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Abstrat. We solve visous Burger's equation using a fast and aurate algorithm�

referred to here as the redution algorithm� for omputing near optimal rational

approximations.

Given a proper rational funtion with n poles, the redution algorithm omputes

(for a desired L
∞
-approximation error) a rational approximation of the same form,

but with a (near) optimally small number m ≪ n of poles. Although it is well-known

that (nonlinear) optimal rational approximations are muh more e�ient than linear

representations of funtions via a �xed basis (e.g. wavelets), their use in numerial

omputations has been limited by a lak of e�ient, robust, and aurate algorithms.

The redution algorithm presented here omputes reliably (near) optimal rational

approximations with high auray (e.g., ≈ 10−14
) and a omplexity that is essentially

linear in the number n of original poles. A key tool is a reently developed algorithm

for omputing small on-eigenvalues of Cauhy matries with high relative auray,

an impossible task for standard algorithms without extended preision.

Using the redution algorithm, we develop a numerial alulus for rational repre-

sentations of funtions. Indeed, while operations suh as multipliation and onvolu-

tion inrease the number of poles in the representation, we use the redution algorithm

to maintain an optimally small number of poles.

To demonstrate the e�ieny, robustness, and auray of our approah, we solve

Burgers' equation with small visosity ν. It is well known that its solutions exhibit

moving transition regions of width O (ν), so that this equation provides a stringent

test for adaptive PDE solvers. We show that optimal rational approximations apture

the solutions with high auray using a small number of poles. In partiular, we solve

the equation with loal auray ǫ = 10−9
for visosity as small as ν = 10−5

.

1. Introdution

We solve visous Burgers' equation using a fast and aurate algorithm for on-

struting rational approximations with (near) optimally small L∞
error. When the

visosity ν is small, solutions of Burgers' equation develop sharp (moving) transition

regions of width O (ν), whih presents a hallenge for standard numerial methods.

Although solving visous Burgers' equation is primarily of aademi interest, it allows

us to demonstrate the e�ieny, auray, and robustness of using optimal rational

approximations for numerial omputations. Our ultimate goal is to develop nonlinear
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approximation methods for solving partial di�erential and integral equations in higher

dimensions, where the ability to onstrut near optimal rational (or exponential) ap-

proximations to funtions of one variable is a key omponent.

Sine the seminal result in [21℄, it has been known that funtions with singulari-

ties may be e�iently approximated in the L∞
norm using proper rational funtions.

Indeed, the number of poles required to approximate a funtion with singularities is

diretly related to the sparsity of the funtion's wavelet oe�ients (see [16, Theorem

11.1℄). However, in ontrast to more traditional L2
-type methods (using e.g., wavelet

bases as in [2℄), the use of suh optimal L∞
-type approximations in numerial analysis

has been limited due to a lak of e�ient and robust algorithms.

Given a proper rational funtion f , we present an algorithm�whih we refer to as

the redution algorithm�to ompute, for a �xed number of poles, a rational approx-

imation g to f with a (near) optimal L∞
error. We use the redution algorithm to

develop a numerial alulus based on rational funtions. Although operations suh as

multipliation and onvolution inrease the number of poles in the representation, we

use the redution algorithm afterwards to keep the number of poles optimally small for

a spei�ed auray. A salient feature of this approah is that optimal rational approx-

imations e�iently represent funtions with singularities or sharp transitions, and that

positions of the poles are diretly assoiated with the loations of singularities [5℄.

Our redution algorithm relies on theory developed by Adamyan, Arov, and Krein [1℄

(referred below as AAK) for onstruting optimal approximations in the L∞
-norm using

meromorphi funtions with a spei�ed number of poles in the unit disk. In partiular,

let f denote a real valued (periodi) rational funtion with n pairs of omplex poles γj,
1/γj (|γj| < 1) and oe�ients αj , αj . Then it turns out (see Appendix Setion 4.1)

that a (near) optimal rational approximation g, ontaining exatly m poles in the

unit disk, may be obtained from the mth on-eigenvetor um of the assoiated n × n
Cauhy matrix Cij =

√
αi

√
αj/ (1− γiγj) . Moreover, the approximation error satis�es

‖f − g‖∞ ≈ λm, where λm is the mth on-eigenvalue of C, and the m poles of the

approximation are roots of a rational funtion determined by the omponents of the

on-eigenvetor um. An analogous formulation also exists for obtaining (near) optimal

approximations via deaying exponentials [4, 6℄, as well as rational funtions de�ned on

the real line. We formulate the on-eigenvalue problem in Setion 2, and refer to [15,

Setion 4.6℄ for its general disussion. See also [22℄ for a lear disussion of the AAK

theory.

Let us observe that in order to employ the redution algorithm, two seemingly ill-

advised numerial tasks must be performed � namely, aurately omputing small

on-eigenvalues (and on-eigenvetors) of Cauhy matries, and omputing all the roots

in the unit disk of ertain rational funtions. One of the main points of this paper

is to provide algorithms that solve both problems e�iently, reliably, and with high

auray. A key tool in this regard is an algorithm developed in [?℄ to ompute even

the tiniest on-eigenvalues of positive-de�nite Cauhy matries C with high relative

auray, whih is impossible using standard methods (see [13℄, [12℄, and [11℄ for the

bakground on algorithms for ahieving high relative auray). Also, of partiular

importane, is the robustness of the root-�nding method, sine it must be employed
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many times. For example, in the ontext of solving Burgers' equation with visosity

ν = 10−5
and approximation tolerane ǫ = 10−9

, on the order of a million appliations

of the redution algorithm are performed.

