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Abstract A new model, dubbed the MRQSphere, provides a multiresolution rep-
resentation of the gravity field designed for its estimation. The multiresolution rep-
resentation uses an approximation via Gaussians of the solution of the Laplace’s
equation in the exterior of a sphere. Also, instead of the spherical harmonics, vari-
ations in the angular variables are modeled by a set of functions constructed using
quadratures for the sphere invariant under the icosahedral group. When combined,
these tools specify the spatial resolution of the gravity field as a function of al-
titude and required accuracy. We define this model, and apply it to representing
and estimating the gravity field of the asteroid 433 Eros. We verified that a MRQ-
Sphere model derived directly from the true spherical harmonics gravity model
satisfies the user defined precision. We also use the MRQSphere model to estimate
the gravity field of Eros for a simulated satellite mission, yielding a solution with
accuracy only limited by measurement errors and their spatial distribution.

1 Introduction

In this paper, we develop a new approach to estimating the gravity field of a small
body by introducing a multiresolution representation of the gravity potential. In
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addition, instead of the spherical harmonics, we model variations in the angular
directions by an alternate set of functions constructed using quadratures for the
sphere invariant under the icosahedral group. This paper presents an initial proof
of concept to unweave the estimation problem from its current reliance on the
spherical harmonics and the expansion of the gravity potential via the inverse
powers of the radial variable.

When estimating the gravity field of a primary body, it is important to stage
the estimation in a natural manner. In such a procedure, one would like to first
obtain the low spatial frequencies of the model and, then, gradually higher spatial
frequencies as we approach the body. The classical representation of the grav-
ity potential via the inverse powers of the radial variable is ill-suited for such an
approach since its components do not decay fast enough. For this reason, esti-
mation within that model is done typically all at once, fixing some degree of the
approximation. Using a multiresolution approximation to the solution of Laplace’s
equation with a boundary value on the surface of a sphere, the individual terms
have exponential decay allowing for a systematic estimation at different distances
from the body. In addition to a multiresolution representation, we replace the
spherical harmonics typically representing the angular part of the solution by the
functions constructed using quadratures for the sphere invariant under the icosa-
hedral group. Due to the low degree of the final gravity model estimated in this
study, we do not use a localized version of these functions and, thus, only prove a
concept that the spherical harmonics model can be replaced by functions with a
much better localization. We foresee the use of a localized version of these func-
tions for estimation the gravity field of primary bodies requiring high degree and
order of the model (Ahrens and Beylkin, 2009), although further work is required
in that direction.

Unlike the cubed-sphere gravity model, whose primary purpose is a fast evalu-
ation of the gravity field (Beylkin and Cramer, 2002; Jones et al, 2010), the model
of this paper is intended for estimation as it attempts to minimize the number
of unknown parameters. We note that the radial part of this new model may be
applied to the problem of fast evaluation as well. Once estimated, the model may
be converted to the cubed-sphere model, but we do not address such a conversion
for this study.

Interest in missions to small bodies, such as asteroids and comets, has grown
considerably in recent years. One of the options proposed in the 2009 Review of the
U. S. Human Spaceflight Plans Committee calls for the consideration of robotic
and human missions to asteroids (Augustine et al, 2009). Beginning in 2000, the
NEAR Shoemaker spacecraft (Cheng et al, 1997) inserted into orbit about the
asteroid 433 Eros, and studied it for a year before landing. The Hayabusa satellite
(Fujiwara et al, 2000) journeyed to 25143 Itokawa, and operated in a proximity of
the asteroid for several months before landing, collecting a sample, and returning
in June of 2010. Additionally, the DAWN satellite (Russell et al, 2004), which was
launched in 2007, will explore the dwarf-planet Ceres and the asteroid 4 Vesta in
the next three years. The ESA Rosetta (Glassmeier et al, 2007) mission, the joint
Russia and China mission Phobos-Grunt (Marov et al, 2004), NASA/Goddard’s
proposed OSIRIS-REx, and the potential JAXA Hayabusa-2 are just a few of the
planned missions to small bodies currently in development.

In this study, we do not address the issues of shape of the primary body
and leave this issue for the future. We note that irregularly shaped bodies pose
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problems for using the spherical harmonics models. As seen in Fig. 1 (generated
from NEAR laser rangefinder results (Zuber et al, 2000)), the asteroid 433 Eros
is roughly ellipsoidal in shape. For this reason, the ellipsoidal harmonics model is
more appropriate than the spherical one. Results indeed demonstrate the advan-
tages of the ellipsoidal harmonics gravity model (Garmier et al, 2002). For both
the spherical and ellipsoidal harmonics models, the partial sum diverges for points
within the circumscribing sphere (or ellipsoid), thus limiting the minimum valid
altitude. Unfortunately, not all asteroids are ellipsoidal and, thus, other gravity
representations suited for a more-or-less arbitrary shape are desired.

Fig. 1 An isometric view of the asteroid 433 Eros.

