj,
cient due to the superior error in derivativés. (H=PH(1-P)~(1-P)HP+PHP) ¢ =cidy. (39

At each thresholde), we project the previous solution SinceP;¢;=0, only the first two terms on the left-hand side
(or the initial guesginto the current basis and also compute are nonzero. The second term may be included in the poten-
the nuclear potential and maéRec. Il B). Then, the integral tial, thereby incorporating the effect of deflation into itera-
equation(Sec. Il A) is iteratively solved to a maximum re- tion of the integral equation. However, we note that if, prior
sidual norm in any orbital of max(3x 10 °). It is neither  to each iteration, the Hamiltonian or Fock matrix is diago-
useful nor feasible to solve to more than the available precinalized in the space of occupied orbitals, then the second
sion, so at each level we solve the equations to a residuérm is also zero and the unmodified integral equation may
norm of not less thau. Also, if we are only interested in the be used. The second modification is to orthogonalize the up-
energy, there is no need to determine the wave function tdated orbitals in order of increasing energy.

high precision. Therefore, for an energy accuracy of’lthe The coupled, nonlinear integral equations are solved us-

orbitals are determined to a precision of jusk B0~ 4, ing a Krylov-subspace accelerated inexact Newton méthod

though some results reported in this paper were computed which is similar in spirit to direct inversion in iterative

a much higher precision for benchmark purposes. subspacé® The total residual is formed by concatenating the
With just one molecular orbital, iteration of the integral residuals in each orbitaEq. (31)] and eigenvalugEg. (30)].

equation converges satisfactorily. Following Kafdsywe Each iteration involve$l) optionally computing and di-

note that with an exact eigenfunction as input, an incorrecagonalizing the Fock matrix in the space of occupied orbitals
eigenvalue in the integral equation results in the norm of théthe nonlinear equation solver requires a consistent definition
wave function not being conserved. Jfis the exact wave of the variables, so it is necessary to keep track of the maxi-
function ande is an approximate eigenvalue, we wish to mum overlap of the input and output orbitals and to keep
compute a correction to the eigenvalue. Starting from the phases consistent(2) computing the density as the sum of
integral equation, denoting the kinetic energy operatof,as the square of the molecular orbital§) computation of the
_ 1 Coulomb potential by convolution with the separated form of
p=—(T—e-A) "(Vy), (28) the Poisson kernel(4) computation of the exchange-
we expand the operator in a Taylor series and obtain correlation potential as a local function of the density)
iteration of the integral equation once for each of the orbitals,
Y=—(T—e) (V) —A(T—e)"%(V§) +O(A%). (29  which requires multiplication by the potential, and then con-
volution with the separated form of the Helmholtz kerr{é);
update of the eigenvalues and orbitals via the subspace
o solver; and(7) orthogonalize the resulting orbitals.
(V= o) The iterative solution proceeds in a mostly out-of-core
- W (30 fashion, so that at any instant only a few numerical functions
are in memory, with this number not depending upon the
where number of electrons in the system.

Y=—(T—e) Y(Vy). (31)

Since the changing norm of the wave function has been ap?!l- PROTOTYPE 3D IMPLEMENTATION
sorbed into the energy update, the wave function correction oy initial implementation uses Pythtifor high-level

Left projection withV¢ and rearrangement yield the follow-
ing update for the energy:

(6) is written as follows: control and C/G+/Fortran for computationally intensive
Z operations including matrix transformations, quadratures,
=) (32 and the innermost loops. At the highest level, we have de-
[l fined a Function class that includes methods for evaluation,

The convergence of this iteration is empirically tested in SecCOMPression, reconstruction, addition, multiplication by a

VIIIB and a related variational expression is described infunction or scalar, differentiation, application of the Laplac-

Ref. 44. ian, and other operations. The operator overloading capabili-
For many-electron systems, we must extract multipleties of Python provide great expressivity and enable very

eigenpairs from the Fock operator. Straightforward iteratiorF®MPact programs. For instancepsi is an instance of the
of the integral equation does not work because all roots wilf UNCtion class representing an orbital, and similaflyep-
collapse to the lowest root unless the initial guesses are Ves,ré;sents the potential, then the following statement applies the
close to the correct solutions. Two modifications are neces-OCK operator to the orbital:

sary. First, we use deflation to recast the integral equation for Hpsi = —0.5¢(Delsq *psi )+ V=psi .