For funtions with n poles resulting from intermediate omputations, the redution

algorithm requires only O (m2n) operations to �nd an optimal approximation with m
poles. In our numerial experiments with the redution algorithm, we �nd that an

approximation error of ǫ ≈ 10−14
may be reliably obtained within double preision

arithmeti, even when the number of poles n is large and their spatial distribution is

highly lustered.

There is a signi�ant literature devoted to appliations of the AAK approah in

ontrol theory (f. [23℄), signal proessing (f. [8℄), and numerial analysis (f. [25,

27, 29, 5℄), to mention just a selet few. The reformulation of the AAK theory given

here ould be related to the approahes taken in [28℄, [20℄, and [10℄. However, as far

as we know, all of the AAK-type algorithms disussed in the literature require O (n3)
operations when applied to a rational funtion with n poles, and may require extended

preision arithmeti if high auray of the result is desired. In ontrast, our redution

algorithm requires only O (m2n) operations to �nd an optimal approximation with m
poles and ahieves high auray (ǫ ≈ 10−14

) using only double preision arithmeti.

We show in this paper that solutions of Burgers' equation with visosity ν require

only O (log ν−1) +O (log ǫ−1) poles for its rational approximation with an L∞
error of

size ǫ. Burgers' equation has been traditionally used to test the limits of new numerial

methods sine the solution develops sharp transition regions that need to be aptured

adaptively. Coneptually, the two losest adaptive methods are those in [24℄ and [2℄.

While in [2℄ adaptivity is ahieved by adding wavelet sales when needed, the algorithm

in [24℄ ahieves spetral auray by adaptively positioning the neessary number of

interpolating nodes within the transition region.

We ompare the performane of our algorithms with that in [24℄, where authors

use sub-optimal rational approximations based on onformally mapped Chebyshev grid

points and baryentri interpolation. It appears that (for a omparable approximation

error and visosity) using optimal rational approximations to represent solutions of

Burgers' equation results in signi�antly fewer poles. We also note that (as far as

we know) our method suessfully solves visous Burgers' equation with the smallest

visosity reported in the literature, thus demonstrating the e�ieny, auray and

robustness of the redution algorithm. Sine standard methods for disretizing PDEs

(e.g., olloation, projetion, et.) do not readily �t within the framework of our

nonlinear numerial alulus, we also present a disretization sheme that may be of

independent interest.

In Setion 2, we desribe the redution algorithm and its onnetion to solving a on-

eigenvalue problem. In Setion 3, we disuss the main algorithm for solving Burgers'

equation, and present our numerial results.

2. Redution algorithm for rational funtions

In this setion, we summarize the algorithm for obtaining a (near) optimal approx-

imation of a periodi rational funtion by another periodi rational funtion with a
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smaller number of poles. As mentioned earlier, our redution algorithm is based on

a theorem of Adamyan, Arov, and Krein ([1℄), whih onerns the approximation of

a periodi funtion f , essentially bounded on the unit irle ∂D, by a meromorphi

funtion r(z) (z = e2πix) ontaining a spei�ed number of poles in the unit disk. We

limit our presentation to rational funtions f taking real values on ∂D. This ase turns
out to be partiularly important, as it allows us to develop a pratial algorithm based

on approximating the Fourier series oe�ients of f with positive index. More general

funtions f may be dealt with by using the tehniques in [5℄. We note that the AAK

theory may also be formulated for funtions de�ned on the real line (f. [22℄).

2.1. Overview of key algorithmi steps. Following the same steps as in [4, Setion

6℄ (see also Setion 4.1), if the original funtion is rational, the (in�nite) Hankel system

derived from AAK theory may be redued to a �nite on-eigenproblem. Spei�ally,

onsider a rational funtion f of the form

(2.1) f(z) =
n∑

i=1

αi

z − γi
+

n∑

i=1

αiz

1− γiz
+ f0,

where f0 is real, the residues αj and poles γj are omplex, and 0 < |γj| < 1. Note that

f is real-valued on the unit irle and that the Fourier series oe�ients f̂k of f(e2πix)
satisfy

f̂k =

n∑

i=1

αiγ
k−1
i , k ≥ 1,

with f̂−k = f̂k and f̂0 = f0. We now desribe an algorithm to �nd a rational approx-

imation g(e2πix) to f(e2πix), of the same funtional form (2.1), with a spei�ed error

in the L∞
-norm and a (near) optimal number of poles. Given a target auray ǫ, the

steps for omputing the rational approximant g are as follows:

Step 1: Compute a on-eigenvalue λm ≈ ǫ and orresponding on-eigenvetor u
of the positive-de�nite Cauhy-like matrix C,

(2.2) Cu = λmu, u =




u1
u2
.

.

.

un


 , Cij =

α
1/2
i α

1/2
j

1− γiγj
, i, j = 1, . . . , n.