The goals of this paper are to introduce the new model and demonstrate its
estimation capabilities. We accomplish this by applying the model to the asteroid
433 Eros, using the NEAR15A gravity model (Konopliv et al, 2002) derived from
observations of the NEAR satellite. We start by presenting the MultiResolution
representation and Quadratures for the Sphere (MRQSphere) model. This includes
a description of the mathematical tools employed in defining the model, and their
combination to create the model, and the specific choice of model parameters used
in the paper. We then define the estimation method and present results from a
simulation study. Finally, we provide conclusions and describe additional work
required for its practical implementation.

2 MRQSphere Model

The MRQSphere model combines two recently developed mathematical tools to
provide a multiresolution representation of the gravity field, i.e. a model with a
resolution that varies with altitude. One of these tools approximates the radial
decay of the gravity field using a sum of Gaussians, while the second one employs
interpolation on the sphere to represent the angular variations. Using these tools,
we evaluate a function on each one of a collection of spheres, or shells, and combine
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the resulting values to determine the total gravity potential. In contrast to the in-
verse powers of the distance in the radial direction found in the standard spherical
harmonic model, the approximation by Gaussians allows an efficient separation of
regions with different spatial resolutions. Thus, the spatial resolution of the shells
included in this model vary with altitude. Instead of using spherical harmonics
to account for angular variations, we use a set of functions generated by a single
function by centering it at quadrature nodes with a nearly even distribution over
the sphere. These quadrature nodes are invariant under the icosahedral group and
provide an analogue of Lagrangian interpolation on the sphere. The number of in-
terpolation nodes varies with the degree of the function represented. We combine
these tools to construct a multiresolution model of the gravity field.

In this section, we describe the mathematical tools employed to create the
MRQSphere model. This includes a description of the quadratures for the sphere,
and the approximation by Gaussians that allows for the multiresolution expression
of the gravity field. We describe these tools, define the new model, and provide
the equations for evaluating the gravity potential, acceleration, and variational
equations. The final two sections describe the model configuration used to approx-
imate the gravity field of the asteroid 433 Eros, and provide baseline results that
characterize idealized performance of the model.

2.1 Quadratures for the Sphere

The standard model representing variations in the gravity field in the latitudinal
and longitudinal directions uses the spherical harmonics, which are global functions
on the sphere. An approach to replace them with better localized functions has
been developed (Ahrens and Beylkin, 2009) and uses quadratures on the sphere
invariant under the icosahedral group. Due to the invariance of the positions of
the nodes under this discrete group, the nodes do not concentrate and have a
near uniform distribution on the sphere. These quadratures are also near optimal,
as far as the number of nodes required to integrate all spherical harmonics of a
fixed degree and order. This combination of properties yields an analogue of the
Lagrange-type interpolation on the sphere. As a result, we replace the spherical
harmonics by a set of functions concentrated at the nodes of the quadrature and
generated by a single function. Instead of estimating the coefficients of the spherical
harmonics, the new quadratures allow direct estimation of the gravity field at the
quadratures nodes. This section provides a brief introduction to the techniques
introduced by Ahrens and Beylkin (2009).

The commonly used spherical harmonics model of the gravity potential may
be expressed as

U(r, φ, λ) =
µ

r

∞X
n=0

„
R

r

«n nX
m=0

Pn,m[sinφ] (Cn,m cosmλ+ Sn,m sinmλ) . (1)

After representing the radial distance in units of planetary radius ρ (= r/R), we
write

U(ρ, φ, λ) =
µ

R

∞X
n=0

ρ−(n+1)Vn(φ, λ) (2)
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where

Vn(φ, λ) =
nX

m=0

Pn,m[sinφ] (Cn,m cosmλ+ Sn,m sinmλ) . (3)

Instead of using the representation in Eq. 3, we want to represent Vn using its
values on the sphere. For this purpose, we use the reproducing kernel (see Ahrens
and Beylkin (2009)). Let PN be the space of spherical harmonics of maximum
degree and order N . The reproducing kernel

KN (α ·α′) ≡
NX
n=0

2n+ 1

4π
Pn,0(α ·α′), (4)

has the property that for any function f in PN , we have

f(α) =

Z
S2
KN (α ·α′)f(α′)dα′, (5)

where α and α′ denote unit vectors on the sphere S2. We note that Pn,0 is the
Legendre polynomial and no associated Legendre functions are involved in the
definition of KN . If f is in PN , then it is unchanged by the operator in Eq. 5.
If f resides in a wider subspace PM where M > N , then the operator projects f
onto PN . A detailed discussion of the kernel may be found in Ahrens and Beylkin
(2009).

We next discretize Eq. 5 using quadratures with M nodes to integrate all
functions in the subspace P2N and obtain an analogue of Lagrange interpolation
on the sphere. In Ahrens and Beylkin (2009), the location of the nodes (αi) are
chosen to be invariant under the rotations of the discrete icosahedral group, thus
preventing them from concentrating at any particular location. As a result of
discretization, we have

f(α) =
MX
j=1

KN (α ·αj)wjf(αj) (6)

where wj are quadrature weights corresponding to the nodes αj . The number of
nodes M is chosen to integrate exactly the product of the two functions KN and
f , whose degree and order does not exceed 2N . For example, for approximating
the gravity field of degree 7, we use the number of nodes necessary to integrate
the subspace P14. In Fig. 2, we provide examples where N refers to the maximum
degree of the function in the Lagrange-type interpolation.