each orbital as a ground-state problem. Beidenote a pro-
jector onto the space of the eigenfunctions of lower energ
than orbitali. At convergence, théth occupied orbitalg;

will be the lowest energy solution of

Pelsq is an empty class that is never instantiated. If an
instance of Function is multiplied on the right Belsq , the
function’s Laplacian method is invoked. Evaluation of a
function at a point with the natural semantjzsi(x,y,z)
(1-P)H(1-P;) ¢pi=¢€¢;, (33)  is accomplished by overloading the function call operator.
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Internally, a compressed function is represented using@daptive mesh and a 3D tabulation of the function in formats
the full sparsity of the translations at each level, but currentlysuitable for visualization by Opendx.
not exploiting the sparsity or low rank within a block of Multiwavelets of any order are supported. The two-scale
coefficients. The blocks of difference coefficients of a func-coefficients are generated using Alpert's algoritfrim ex-
tion in compressed form are stored in a directéoy asso- tended precision floating point numbers in Pytitery., 156-
ciative array or hash tabled, which has an entry for each bit arithmetic is used to generate the two-scale coefficients
significant level. Each of these entriefn] , is a directory ~for order 10. The extended precision is necessary only to
indexed by the translations. Only the significaf@bove generate the coefficients which are stored for subsequent use.
threshold translations are stored. Finaly{n][Ix ly ,Iz ]is Standard double-precision arithmetic is used for all other op-
a Tensor object that stores the multivavelet coefficietits ~ erations.
The sum coefficients are similarly represented in a recon-
structed function. The Python Tensor class is a implementei{!!l: INITIAL APPLICATIONS
in C++. SWIG® is used for facile integration of Python A. Helium isoelectronic sequence
with C, C++, and Fortran. Persistent and efficient storage of

functions on disk is straightforwardly accomplished by pro- T.O venfy that the resuits did not depend upon the size of
- - o . the simulation cell, and to demonstrate the ability of the mul-

viding a Python dictionary-like interface to a directory on . : . :

disk tiresolution representation to accommodate multiple length

- S . scales, we performed high-accuracy Hartree—Fock calcula-
Addition of a compressed function is straightforward— . ) . : o
tions upon the helium isoelectronic sequence He: Be

the sum coefficients at level zero and the difference coeffis

10+ 0+ | |ai ; ; ;
cients at all levels are simply added. Addition of a recon-",:\/lngd 86 Znud C&"" using simulation cell of sizes of 20, 40,

structed functi_o_n may be similarly ac_complished by adding To attain independence of the cell size, the compression
the sum C.Oeff|C|en'FS at all l_eYEIS' noting that the result mayy¢ e nyclear potential must take into account its depen-
have scaling function coefficients at multiple length Scalesdence upon the cell size. The molecular coordinates are in

which must be correctly accounted for during a subsequent,q cubd —L/2,L/2] (in atomic unit3 and these are mapped

compression. The Function class provides an operation thgf the unit cubd0,1] for the computation. The transforma-
performsaf+bg, wherea andb are scalars anflandg are  tjon scales lengths by, so the nuclear potential due to a
functions. Multiplication of two reconstructed functions is nycleus of chargeZ at the origin becomes/(x)=—Z/

performed as described in Refs. 14 and 51 by reconstructing |x—1/2)) with 0<x<1. In order to maintain precision