Here the on-eigenvalues λ0 ≥ λ1 ≥ . . . λn−1 > 0 are labeled in non-inreasing

order. In ontrast to standard methods, our algorithm exploits the struture of

C to ompute its on-eigenvalues (and assoiated on-eigenvetors) with high

relative auray, and in order O
(
n log (ǫ−1)

2
)
operations (see Setion 2.2).

Step 2: Find the m zeros ηj inside the unit disk of the proper rational funtion

v(z),

(2.3) v(z) =
1

λm

n∑

i=1

√
αi ui

1− γiz
.
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The fat that there are exatly m zeros in the unit disk, orresponding to the

indexm of the on-eigenvalue λm, is a onsequene of the AAK theory. As shown

in Setion 4.1 (see equations (4.8)), the key to the high auray of evaluating

the funtion v(z) is the relationship

(2.4) v (γi) = ui/
√
αi, i = 1, . . . , n,

whih, together with the n poles 1/γi, uniquely determines v(z).
Step 3: Find the oe�ients βi of g(z) by solving the m×m linear system,

(2.5)

m∑

i=1

1

1− ηiηj
βi =

n∑

i=1

αi

1− γiηj
, j = 1, . . . , m.

Denoting ‖f − g‖∞ = supx∈[0,1] |f(e−2πix)− g(e−2πix)|, the resulting rational approxi-

mation g(e2πix) satis�es ‖f−g‖∞ ≈ ǫ and, thus, is lose to the best L∞
-error ahievable

by rational funtions with no more than m poles in the unit disk (see also [25℄ for a

disussion of optimal rational approximations).

Remark 1. In Step 3, we solve for the oe�ients βi in O (m2) operations by exploiting

the struture of Cauhy matries (see [11, 7℄). We note that suh a solver may require

quadruple preision if the overall desired approximation error ǫ is smaller than ≈ 10−10
.

However, sine m = log (ǫ−1) is small, Step 3 for �nding oe�ients βi does not impat

the overall speed of the algorithm even if performed in quadruple preision.

Remark 2. In appliations where the funtion f (e2πix) has singularities or sharp tran-

sitions, the poles γj in the rational representation of f (e2πix) may be loated very lose

to the unit irle (and/or to eah other). In suh ases, it is advantageous to maintain

the poles in the form γj = exp (−τj), sine they are well separated on a logarithmi

sale. Importantly, the redution algorithm omputes the new poles ηj = exp (−ζj)
with nearly full preision in the exponents ζj, i.e., the ratio

∣∣∣ζ̂j − ζj

∣∣∣ / |ζj| is lose to

mahine preision even when |ζj| ≪ 1 (see [?℄). However, to ahieve high auray in

the numerial examples of this paper, it was not neessary to maintain the poles in

exponential form.

Remark 3. It may be shown (to be published elsewhere) that the on-eigenvalues λm
of the positive-de�nite Cauhy matrix Cij = α

1/2
i α

1/2
j / (1− γiγj) in (2.2) satisfy the

inequality

max {λ2m, λ2m−1} ≤ n2 |αm|
1− |γm|2

Πm−1
k=1 |fγk (γm)|

2 ,

where fγk denote the Moebius transformations

fb (z) =
z − b

1− bz

and the parameters αm and γm are appropriately sorted. Sine the transformation

fb maps the unit disk into itself if |b| < 1, the on-eigenvalues deay as λm ∼ rm
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(r < 1). This estimate shows that, for auray ǫ, we may reasonably expet O (log ǫ−1)
terms in our approximation. In fat, we have observed this behavior in our numerial

experiments.

Let us now brie�y disuss the algorithmi aspets behind e�ieny and auray of

solving steps 1-3 above.

2.2. Aurate omputation of on-eigenvalues/eigenvetors. For Step 1, we use
a reent algorithm developed and analyzed in [?℄ for omputing on-eigenvalues of

Cauhy matries with high relative auray, whih we brie�y desribe in this setion.

It is well-known that standard eigenvalue algorithms ompute an approximate on-

eigenvalue λ̂m with an error no better than

∣∣∣λm − λ̂m

∣∣∣ / |λ1| = O (δ), and an approxi-

mate unit on-eigenvetor ûm with an error no better than

‖um − ûm‖2 = O (δ) /absgapm, absgapm ≡ min
l 6=m

|λm − λl| / |λ1| ,

where δ denotes the mahine round o�. This implies that a omputed on-eigenvalue

smaller than |λ1| δ will generally have few or no orret digits. Another undesirable fea-

ture of using standard on-eigenvalue methods to solve Step 1 is the O (n3) omplexity

for �nding the m≪ n poles of g(z), where n is the original number of poles of f(z).
In ontrast, the on-eigenvalue algorithm introdued in [?℄ omputes even the small-

est on-eigenvalues (and orresponding on-eigenvetors) aurately, i.e., the omputed

on-eigenvalue λ̂m satis�es

∣∣∣λm − λ̂m

∣∣∣ / |λm| = O (δ), and the omputed unit on-

eigenvetor ûm satis�es

‖um − ûm‖2 = O (δ) /relgapm relgapm ≡ min
l 6=m

|λm − λl| / (λl + λm) .