We illustrate the reproducing kernel KN in Fig. 3. As the degree N increases,
the function tends toward the delta function on the sphere. Thus, special care must
be taken when evaluating Eq. 4 to prevent numerical error due to cancellation.
Interpreting Eq. 4 as the Christoffel-Darboux formula (Szegö, 1975, Ch. 3), we
obtain

KN (γ) =
N + 1

4π

PN,0(γ)− PN+1,0(γ)

1− γ , (7)

and using Szegö (1975, Eq. 4.5.4), we then arrive at

KN (γ) =
N + 1

4π
P

(1,0)
N (γ), (8)
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(a) 2N=14, 72 Points (b) 2N=30, 372 Points

Fig. 2 Sample quadratures for the sphere for different degree models

Fig. 3 Sample plots of the reproducing kernel KN as a function of the angle between the
vectors α and α′ for various degrees N

where P
(1,0)
N is the Jacobi polynomial with α=1 and β=0. To simplify notation

and prevent confusion of P
(1,0)
N with the Legendre polynomials PN , we denote

K̄N (γ) = P
(1,0)
N (γ) =

4π

N + 1
KN (γ). (9)
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and using the three term recurrence for Jacobi polynomials (Gradshteyn and
Ryzhik, 2007, Eq. 8.961.2)), write

K̄n(γ) = (c1γ + 1/c0)K̄n−1(γ)− c2K̄n−2(γ) (10)

with

K̄0(γ) = 1 (11)

K̄1(γ) =
3

2
γ +

1

2
. (12)

and

c0 = (n+ 1)(2n− 1) (13)

c1 = (2n− 1)(2n+ 1)/c0 = (2n+ 1)/(n+ 1) (14)

c2 = (n− 1)(2n+ 1)/c0. (15)

We use Equations 10 and 9 to compute values of the kernel KN (γ).

2.2 Approximation by Gaussians

To obtain a multiresolution representation instead of Eq. 2, following Beylkin and
Monzón (2010), we replace ρ−(n+1) for all n by an approximation using Gaussians.
Specifically, for any required precision ε > 0, there exists a step size h and a positive
M such that ˛̨̨

e−xy −Gh,M (x, y)
˛̨̨
≤ ε (16)

where

Gh,M (x, y) =
hx√
4π

MX
j=0

e−
x2
4 e

sj−y2e−sj + 1
2 sj (17)

and

sj = sstart + jh. (18)

For details, we refer to Beylkin and Monzón (2010).
Since the ρ−(n+1) term in Eq. 2 may be rewritten as e−(n+1) ln ρ, applying

Eq. 17 yields

ρ−(n+1) ≈ Gh,Z(n+ 1, ln ρ) =
h(n+ 1)√

4π

X
j∈Z

e−(n+1)2e−jh/4−(ln ρ)2ejh−jh/2

=
h(n+ 1)√

2π

X
j∈Z

σ−1
j e−(n+1)2/(2σ2

j )e−(ln ρ)2σ2
j/2 (19)

where

σ2 = 2ejh. (20)

Substituting Eq. 19 into Eq. 2 and reorganizing, we have

Ũ(ρ, φ, θ) =
µ

R

X
j∈Z

e−(ln ρ)2σ2
j/2Zj(φ, θ) (21)
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where

Zj(φ, θ) =
h

σj
√

2π

∞X
n=0

(n+ 1)e−(n+1)2/(2σ2
j )Vn(φ, θ). (22)

The sum in Eq. 21 extends over all integers Z. However, most terms are negligible,
and we designate a subset J of Z as the range of indices corresponding to the
terms with significant contribution. We denote the truncated version of Eq. 21 as
Ũ(ρ, φ, θ; J).

Fig. 4 Error in Gh,∞(≈ ρ−n) up to degree n for ρ = 1+ 0.25
6378

, h=1/3, and J = {−30, . . . , 70}
(Beylkin and Monzón, 2010)

In Fig. 4, we provide the error for a sample set of parameters used with the
function Gh,J described by Eq. 19. When generating Gh,J, the specified accuracy
ε determines the value h. The subset J is then found to meet these requirements
for the given ρ. The error is uniform for all applicable n and will decrease for
ρn < 4× 10−13 with n sufficiently large.

2.3 Model

We now combine these mathematical tools to create the MRQSphere model of the
gravity potential. Substituting the coordinates φ and λ with the unit vector α, we
use Ũ(ρ,α; J), and represent the terms Zj(α) in Eq. 22 using the analogue of La-
grange interpolation on the sphere, i.e. Equation 6. Thus, we write the MRQSphere
model as

Ũ(ρ,α; J) =
µ

R

X
j∈J

e−(ln ρ)2σ2
j/2Zj(α) (23)

Zj(α) =
MX
i=1

KN (α ·αi)wiZj(αi) (24)
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In our approach we estimate functions Zj(α) directly, thus avoiding any use of the
spherical harmonics when evaluating the model. This Cartesian representation
also eliminates any singularity at the poles when evaluating the acceleration. We
note that, for a given accuracy, the exponential cutoff in Equation 22 allows us
to predict the degree of the subspace of spherical harmonics for the functions Zj
and, thus, choose the appropriate number of quadrature nodes for estimation. We
also note that, as described in Beylkin and Monzón (2010), the number of terms
in Equation (21) depends only weakly on the required resolution and is relatively
small. For a fixed ρ, only a few terms in Equation (21) contribute to the potential.