the functions on the locally finest level, optionally recurring independent of, one can either compressv/(x) with the
down one level to preserve the accuracy of the approximastandard precisiorfe) and subsequently scale byL1/or
tion, tabulating the functions on the quadrature grid, multi-compressv(x) with precisione/L. We currently do the lat-
plying the values, projecting back into the scaling functionter. Similarly, as noted abow&ec. 1), the lower limit for the
basis, and finally compressing and truncating. Application okeparated form of the bound-state Helmholtz operator must
a local function[i.e., g(f(r))] is similarly accomplished. also scale correctly with the cell size.
Evaluation of a compressed function at a point is performed  With these modifications, the energies are found to be
by recurring down the tree, accumulating the sum coeffiindependent of the cell size and agree to at least seven deci-
cients until they are reconstructed at the finest level in thenal places in atomic unit@éhe requested precisipmwith the
box containing the evaluation point. The scaling functionsresults of Thakkar?
(Legendre polynomiajsare then evaluated at the point of The ability to maintain precision independent of the cell
interest and contracted with the coefficients. If many pointssize suggests that calculations on large molecules containing
are to be evaluated, it is more efficient to first reconstruct théitoms at least into the third period will maintain the desired
function in the scaling function basis at the locally finestprecision. Doubling the simulation cell size adds an addi-
level. tional level to the simulation or, in general, an additional
Differentiation is currently performed using a periodic 4°—2°=48 boxes at the highest level, independent of the
central difference approximation as described in Ref. 14. Aiumber of boxes or length scales already present. In the spe-
zero boundary condition is enforced by embedding the solucial case of a single atom at the origin, doubling the box size
tion volume in zeroegi.e., references to coefficients outside & most adds eight additional boxes around the origin at the
the solution volume are treated as 2erA negative, self- finest level. Thus, thg calculations in larger boxes are only
adjoint approximation to the Laplacian is formed also as deSlightly more expensive.
scribed in Ref. 14. The derivatives, for multiwavelets of odd
orderk, are accurate to ordég™* for even order multiwave- B- Hydrogen molecular ion and molecule
lets, the order of the error in the derivatives is one less. |njtial molecular calculations were performed upopH
Therefore, odd multiwavelets are preferred. and H, for which accurate Hartree—Fock results are available
The Function class is able to export a description of then the literature?>>>°® The results for H (bond length 1.4
current basigi.e., a list of the significant translations at each bohrs, box size.=89.6 bohrs) are given in Table I. In con-
level) and also can restrict to a specified basis. This functiontrast to the recent three-dimensional, mixed-basis results of
ality is useful during iterative processes, such as diagonaliza?ahl and Handy® no extrapolation was necessary and the
tion. The class is also able to output a description of thebest result is accurate to about #8a.u.
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TABLE |. Hartree—Fock energy of the hydrogen molecute=(L.4 bohrs)

computed with various order waveldls. The truncation threshold in each 1e+04
calculation was 19 and the nuclear potential smoothing parameter was 1e+02 ki
chosen[Eg. (27) and Sec. V] to yield an energy accurate to at least
1E—-10. For comparison, the best variational energy we are aware of is 1e+00
—1.133629 571 456 due to MitiGRef. 56 using a very large Gaussian 1e-02
basis including off-center functions.
1e-04
k Energy 16-06
5 —1.133556 788 8
7 —1.1336294353
9 —1.133629 569 8
11 -1.1336295713 16+04 |
13 —1.1336295714 X
1e+02
1e+00
1e-02
The H, molecule(bond length 1.4 bohjsvas also used
to examine the convergence behavior for iteration of the in- Te-04
tegral equation with and without use of the subspace infor- 1e-06
0

mation, and with and without the multiscale solution. All
calculations started from the STO-3G orbital generated at a
bond length of 2 bohrs. Simple iteration of the integral equa+IG. 3. Plot of the numerical strontiusiorbitals. The orbitals demonstrate
tion, updating the eigenvalue according to E80), using a  the correct asymptotic behavior until the truncation threshold is reached and
multiwavelet of orderk=9 and a truncation threshold of 2ccurately span about 11 orders of magnitude in value.

10 7, converged to a residual norm of 19in ten iterations.

Use of the iterative subspace informafibto accelerate con- p. | DA calculations on polyatomic molecules

vergence reduces the number of iterations. For many- ,

electron systems, this is essential for reliable convergence, LPA calculations were performed upon water and ben-
Repeating these two calculations with the multiscale solvef€N€ near their equilibrium geometries. In Table II, we report
(Sec. V) requires a few more iterations overall, but requirest"® 960metry and other simulation parameters. In Table Iil,
only one iteration at the most accurate, and most expensivéﬁ‘{e report the corresponding energies and other information

threshold. Calculations at successive resolutions are approy’ €ach threshold used in the iterative solution. The best
mately twofold to fourfold more expensive. energies should be accurate to IMartree for both systems,

with each orbital being determined with residual norm of
. 3%x10°5. These results demonstrate that high precision is
C. LDA calculations on atoms attainable for general polyatomic systems.