Thus, the omputed on-eigenvalues and on-eigenvetors are aurate if the relative

distane between the on-eigenvalues is not too small (whih is the ase for matries on-

sidered here). Importantly, the mth on-eigenvalue (and on-eigenvetor) is omputed

in O (m2n) operations. We note that, under mild assumptions, the on-eigenvalues

of positive de�nite Cauhy matries deay exponentially fast. It then follows that,

for a given desired auray ǫ, ‖f (e2πix) − g (e2πix) ‖∞ ≈ ǫ, the number of poles m
in the approximant g(z) is O (log ǫ−1). Therefore, the omplexity of our algorithm is

O
(
(log ǫ−1)

2
n
)
, i.e., is essentially linear in the number of original poles n and, thus, its

speed is ontrolled by the number of poles of the �nal optimal approximation. Moreover,

in ontrast to the usual perturbation theory for general matries, small perturbations

of the poles γm and residues αm (determining the Cauhy matrix C = C(α, γ)) lead to

orrespondingly small perturbations in the on-eigenvalues and on-eigenvetors [?℄.

2.3. Finding poles for near optimal approximation. There are two numerial

di�ulties assoiated with the root-�nding algorithm in Step 2 of Setion 2.1. First,

the roots of polynomial or rational funtions may be notoriously ill-onditioned with

respet to their de�ning parameters. In partiular, using the expliit formula (2.3) to

ompute values of v(z) typially results in a loss of roughly log10 (λ
−1
m ) digits. Indeed,
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using (2.4) to rewrite (2.3) as

n∑

i=1

αi v (γi)

1− γiz
= λmv(z),

we see that the sum must su�er anellation of about log10 (λ
−1
m ) digits if v (γi) and

v (z) are of omparable size (note that λm ontrols the approximation error and, thus,

is neessarily small).

The seond di�ulty assoiated with the root-�nding step is that root-�nding meth-

ods based on standard iterative proedures suh as Newton's method are often too

sensitive to the initial guess and, for that reason, may not loate all the roots reliably.

Our PDE solver (see Setion 3) requires roughly a million appliations of the redution

algorithm and, thus, it is imperative that the root-�nding algorithm is both e�ient

and reliable in loating allm roots of v (z) (reall that the index m of the on-eigenvalue

λm orresponds to the number of roots in the unit disk). Indeed, due to optimality of

the rational approximation, missing even one root leads to an unaeptably large error

in the orresponding approximation.

The root-�nding algorithm presented below makes use of two key observations. First,

the values v (γi) = ui/
√
αi of v (z) may be omputed in Step 1 with high auray from

the on-eigenvalue omponents ui. Notiing that the n values v (γi) and poles γi
−1

uniquely determine v (z), we ompute v (z) via rational interpolation with the values

v (γi) and poles γi
−1

rather than using formula (2.3). Heuristially, the reason this

approah works well is that the roots of v (z) are typially lose to the poles γi (sine
the roots yield the poles of a near optimal approximation), and it is natural to expet

that having many aurate values v (γi) of v (z) lose to the roots allows us to ompute

them with high auray. The seond key observation is that the roots of v (z) oinide
with the eigenvalues of a rank-one-plus-diagonal matrix, and this matrix may be applied

(along with its shifted inverse) in O (n) operations. This yields an e�ient and robust

way to loate all roots of v (z) within the unit disk.

The basi strategy behind the root-�nding algorithm is as follows. First, we use

Newton's method on the rational interpolant omputed from the values v (γi) and poles

γi
−1
. Sine we have good initial guesses for Newton's method, this proedure typially

loates most of the roots of v (z). To ompute any roots that Newton's method misses

(reall that we know from Step 1 the total numberm of roots in the unit disk), we use an

e�ient version of shifted inverse iteration on the diagonal-plus-rank-one matrix whose

eigenvalues oinide with the roots of v (z). Beause the eigenvalues of this matrix

are often ill-onditioned, some of these eigenvalues may be only evaluated with a few

aurate digits. However, using Newton's method on the rational interpolant allows us

to re�ne the missing roots to nearly full preision.

Let us now desribe this algorithm in greater detail. As noted above, v(z) is uniquely
determined from its n values v (γi) = ui/

√
αi, aurately omputed from Step 1, and its

n poles 1/γi. This allows us to ompute an approximation ṽ(z) to v(z) via ontinued

frations,

(2.6) ṽ(z) =
a1

1 + a2 (z − γ1) / (1 + a3 (z − γ2) / (1 + · · · )) ,
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where the oe�ients aj are determined from the interpolation onditions ṽ(γi) = v (γi),
and may, in general, be omputed in O (n2) operations. Importantly, the poles γi are
often lustered �around� the roots of v (z) (this is the ase in our PDE appliation),

and it is su�ient to use loal rational interpolation within a given luster to �nd roots.

This redues the omplexity to essentially O (m) operations, where m is the number of

roots in the unit disk. One the oe�ients aj are determined, the values of ṽ(z) and
ṽ′(z) may be omputed in O (n) operations using reursion formulas [9℄ (the omplexity

redues to O(m) if it is done loally as desribed above). As indiated previously, this

method yields very aurate results when the poles γi are highly lustered (whih is

the ase in our PDE appliation). Indeed, the roots of v (z) oinide with the poles

of a (near) optimal rational approximation, so that a given root is often loated lose

to some partiular luster γi1 , γi2, . . . , γik of original poles. Sine Step 1 omputes the

values v (γik) of v (z) with high auray, suh pole lustering atually ontributes to a

high degree of numerial stability. As a tehnial point, omputing the oe�ients aj
in 2.6 requires arranging the nodes γ1, . . . , γn in inreasing order of magnitude in order

to ahieve high auray.