(a) Shell contributions (n=2) (b) Shell degree contribution

Fig. 5 The first figure illustrates the contributions of the different shells to the function Gh,J
(h = 0.5) with variations in orbit radius (in units of RE), while the second figure demonstrates
the contribution of gravity degree n for a given shell

In Fig. 5, we plot the terms of the series in Eqs. 19 and 22 with h = 0.5. As
seen in Fig. 5(a), points at low altitudes are highly dependent on the shells with a
larger σj (corresponding to larger positive indices j). As altitude increases, these
terms decay exponentially fast, and terms with smaller σj dominate the sum. For
example, note in Fig. 5(a) the relative contribution of the j = −2 shell at ρ values
of 1 versus 10. At ρ = 10, this shell provides the largest contribution to Gh,J, but
weakly affects the the value at low altitudes. Thus, only a small subset of shells
are required when evaluating the gravity field at high altitudes, and the selection
of shells depends on the user defined precision ε. As we may see in Fig. 5(b) a
small σj implies a low degree n, and, conversely, a large σj value implies a larger
degree. Thus, as expected, low-degree models are needed at high altitudes.

As derived in the Appendix A, for the acceleration vector we have

r̈ =
µ

R

X
j∈J

e−(ln ρ)2σ2
j/2

" 
−
σ2
j

r2
(ln ρ)Zj(r̂)

!
r

+

„
∂r̂

∂r

« MX
l=1

wlZj(αl)
∂Kn(γ)

∂γ
αl

!#
(25)
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Table 1 Configuration of the MRQSphere representation of the NEAR15A spherical harmon-
ics model

Parameter Value
Gaussian Stepsize (h) 0.425

Precision ε of approximating ρ−(n+1) 5× 10−10

Relative accuracy of truncating the sum Zj (Eq. 22) 7 significant digits

where we used matrix notation,

∂r̂

∂r
=

„
∂r̂

∂r

«T
=

1

r
I3×3 −

rrT

r3
, (26)

and r is the Cartesian position vector of the point of interest. We note that the
outermost sum in Eq. 25 is now evaluated over the elements of J to match Eq. 23,
i.e. to represent the acceleration determined by the MRQSphere model.

For variational equations, expressed in terms of derivatives (see Appendix A),
we obtain

∂2Ũ

∂r2
=

µ

R

X
j∈J

e−(ln ρ)2σ2
j/2

(
Zj(r̂)σ2

j

r2

 
2 ln ρ+ σ2

j (ln ρ)2 − 1

r2
rrT − (ln ρ)I3×3

!

−

 
2σ2
j ln ρ

r2

!
r

„
∂Zj(r̂)

∂r

«T
+
∂2Zj(r̂)

∂r2

)
. (27)

The sum of the diagonal of this matrix yields the Laplacian ∇2Ũ of the model.
Since Ũ is an approximation, ∇2Ũ = 0 for the MRQSphere model is not identically
zero. However, since we control the precision the error can be made arbitrarily
small. We compute the Laplacian for the MRQSphere model in Section 2.5 and
show that the error is small and corresponds to the original choice of ε in the
construction of the model.

2.4 MRQSphere Model for 433 Eros

We base the configuration of a model, i.e. the stepsize h and J ⊂ Z, on the model
accuracy requirements dictated by the accuracy of measurements. For this paper,
we focus on a model analogous to the low-degree, higher altitude model generated
using radiometric and landmark data from the NEAR mission to 433 Eros. This
15x15 spherical harmonics gravity model (NEAR15A) (Konopliv et al, 2002) pri-
marily used observations of the satellite at orbit radii of 2 Eros radii and above,
where Eros radius RE = 16 km. Only the gravity perturbations, i.e. gravity field
terms of degree 2 or greater, are modeled by the MRQSphere model.

For the NEAR15A MRQSphere model, the selected parameters are provided
in Table 1. Unlike the procedure used to generate Fig. 4, we begin with a specified
h, ε, and J, and determine the minimum ρ such that |ρ−(n+1)−Gh,J(ρ)| < ε. Using
this procedure, we generate Table 2. This table specifies the shells required when
evaluating the MRQSphere model at a given altitude. For our MRQSphere model,
14 shells are required with indices j = −5, . . . , 8 for orbit radii above 1.93 RE . In
this paper, we refer to a shell with index j as “shell j”.
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Table 2 Shells required at given radii (accurate to 10−5)

Range (in RE) Jmin Jmax
Above 33.963085 -5 0

33.963085 - 17.221399 -5 1
17.221399 - 10.223156 -5 2
10.223156 - 6.437202 -5 3
6.437202 - 4.578281 -5 4
4.578281 - 3.412891 -5 5
3.412891 - 2.702480 -5 6
2.702480 - 2.244688 -5 7
2.244688 - 1.925941 -5 8