We have implemented the local density approximdtion ~ The chosen geometry and simulation cell sizable 1)
(LDA; the Dirac—Slater exchange potential with the VWN-5 for both water and benzene place the nuclei at dyadic points
correlation potentidh) for closed shell systems. In order to at some level of refinemerttevel 1 for oxygen and level 7
verify the implementation and to explore possible issues witfor hydrogen. Beyond this level of adaptive refinement, the
calculations on many-electron atoms, we performed calculaduclei will always be at grid nodes. An important advantage
tions on the neutral atoms He, Be, Mg, Ca, and Sr. Th@f the multiwavelet basis{SeC. ”) is that it can maintain
results agree with the atomic data from the NIST dataBase, high-order convergence if singular poirtesg., the cusps in
which are reported to six decimal places in atomic units. the wave function are located at nodes. It is possible to

Figure 3 displays a radial plot of the strontitsorbitals. ~ adaptively refine the grid by unequally dividing boxXesther
The correct asymptotic decd@ec. IIl) is observed for each than exactly in twg which would enable the nuclei to sit
orbital until the truncation threshold is encountered. Previ2lways at grid nodes regardless of the molecular geometry.
ously, as described in Sec. VI, for all solution thresholds we
employed diagonalization within the occupied space to iNTapLE II. Geometries and simulation cell sizboth in atomic unitsfor
corporate the effects of deflation. Since the integral and diftDA calculations on water and benzene.
ferential forms of the LDA equations are only consistent up
to the truncation threshold, diagonalization inevitably mixed“o'ecule
the orbitals, resulting in less satisfactory asymptotic formswater L=36.8
The LDA equations were still being solved to the desired 0 0.0 0.0 0.0
precision and the energy was correct. However, since the E _1-23;2 g-g ﬂg
diagonalization does not significantly accelerate convergence ' ' '
once the eigenfunctions are identified to low precision, andenzene L=45.0
to avoid mixing the final eigenfunctions of the integral equa- c 0.0 +2.61474600375 0.0
tion, we presently only diagonalize in the occupied subspace +2.26318359375 1318359375 0.0

c
: I : . ; H 0.0 +4.658203125 0.0
with the initial solution threshold. This was how displayed H 4402099609375 +23291015625 0.0
orbitals were obtained.

Atom X y z
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TABLE lll. Energies for calculations on wateat dyadic and nondyadic \ater oxygen % orbital for several values of the smoothing
geometriesand benzene at various thresholtlee wavelet order being ad- parameter(c in Sec. \). The molecular geometry was as

justed as described in the t&xthe maximum size of any orbital is givenin . in Table Il which ol th lei at dvadi int
Mwords (i.e., the number of coefficients stojedll calculations were per- ~ J'VEN 1N Tabie 1l, which places the nucler at dyadic points.

formed with an energy precision of 10hartree. The displayed orbitals were computed by self-consistently
solving the LDA equations with the smoothed potential with
Max. orbital a finest truncation threshold of 1. The resulting orbitals
Molecule Threshold Energy size (Mwords) are smooth at the nucleus until the effect of smoothing falls
Water (dyadio 1073 —75.9105856 0.11 below the truncation threshold. At this point there is an ac-
10°° —75.9135325 0.58 tual cusp that can be exactly represented with the nucleus at
1077 —75.9135557 5.1

a dyadic point.

10°° —75.913556 3 50 . . . .
Finally, to reflect more routine chemical computations,
Water (nondyadi¢ 10:2 —75.9110119 011 the calculations on water and benzene were repeated using
1877 _;g-gig gg;g %527 C,, andD,, symmetries, respectively, and with a total en-
10-° k01356 3 51 ergy precision of 0.05 kcal/mol. .T.h.e total computat!onal
times, starting from an STO-3G initial guess and using a
Benzene 192 —230.184 4630 0.26 single 2.4 GHz Pentium-IV processor, are 91 and 850 s, re-
18,7 :;gg'zgi ?g;g 115 spectively. With our current prototype code these calcula-
10-9 2302017048 156 tions are expensive, but we anticipate substantial perfor-

mance improvements in future versions. We note that the
ratio of time for the two calculationé850/91=9.3) is close
to that expected from quadratic scaling upon the number of
Since we have not yet implemented this, there is the possbccupied orbital§ (21/5)2/2=8.8].
bility of the energy or other aspects of the simulation not
being translationally invariant.