We also note that, as an alternative to using ontinued frations, the roots of v(z)
may also be aurately omputed using Lagrange interpolation (and the known poles

γi
−1

of v(z)),

(2.7) v(z) =
Πn

i=1 (z − γi)

Πn
i=1 (1− zγi)

n∑

j=1

sj
(z − γj)

, sj =
Πi (1− γjγi)

Πi 6=j (γj − γi)
v (γj) .

Computing the baryentri weights sj, in general, requires O (n2) operations, and eval-

uation of v(z) and v′(z) (one the weights sj are omputed) requires O (n) operations.
Construting rational interpolants from appropriately grouped pole lusters γi again
allows us to redue the omplexity to O(m) operations. We note that omputing the

oe�ients sj requires in this ase arranging the nodes γ1, . . . , γn in dereasing order of

magnitude in order to ahieve high auray.

As mentioned previously, we ompute roots that the above proedure misses by using

the fat that the roots of (2.3) oinide with the eigenvalues of the diagonal-plus-rank-

one matrix (f. [26℄ and [19℄),

(2.8) A = D + abT,

where the diagonal matrix D and the vetors a and b satisfy

Dii = γi
−1, ai =

γi
−1√αiui∑n

j=1 γj
−1√αjuj

, bi = γi
−1, i = 1, . . . , n.

Using the Sherman-Morrison formula, the matrix (A− λI)−1
may be e�iently applied

in O (n) operations and, therefore, simultaneous inverse iteration may be used to om-

pute allm eigenvalues of A inside the unit disk (and, hene, allm roots of v(z) in the unit
disk). To illustrate this proedure, assume thatm−1 roots β1, . . . , βm−1 have been found

using the version of Newton's method desribed above, and we would like to ompute the

missing root βm. To do so, we �rst use the Sherman-Morrison formula, ombined with

one step of inverse iteration, to ompute eigenvetors q1, . . . , qm−1 of A orresponding
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to the known eigenvalues β1, . . . , βm−1, one by one. We then orthogonalize these m− 1
vetors using the stabilized Gram-Shmidt proedure, thus yielding a basis q̂1, . . . , q̂m−1

for the invariant subspae span {q1, . . . , qm−1} = span {q̂1, . . . , q̂m−1}. Finally, we use

simultaneous inverse iteration applied to q̂1, . . . , q̂m−1, q, where q is hosen randomly.

Notie that eah step of this proess requires orthogonalizing q(k+1) =
(
A− λ(k)I

)−1
q(k)

against q̂1, . . . , q̂m−1, where λ
(k)

is the guess for βm after k steps. The matrix-vetor

produt

(
A− λ(k)I

)−1
q(k) may be omputed in O (n) operations from the Sherman-

Morrison formula. Therefore, eah step of this iterative proess requires O (mn) oper-
ations, and an initial O (m2n) operations to orthogonalize q1, . . . , qm−1.

Remark 4. In appliations where the poles γi are not lustered, we have observed that

the roots of v (z) are omputed with nearly full preision using Lagrange interpolation

(2.7). In ontrast, using ontinued frations as in (2.6) may not always yield aurate

roots if the poles are not lustered.

Remark 5. In both Newton's method and the inverse iteration method, we used the

original poles, γi, as starting guesses. However, the starting guess does not play a

signi�ant role in inverse iteration sine it is globally onvergent.

3. Solving (1+1) dimensional nonlinear partial differential equations

using optimal rational approximations

We now desribe a method for solving Burgers' equation,

(3.1) ut − uux = νuxx, u(x, 0) = u0(x), u(0, t) = u(1, t),

using the redution algorithm of Setion 2. We demonstrate that using optimal rational

approximations allows us to ompute solutions that are aurate over a very large range

in Fourier spae and, thus, resolves the spatial singularities with high auray.

The main idea of our time-stepping sheme is to represent the solution in spae as a

proper rational funtion. The disretization of (3.1) requires only a few basi operations

on suh rational funtions, and preserves their rational form. These operations naturally

inrease the number of poles in the representation and, thus, we employ the redution

algorithm at eah stage of the proess to keep the number of poles as small as possible.

Our results show that the solution of (3.1) may be obtained using rational funtions

with a small number of poles and with a uniform error, even within the rapid transition

region developed in the proess of evolution.