Fig. 6 Precision (in units of 10−10) of the approximation by Gaussians of ρ−(n+1) using shells
-5 through 1 at a radius of 17.2214 RE

In Fig. 6 we illustrate the precision of approximating ρ−(n+1) using Gaussians
with the parameters shown in Table 1. We see in this figure that, unlike at the
other altitude ranges listed in Table 2, the corresponding shells at slightly above the
radius 17.221399 barely meet the precision requirement of 5×10−10. This influences
future results, specifically, the precision of the MRQSphere model as the radius
of decreases towards 17.22 RE . The upper boundary for including shell 2 may be
changed to avoid this phenomenon but we have not done so intentionally

With the subset J now specified, the shell degrees, and thus the number of
quadrature nodes required, may be determined. We select the number of terms
in Zj to achieve a relative accuracy of 7 significant digits and provide the result-
ing values in Table 3. Quadratures on the sphere are currently available only for
particular degrees, thus for a given j we use the minimal number of nodes that
guarantees proper integration. We denote the corresponding degree as nmax. Ad-
ditionally, we place a limit of degree 15 on the shells given that the NEAR15A
model is 15×15.
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Table 3 Required gravity field degree (nmax) and the number of quadrature nodes for each
shell

j ∈ J nmax M j ∈ J nmax M
-5 4 32 2 14 312
-4 4 32 3 15 372
-3 4 32 4 15 372
-2 7 72 5 15 372
-1 7 72 6 15 372
0 9 132 7 15 372
1 11 192 8 15 372

2.5 Baseline Performance

To provide a basis of comparison, and gain a more thorough understanding of the
ideal performance of the MRQSphere model used for this study, we perform a set
of baseline tests. The results of these tests profile the accuracy of the model given
the true NEAR15A spherical harmonics model, which we used to estimate the
functions Zj at the quadrature nodes.

We define the number of common digits

CD = log10

˛̨̨̨
aSH

aQS − aSH

˛̨̨̨
, (28)

where QS and SH refer to the MRQSphere and spherical harmonics models, re-
spectively. In the case of acceleration, we treat each component of the vector
separately.

Fig. 7 Precision of the nominal MRQSphere model with the spherical harmonics model,
defined by the number of common digits between them, with the figure on the right illustrating
the distribution of accuracy with radius
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A comparison of the MRQSphere model accelerations with those of the spher-
ical harmonics model is provided in Fig. 7. As the radius decreases, the precision
improves. For a fixed ε, which controls the approximation via Gaussians, the num-
ber of accurate digits in Eq. 19 increases for lower altitudes. As the radius decreases
towards 17 RE , the precision deteriorates slightly. We associate this deterioration
with slightly reduced accuracy at this radius as described in Fig. 6.

Fig. 8 Precision of the nominal MRQSphere model and the spherical harmonics at 2RE

In Fig. 8, we illustrate the spatial distribution of gravity anomalies, when com-
pared to the spherical harmonics model. The regions with the largest anomalies
correspond to the locations of the extremal locations of the asteroid, and corre-
spond to the largest gravity variations as determined by the spherical harmonics
model (Konopliv et al, 2002).

To demonstrate the Laplacian of the MRQSphere model is close to zero, we
provide experimental evidence that demonstrates that the error corresponds to the
selected accuracy of the model. The Laplacian is evaluated via Eq. 27 by adding
the diagonal elements of the resulting 3×3 matrix. We calculate the relative error
between the resulting sum and the largest value on the diagonal. A histogram of
the numerically computed values are included in Fig. 9, which demonstrates the
Laplacian error is approximately 10−5, with a worst-case error of 10−3. Similar to
the accuracy of the acceleration vector, the error for the Laplacian of the model be-
comes smaller as altitude decreases. However, these results demonstrate increased
variations in the model accuracy near the shell boundaries. This is apparent for
the higher altitudes tested in Fig. 9 where the altitude range is larger.

Figure 10 demonstrates that, like the acceleration vector, the Laplacian has
a spatial dependence. Specifically, the regions near the side lobes of the asteroid,
where gravity variations are greatest, exhibit a reduction in accuracy.

To characterize the effects of this model’s accuracy on orbit propagation, we
numerically integrate an initial satellite state forward in time for 24 hours using
the MRQSphere model. We then compare the results to trajectories generated via
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Fig. 9 Relative accuracy of the Laplacian (∇2Ũ) of the idealized MRQSphere model when
compared to the maximum diagonal element of the variational equation matrix, with the figure
on the right illustrating the distribution of significant digits with radius

Fig. 10 Laplacian for the nominal h=0.425 MRQSphere model at r = 2RE

the spherical harmonic model. We consider orbits at an altitude of 17 km, i.e. the
minimum valid radius of our generated model, and from 20 to 150 km in incre-
ments of 5 km. At each altitude, we propagate approximately 1,300 state vectors
uniformly spaced in inclination and right ascension of the ascending node. Each
orbit is initially circular, with all other orbit elements set to zero. For integra-
tion, we use the Runge-Kutta 7(8) algorithm described by Fehlberg (1968) with
an integration tolerance of 10−12.

In Figure 11, we present the orbit propagation accuracies of the MRQSphere
model. Differences are relative to orbits propagated with the NEAR15A spherical
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Fig. 11 Summary of 3D RMS orbit propagation errors using the baseline MRQSphere model
for Eros.