To investigate translational invariance of the energy, weX. CONCLUSIONS
repeated the water calculation, displacing the molecule away )
from the origin by 1/9.9=0.10101.). a.u., thereby ensuring tivewe have formulated and demonstrated the fully adap

that th lei ¢ at dvadi ints at level of refi , multiresolution solution, with guaranteed precision, of
at the nucier are not at dyadic points at any level of refiney, o o _ajeciron density functional equations for general poly-

ment. The results are also included in Table Ill. The energy IS tomic molecules. The most significant development of this

obs;ar\f% LO ?he iranslatt_lon?rl]ly '?]V?(;'amdw'th'n a prems}l(zrr:work is the application of efficient, accurate, low-separation
controfied by the truncation threshold and convergence ot thg, representations of integral operators which enable prac-

orbitals; this is to be expected since it is guaranteed by th'ﬁcal computation with multiwavelet bases in three dimen-

m.‘."“reso'F‘“of‘ algorithm. Also, the orbitals do not differ sig— sions and lay the foundation for computation in even higher
n|f|'ca'ntly in size from those computed a’g the dyad|c pOInt'dimensions. Adaptive local refinememthich is different for
This is perhaps a consequence of two things: First, an addle'ach orbital is combined with the nonstandard form of op-

:'ﬁnal fel‘”. Iedvdels Olf tr_eﬂrlle;nent in the |frpn_1edt|atte \t/r|]cm|ty Of”erators for efficient computation with a low memory require-
€ nluctz_ ela SS rezlvey iw new coet 'C'fr:jstr? € ovetrre]l ajent since all required operators are Toeplitz. The multi-
simulalion. >Second, we have constructe € SMOooNeRFavelet bases with disjoint support provide high-order

nuclear potentia(Sec. V so that the resulting orbitals are convergence and can maintain this order even in the presence

smooth(Gaussiahnear the nucleus. of singularities and boundaries located at dyadic points.

To illustrate the effect O.f the s_moothed nl_JcIear pOtentiaI'I'hese bases also enable efficient computation on modern
(Sec. 5 upon the orbitals, Fig. 4 displays a slice through thecached-based processors since many computations are

phrased as smalbften low-rank matrix-matrix operations.
The fast(i.e., with a computational cost scaling linearly with

2600 |- _ respect to the number of coefficients and logarithmically
with the simulation volume and required precisi@pplica-
= 2400 1 tion of integral operators replaces the iterative solution of
g 2200 - _ poorly conditioned differential equations with the solution of
well conditioned integral equations.
2000 - 1 This paper has focused on practical details of the fast
1800 £ . . ! ! algorithms, but it is important to note that underlying this
004 -002 0 0.2 0.04 apparent complexity is a standard, well-understood orthogo-
x / Bohr nal basis set—Legendfer interpolating polynomials. As a

FIG. 4. Slices through the water oxygen 1s orbital for values of the nuclea€ONS€quUeNce, mOSt Stan_dard quantum m_e‘Chanical methods
potential smoothing parameteSec. \j ¢=0.05, 0.01667, 0.00556, and interpretations are immediately applicable, and most
0.00185, and 1. The corresponding energies are76.919073, physical operators fit automatically into tf@(N) frame-

—76.914719,-76.913599,~76.913 530, and-76.913 533, respectively. \qry with the computation of simple matrix elements over
The smoother orbitals correspond to larger values of the smoothing para

eter, and the lines for the smallest two values are indistinguishable at tr:legendre _p0|yn0mials_ With Standard nu_merical quadrature.
resolution of the plot. Interpretation of densities and orbitals in terms of atomic
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high level in terms of operators and functions. This should beCenter for Computational Sciences at Oak Ridge National
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