We �rst desribe how, starting from u(x, 0) = u0 (x), we ompute u(x, t) for a given

timestep t. By reasting (3.1) in semigroup form (see Setion 4.2), an appropriate

temporal and spatial disretization of (3.1) leads to the nonlinear system of equations,

ul(x) =

Mx∑

p=1

λlpu0
(
x− φl

p

)
+

Mt∑

j=1

Mx∑

p=1

λlp,ju
2
j

(
x− ψl

p

)
,(3.2)

where ul (x) ≈ u (x, τl), 1 ≤ l ≤ Mt, and {τl} are the Mt Gauss-Legendre quadrature

nodes on the time interval (0, t). The real-valued quantities φl
p, ψ

l
p, λ

l
p, λ

l
p,j in (3.2)
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depend on the timestep t, the number Mt of quadrature nodes in time, and the number

of quadrature nodes Mx used in spae to disretize the onvolution kernels. From the

rapid deay of the periodi heat kernel,

Kν(x, t) =
1√
4πνt

∑

k∈Z

e−(x+k)2/(4νt),

where ν is the visosity parameter in (3.1), it follows that φl
p and ψ

l
p are loalized to a

O
(√

νt
)
neighborhood of x = 0 (see Setion 4.2 for details).

We assume that the initial funtion u(x, 0) = u0 (x) is given as a periodi rational

funtion of the form

u0(x) =

M0∑

j=1

αj

e−2πix − γj
+

M0∑

i=1

αj

e2πix − γj
+ α0,

and that this representation is nearly optimal. We then solve the system of equations

(3.2) by approximating eah funtion ul using the redution algorithm. We obtain, via

�xed point iteration applied to (3.2) and the redution algorithm, rational funtions

ul(x) of the form,

(3.3) ul(x) =

Ml∑

j=1

αj,l

e−2πix − γj,l
+

Ml∑

j=1

αj,l

e2πix − γj,l
+ α0,

whih solve (3.2) to a spei�ed level of preision, and have a (near) optimal number of

poles.

More spei�ally, given u
(m)
j ≈ uj(x), 1 ≤ j ≤ Mt, at iteration m, we use (3.2) to

de�ne the next iterates u
(m+1)
l (x) for l = 1, . . . ,Mt,

u
(m+1)
l (x) =

Mx∑

p=1

λlpu0
(
x− φl

p

)

(3.4)

+
Mx∑

p=1

λlp,j

l−l∑

j=1

{(
u
(m+1)
j

(
x− ψl

p

))2
+

Mt∑

j=l+1

λlp,j

(
u
(m)
j

(
x− ψl

p

))2
}
.

Note that, in omputing u
(m+1)
l (x) for l > 1, we use the funtions u

(m+1)
j (x), 1 ≤ j < l

already available to us. We take u
(1)
j (x) = u0 (x), 1 ≤ j ≤ Mt , as an initial guess for

uj (x).

Although this initial form for u
(m+1)
l (x) is also rational, it is not of the form (3.3),

sine it ontains poles of multipliity two. However, it follows from equation (3.4) and

the distribution of the parameters φl
p and ψ

l
p in (4.12), that the poles of u

(m+1)
l (x) are

tightly lustered in O
(√

νt
)
neighborhoods about the poles γm of the initial funtion

u0(x). We may therefore obtain a very aurate sub-optimal representation of u
(m+1)
l (x)

of the required form (3.3) by omputing (q, q + 1) Pade approximants of the rational

funtions in (3.4) assoiated with eah luster of poles, where the Pade expansions are
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entered about 1/γm. In our numerial experiments, (q, q + 1) Pade approximations of

order 1 ≤ q ≤ 4 typially yield an L∞
error smaller than 10−14

. Note that obtaining

a proper rational approximation of u
(m+1)
l (x) in this manner requires solving M0 small

(e.g., 3 × 3) linear systems, and yields a sub-optimal approximation with about three

times the optimal number of poles. We then use the redution algorithm, outlined in

Setion 2, to obtain an optimal rational representation of u
(m+1)
l (x). This proess is

repeated until the desired level of preision is obtained.

3.1. Examples. As a �rst example, we solve equation (3.1) with visosity ν = 10−3
,

and with initial ondition u0(x) = sin(2πx). For the time disretization, we use a

timestep equal to 10−3
and Mt = 3 quadrature nodes τl in (0, t) (see equation (3.2)).

This yields a loal error of less than 10−11
. For the spatial part, we apply the redution

algorithm by seleting the smallest on-eigenvalue value greater than ǫ = 10−12
, whih

ensures a uniform L∞
-error of about 10−12

. In our appliation of Pade approximation,

we obtain a spatial error in the L∞
-norm no larger than 10−11

.

We take 400 timesteps, whih ensures that we evolve (3.1) past the point at whih the

solution begins to derease. To assess the error, we independently obtain the solution

to (3.1) by using the Hopf-Cole transformation to redue Burger's equation to the heat

equation. We then solve the heat equation in extended preision arithmeti (the Hopf-

Cole transformation is highly ill-onditioned) to obtain a solution that we use as a gauge

for assessing auray. We verify that the L∞
-norm of the di�erene between the two

solutions remains less than 1.6× 10−9
.