Fig. 12 Distribution of 3D RMS differences for propagated orbits initially at 17 km with the
nominal Eros MRQSphere model.

harmonic model, and computed over all orbits at all times. Results demonstrate
a maximum 3D RMS orbit propagation accuracy at a fraction of a millimeter,
except for orbits initially at 17 km in altitude.

In Figure 12, we provide detailed results for the 17 km orbits. We note that
the y-axis of the histogram is logarithmic. As indicated by the contour plot, equa-
torial orbits result in the largest error. Further investigation demonstrates that
interactions with the lobes of Eros cause a decrease in altitude to a region below
the valid altitude range of this MRQSphere model.
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Fig. 13 Orbit propagation properties for two equatorial orbits about 433 Eros.

Fig. 14 Distribution of 3D RMS differences for propagated orbits initially at 20 km with the
nominal Eros MRQSphere model.

For Figure 13, we propagated two equatorial orbits, one each initially at Ω val-
ues of 0◦ and 90◦. The figure illustrates the propagation error and the simulated
orbit altitude and eccentricity. Due to the relatively fast rotation rate of Eros,
orbits initially at right ascensions close to 90◦ and 270◦ have extended periods of
interactions with the lobes. These interactions exert a larger torque on the orbit,
thus changing the orbit elements. In this case, it forces the radius of periapsis to
drop below 2 RE , and, hence, below the minimum orbit altitude for this MRQ-
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Sphere model. We note that equatorial orbits within approximately 2 RE in radius
correspond to the regions of instability derived in Scheeres (2002).

For the purpose of comparison, we provide details on the orbits initially at an
altitude of 20 km in Figure 14. These orbits remain within the range covered by
the MRQSphere model, and, thus, errors are less than 0.11 mm.

3 Model Estimation

In this section, we describe the estimation procedure used in this study. First, we
describe the estimated state and the observations used, followed by a description
of the estimation algorithm employed. Additionally, we define a redistribution
technique that allows us to correctly distribute the estimated gravity field among
the shells. Finally, we provide and discuss results of the estimation process.

3.1 Least-Squares Estimation Using SVD

Assume the vector x is comprised of n unknown elements. Let y be a vector of m
observations, which are related to the estimated state vector by the m×n (m > n)
matrix H, and

y = Hx + ν. (29)

where ν denotes the modeling or observations errors. The ordinary least-squares
algorithm seeks a vector x̂ that minimize the sum of the squares of these residuals.
Assuming H is of rank n and E[ννT ] = Im×m, the normal form of the solution to
the least squares algorithm (Tapley et al, 2004) is

x̂ =
“
HTH

”−1
HTy. (30)

We note that the product HTH squares the condition number of the observation
mapping matrix, potentially reducing the number of recoverable significant digits
when using fixed precision floating-point arithmetic.

If the observations are not weighted equally, i.e. E[ννT ] = B where B is diag-
onal but not the identity matrix, then a scale factor is required. Thus, premulti-
plying both sides of Eq. 29 by

√
B−1, yields the weighted least squares solver

x̂ =
“
HTB−1H

”−1
HTB−1y, (31)

where the square-root of a nonnegative matrix is defined in the usual manner.
If the rank of H is less than n, or the condition number is sufficiently large,

then Eqs. 30 and 31 may not provide an adequate solution. In these cases, we use
the singular value decomposition (SVD), writing

H = WSV T (32)

where both W and U are unitary matrices (i.e. V TV = I), and S is a diagonal
matrix with singular values. Explicitly indicating zero singular values, we write

S =

»
S′ 0
0 0

–
(33)
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where the r×r matrix S′ contains the non-zero singular values and r is the numeric
rank of H. We assume that singular values below a certain threshold are set equal
to zero. The pseudoinverse of H is calculated using SVD, and solutions of Eq. 29
may be expressed as

x̂ = V

»
S′−1 0

0 0

–
WTy. (34)

For the weighted least squares using SVD, the solution is written as

x̂ = V

»
S′−1 0

0 0

–
WT
√
B−1y, (35)

where
√
B−1H = V TSW. (36)

The state-error covariance matrix, E[(x̂−x)(x̂−x)T ], where x is the true state,
provides some statistical information on the quality of the solution x̂. In the case
of the least-squares algorithm with SVD, it may be shown that (e.g., see Ahn,
1996)

E[(x̂− x)(x̂− x)T ] = V

»
S′−2 0

0 0

–
V T . (37)

3.2 Estimation Process

Missions to bodies beyond Earth orbit often utilize a statistical filter, usually a
square-root information filter (SRIF), to estimate the satellite position, gravity
field, and other parameters using radio science and other observations available.
To simplify the gravity recovery process for this proof of concept, we only estimate
the terms of the gravity field. We assume the satellite state is known, with mea-
surements of the gravity potential provided with some accuracy. Furthermore, we
only estimate the Zj values for a single shell at a time as we approach the asteroid.
Thus, our estimated state vector is

Xj =

26664
√
w1Zj(α1)√
w2Zj(α2)

...√
wMZj(αM )

37775 (38)

where M is the number of nodes for a given shell. The reason for the
√
wj factor

will be explained below, but we then rewrite Eq. 6, in terms of Zj , as

Zj(α) =
MX
i=1

KN (α ·αi)
√
wi(
√
wiZj(αi)). (39)

Additionally, we constrain the observations to include those of the satellite within
the altitude range for a single MRQSphere shell, and only one shell is estimated
at a time. We first estimate the outermost shell, and then reduce the altitude
range to estimate the next shell (given estimates of all previous shells). Since the
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MRQSphere model starts with the initial range of shells -5 through -1, we must
assume an a priori estimate of these shells is available. Section 3.4 discusses how
this may be accomplished.