Figure 3.1 shows the omputed solutions u(x, t), whih have 5, 9, 14, and 13 omplex-

onjugate pairs of poles at times t = 0.02, t = 0.11, t = 0.21, and t = 0.41. We also

show the error of the omputed solution at times t = 0.11, t = 0.21, and t = 0.41.
As a seond example, we solve Burgers' equation (3.1) with visosity ν = 10−5

and

the initial ondition u0(x) = sin(2πx)+1/2 sin(4πx). In our temporal disretization, we

used a timestep equal to 10−5
and Mt = 3 quadrature nodes. For the spatial part, we

apply the redution algorithm with an approximation error of ǫ = 10−9
, whih ensures

a uniform L∞
-error of ≈ 10−9

. In our appliation of Pade approximation, we obtain

a spatial error in the L∞
-norm no larger than 10−11

. Although we were unable to

independently verify the auray of the omputed solutions for suh a small visosity

ν (for the lak of alternative methods of reasonable omplexity), we note that the

iteration sheme in (3.4) onverged (in the L∞
-norm) to within an error no larger than

7.5× 10−9
at every timestep.

Figure 3.2 shows the omputed solutions u(x, t0j), with t0 = 10−5
and time steps tj,

j = 102, 104, 2 × 104, 3 × 104, 5 × 104. We see that the solution u(x, t) develops two
moving sharp transition regions, whih approah eah other and eventually merge into

a single one about x ≈ 1/2. The rational representations of u(x, tj) have 4, 11, 33, 29,
and 19 omplex-onjugate pairs of poles, respetively. Figure 3.3 demonstrates that the

transition region of u(x, t) our within intervals of width ≈ 10−5
. Finally, Figure 3.4

illustrates the poles γi (t) in the representation,

u (x, t) =

M0∑

j=1

αj (t)

e−2πix − γj (t)
+

M0∑

i=1

αj (t)

e2πix − γj (t)
+ α0,
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-12
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Figure 3.1. (a) Computed solution u(x, t) at t = 0.02, t = 0.11, t =
0.21, t = 0.41 and its absolute error (on a logarithmi sale) for (b)

t = 0.11, () t = 0.21, and (d) t = 0.41.

0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.5

1.0

Figure 3.2. Plots of u(x, t), for tj = 10−3
, .1, .2, .3, and .5.

for t = .2, .274, .3, .4. As expeted, the poles luster about transition regions, and

move (adaptively) as the two wavefronts approah eah other.

4. Appendix

4.1. Review of AAK theory. In order to formulate the basi AAK theorem on the

unit disk, let us denote by H∞
the Hardy spae of bounded analyti funtions and by

H∞
N the set of funtions

H∞
N =

{
g(z)

(z − η1) · · · (z − ηk)
, |ηj | < 1, k ≤ N, and g ∈ H∞

}
.
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0.49996 0.49998 0.50000 0.50002 0.50004

-0.5

0.5

Figure 3.3. Solution u(x, t) at time t = .4, loalized about the transition
region (1/2− 10−5, 1/2 + 10−5). Note the absene of any Gibbs-type phe-
nomena.

Figure 3.4. Loation of poles (within the unit disk) in the representa-

tion of u(x, t), for t = .2, .275, .3, and .4.
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Suppose f ∈ L∞
has the Fourier series

f(z) =

∞∑

n=−∞

fnz
−n,

and onsider the assoiated in�nite Hankel matrix Hf

Hf =




f1 f2 f3 . . .
f2 f3 f4 . . .
f3 f4 f5 . . .
.

.

.

.

.

.

.

.

.

.

.

.


 ,

with singular values σn onsidered in dereasing order. From the singular value problem

for the N th

singular value

Hfv = σNw,(4.1)

H∗
fw = σNv,

where v = (vj)j≥1 and w = (wj)j≥1, we de�ne the funtions

v(z) =

∞∑

j=1

vjz
j−1, w(z) =

∞∑

j=1

wjz
−j ,

and

(4.2) r(z) = f(z)− σN
w (z)

v(z)
.

For this partiular ase, the AAK theorem asserts that r ∈ H∞
N and

‖f − r‖∞ = inf
g∈H∞

N

‖f − g‖∞ = σN .

An important speial ase is when f(z) has the form (2.1), that is,

(4.3) f(z) =

M∑

m=1

αmz
−1

1− γmz−1
+

M∑

m=1

αmz

1− γmz
+ f0,

where αm and γm are omplex and 0 < |γm| < 1. We now show that the in�nite singular

value problem (4.1) may be redued to the �nite on-eigenvalue problem (2.2).

First, note that equation (4.1) may be written as

∞∑

j=1

fi+j−1vj = σwi, i = 1, 2, . . .(4.4)

∞∑

j=1

fi+j−1wj = σvi, i = 1, 2, . . .(4.5)

Using that the Fourier oe�ients of (4.3) are of the form

fn =

M∑

m=1

αmγ
n−1
m , n ≥ 1,
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we alulate from (4.4)

∞∑

j=1

(
M∑

m=1

αmγ
i+j−2
m

)
vj =

M∑

m=1

αmγ
i−1
m

∞∑

j=1

γj−1
m vj

=

M∑

m=1

αmγ
i−1
m v (γm) = σwi.

Now multiplying both sides of the last equation by zi−1
and summing, we obtain

(4.6)

M∑

m=1

αm

1− γmz
v (γm) = σz−1w(z−1).

Similarly, from (4.5), we have

∞∑

j=1

(
M∑

m=1

αmγm
i+j−2

)
wj =

M∑

m=1

αmγm
i−1

∞∑

j=1

γm
j−1wj

=
M∑

m=1

αmγm
i−1
(
γm

−1w
(
γm

−1
))

= σvi.

Finally, multiplying by zi−1
and summing, we arrive at

(4.7)

M∑

m=1

αm

1− γmz
γm

−1w
(
γm

−1
)
= σv(z).

Hene, for a funtion f of the form (4.3), the funtions v and w in (4.2) turn out to

be rational and fully determined by their values at the poles of f . Taking z = γn and

z = γn in equations (4.6) and (4.7), respetively, we obtain

M∑

m=1

αm

1− γmγn
v (γm) = σγm

−1w
(
γm

−1
)
,

M∑

m=1

αm

1− γmγn
γm

−1w
(
γm

−1
)

= σv (γn) .(4.8)

We symmetrize the above equations by multiplying the �rst equation by αn
1/2

and the

seond equation by α
1/2
n to get

M∑

m=1

α
1

2

mαn
1

2

1− γmγn
α

1

2

mv (γm) = σαn
1/2γm

−1w
(
γm

−1
)
,

M∑

m=1

αm
1

2α
1

2

n

1− γmγn
αm

1/2γm
−1w

(
γm

−1
)

= σα
1

2

mv (γm) .



SOLVING BURGERS' EQUATION USING RATIONAL APPROXIMATIONS 16

Let us de�ne the vetors p and q with entries pm = α
1

2

mv (γm) , qm = αn
1/2γm

−1w (γm
−1),

and the positive de�nite matrix C with entries

Cmn =
α

1

2

mαn
1

2

1− γmγn
.

Then the above equations are equivalent to

C p = σq,

C q = σp,

whih may be redued to a on-eigenvalue problem for σ > 0, see [15, Setion 4.6℄. One

simple way to see this and obtain an equation of the form (2.2) is by de�ning x = p+ q.
If x = 0, then iq = ip and hene

C(ip) = σip.

If x 6= 0, we have

Cx = σx

and, in both ases, we obtain a on-eigenvalue problem for the matrix C.

4.2. Disretization of Burgers' equation. We rewrite the equation (3.1) in semi-

group form (see, e.g., [14, 17, 18, 3℄)

(4.9) u(t) = eνtLu(0) +

ˆ t

0

eν(t−τ)LN(u(τ))dτ,

where u(t) denotes the funtion u(·, t). The operator L, Lu(x) = uxx, represents the
linear part of (3.1) while the operator N , N(u) = 1/2 (u2)x, represents the nonlinear

part. The ation of the operator eνtL on a funtion f is given by

(
eνtLf

)
(x) =

ˆ
1

2

− 1

2

Kν(y, t)f(x− y)dy, with Kν(y, t) =
1√
4πνt

∑

k∈Z

e−(y+k)2/(4νt).

To disretize equation (4.9) in time, we use the approximation

N (u(τ)) ≈
Mt∑

j=1

Rj(τ)N (u (τj)) , τ ∈ [0, t]

where {τj}Mt

j=1 denote the Gauss-Legendre nodes on the interval (0, t), and Rj(τ) denote
the Legendre interpolating polynomials for these nodes, i.e.,

Rj(τm) = δjm, for j,m = 1, . . . ,Mt.

Taking t = τl in (4.9), we obtain the semi-disrete system of equations

(4.10) ul = eντlLu0 +
Mt∑

j=1

(
ˆ τl

0

eν(τl−τ)LRj(τ)dτ

)
N (uj) , 1 ≤ l ≤Mt,

where ul = ul(x) denote the omputed values of u at time t = τl and u0 = u(x, 0).
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For the spatial disretization, using N(u) = 1/2 (u2)x and integrating by parts, equa-

tion (4.10) may be written as

(4.11) ul(x) =

ˆ 1

2

− 1

2

Kν(y, τl)u0(x− y)dy +
Mt∑

j=1

ˆ 1

2

− 1

2

Lν,j(y, τl)u
2
j(x− y)dy,

where the kernel Lν,j(y, t) is given by

Lν,j(y, t) = −1

2

ˆ t

0

(∂yKν) (y, t− s)Rj(s)ds.

For small ν, Kν(y, τl) and Lν,j(y, τl) deay rapidly away from zero. Therefore, we may

trunate the integrals in (4.11) to the intervals (−δl(ν), δl(ν)) and (−ηl(ν), ηl(ν)), and
then disretize using appropriately hosen quadrature nodes φl

p and ψ
l
p and weights µl

p

and γlp,

ul(x) =

ˆ −δl

−δl

Kν(y, τl)u0(x− y)dy +
Mt∑

j=1

ˆ ηl

−ηl

Lν,j(y, τl)u
2
j(x− y)dy

≈
Mx∑

p=1

λlpu0
(
x− φl

p

)
+

Mt∑

j=1

Mx∑

p=1

λlp,j
(
uj
(
x− ψl

p

))2
.(4.12)

In the last equation,

λlp =µ
l
pKν(φ

l
p, τl), λlp,j = γlpLν,j(ψ

l
p, τl),

whih are omputed beforehand given the quadrature nodes.

Remark 6. If the visosity ν is not small, then the kernels Kν (y, t) and Lν,j (y, t) are not
sharply peaked in spae, using the trapezoidal rule is su�ient to obtain a sub-optimal

rational representation for ul (x).
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