Since we only estimate one shell at a time, designated as shell j, contributions
of previously estimated shells to the observed potential must be removed. Our
observation U ′i is thus

U ′i =
RE
µ

0@Ui − µ

|ri|
−

X
k=jmin,...,j−1

Ũ(ri; J = {k})

1A (40)

where Ui is the original observation and jmin is the lowest index in the MRQSphere
model. Note that we have also removed the two-body contribution and scaled the
observation by µ/RE to simplify the computations. This also makes the value of
U ′i dimensionless with a typical magnitude on the order of 10−8. We add Gaussian
noise to the observation with zero mean and a standard deviation of 1×10−11.
This noise was selected to provide 3-5 digits of accuracy in the observation, which
matches the corresponding parameters selected for the MRQSphere model. The
resulting state to observation mapping matrix H for observation U ′i at Xi is

H =
h
e
−

“
ln
|ri|
RE

”2
σ2

j/2KN (r̂i ·α1)
√
w1 . . . e

−
“
ln
|ri|
RE

”2
σ2

j/2KN (r̂i ·αM )
√
wM

i
. (41)

In Fig. 15, we provide the singular values of the H matrix defined in Eq. 41 when
estimating the j=0 shell. As illustrated, H is not full rank and the ordinary least-
squares algorithm will not suffice. Thus, we use the SVD algorithm for estimating
the MRQSphere gravity field with scaled singular values less than 10−15 set to
zero.

Fig. 15 Singular values for the H matrix when estimating the j=0 shell with 132 nodes

To model the observations, we simulate a collection of satellite orbits using
the full NEAR15A spherical harmonics gravity model, which we consider the true
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gravity field. We note that these trajectories are independent of those used in the
orbit propagation tests of Section 2.5. Using the NEAR15A model, we evaluate
the potential at points on these orbits to generate the observations Ui. Nine sets of
observations are generated, one each for the range of orbit radii in Table 2. Thus
we have one set of observations for each of the shells indexed from 0 through 8.
We propagate orbits long enough to provide (roughly) complete coverage of the
gravity field, i.e. groundtracks overlay the full surface of the asteroid, and sample
the orbit in 5 minute increments. The initial sidereal time of the asteroid was 0◦

with a rotation rate of 3.3116598×10−4 rad/s.

3.3 Estimated Gravity Field Redistribution

Since the shells, as defined by Gaussians, overlap, the estimation process does not
control how a contribution of a particular degree n influences the model. Thus,
estimated functions Zj may deviate from their definition in Eq. 22. To match the
estimated function Zj to that definition, we use projectors onto the subspace of
the spherical harmonics.

As mentioned in Section 2.1, the reproducing kernel in Eq. 5 is essentially a
projector. However, we now wish to create the discretized form of this projection
operator using the quadrature nodes. Let us consider a function f in the subspace
Pn and the kernel Km, where m ≤ n. By multiplying both sides of Eq. 6 by

√
wi,

we have

√
wifm(αi) =

MX
j=1

(
√
wiKm(αi ·αj)

√
wj)(
√
wjfn(αj)), (42)

where the number of nodes M is sufficient to discretize Eq. 6 exactly. The matrix
Km, with elements

√
wiKm(αi · αj)

√
wj , is a projector on the subspace Pm from

the subspace Pn. In other words, this projector provides a means for generating
values at the nodes of the lower degree function fm using values at the same nodes
of the higher-degree function fn. We note that the eigenvalues of the Km matrix
are either 1 or 0. The inclusion of

√
wj in Eq. 42 is the reason we used these factors

in Eq. 38.

We now describe a method for using these projectors to properly distribute
the gravity field among the shells of the MRQSphere model. First, we select a
shell with index j and associated quadrature nodes at αk (usually the last shell
estimated), which models the function Zj of degree n. Next, we evaluate the cur-
rently estimated potential Ũ(ραk; J = {jmin, . . . , j}) at the nodes of the selected
shell j. In this case, ρ is the lowest valid radius for the model using only shells
jmin through j. Applying the projector, we generate the values

√
wiUm(αi) at

each of the quadrature nodes, where Um(αi) refers to the potential of degree m.
We perform this operation for each degree m = 2, . . . , N − 1. Rearranging Eq. 2
and multiplying by

√
wi, we have

√
wiVm(αi) =

0@(
√
wiUm(αi))−

m−1X
p=2

ρ−(p+1)(
√
wiVp(αi))

1A ρm+1

= ((
√
wiUm(αi))− (

√
wiUm−1(αi))) ρ

m+1. (43)
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Thus, after mapping the full estimated gravity potential to the lower degree sub-
spaces, we now have a representation of Vm(αi) for m = 2, . . . , N − 1. Using

Vm(βk) =
MX
i=1

Km(βk ·αi)
√
wi(
√
wiVn(αi)), (44)

we compute the mth degree projections at the nodes βk of any lower-index shell
in the MRQSphere model. Finally, we combine Eqs. 44, 21, and 22 to recompute
values at the nodes for all shells. Through this process, the information on the
gravity field is properly distributed among the shells of the MRQSphere model.

Fig. 16 Example improvement in gravity field estimation when using the redistribution algo-
rithm with the MRQSphere model

In Fig. 16, we illustrate the effect of this redistribution process. For this exam-
ple, we use the SVD algorithm to simultaneously estimate shells -2, -1, and 0. The
SVD least-squares algorithm appears to estimate shells -2 and -1 correctly, but
not shell 0. However, the overall fit to the data is within the measurement noise.
After applying this redistribution algorithm, we recover the correct values on the
shell 0. Although it is not apparent in the pictures, the accuracy of shells -2 and
-1 is also slightly improved.

We note that the current redistribution algorithm does not include a correction
of the state-error covariance matrix. Solving this issue has been designated as
future work.



22 Brandon A. Jones et al.

Table 4 MRQSphere determined acceleration precision (mean CD and standard deviation)
with the true spherical harmonics model for various combinations of a priori estimates and
state vectors

Shells Estimated (j index) Zeros Low Accuracy True
-5, -4, -3, -2, -1, 0 3.511/.698 3.399/.698 3.340/.769

-2, -1, 0 2.866/.726 2.789/.730 3.288/.760
0 4.073/.668 5.416/.727 5.394/.695

3.4 Estimation Results

As mentioned previously, we assume a low-degree spherical harmonics model is
available to initialize shells -5 through -1 in the MRQSphere model. Let us show
that a low-accuracy, low-degree spherical harmonics model valid at large distances
is sufficient to satisfy this assumption. For this purpose, we conduct three groups
of tests. First, we assume no a priori knowledge of the gravity field. Second, we
assume that a low-accuracy spherical harmonic model, valid at large distances,
is available. Finally, we assume a full, true spherical harmonic gravity model for
comparison. We calculate the initial estimates of shells -5 through -1 using this a
priori gravity model. We also consider the outcome as a function of which shells
participate in estimation.

To generate the low-accuracy spherical harmonic model, we scale the 1-σ stan-
dard deviations for each term of the NEAR15A model by 10,000. We selected this
value to yield a σ for the C2,0 term on the same order of magnitude as C2,0. We
then apply Gaussian noise with zero mean and the scaled σ to the true value. For
the zonal terms through degree 4, this generates a Stokes coefficient on the same
order of magnitude as its true value. For all other terms, the σ value may be orders
of magnitude greater than the NEAR15A coefficient. We expect that, in practice,
initial estimates of the gravity field will be more accurate than that. Before space-
craft rendezvous, an initial estimate of the gravity field may be generated using
radar imaging of the asteroid. In this case, evaluation of surface integrals over
the resulting polyhedron shape of the small body yields a low-degree spherical
harmonics model. Tsoulis et al (2009) describes how to generate such a model.
Additionally, an initial low-degree spherical harmonics model may be generated
using a series of asteroid flybys before capture (Takahashi and Scheeres, 2010).

Table 4 presents the statistical accuracy of the resulting acceleration vectors
for the different a priori models after estimating all shells. The table also illustrates
the effects of increasing the number of shells estimated using the first data set.
Shells one through eight are estimated individually for all tests. We note that there
is no statistical difference in estimating only shell zero with either a low accuracy
a priori gravity model or a true gravity model. However, the effects of providing no
initial gravity model has a noticeable impact. For the remainder of this section, we
examine results for the estimation of shell 0 with the low-accuracy gravity model.

In Fig. 17, we provide a histogram of the precision of the acceleration vectors
with those determined by the spherical harmonics model. Unlike the baseline re-
sults presented in Fig. 7, precision is roughly uniform for all radii. For the baseline
model, ε determine the absolute limit of the MRQSphere model accuracy. As ex-
pected, the estimation problem further limits accuracy based on the estimation
algorithm employed and the measurement accuracy. In this case, measurement ac-
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Fig. 17 Precision of the estimated MRQSphere model with the spherical harmonics model,
defined by the number of common digits between them, with the figure on the right illustrating
the distribution of accuracy with radius

curacy of 4 or 5 digits yields a model accurate to just as many digits. The decrease
in precision for low altitude points, i.e. points requiring the evaluation of shell 8,
is a result of reduced accuracy for the final shell estimated. If the estimation pro-
cess had been truncated with shell five and only points above 4.6 RE were tested,
results demonstrate this downward trend would still be seen. These results have
not been provided in the interest of brevity.

Figure 18 provides the relative accuracy of the Laplacian of the estimated
model. Unlike the acceleration vector, there is a small radial dependency on the
accuracy of the Laplacian, especially as the radius decreases towards 17.22 RE .
Like the idealized model results of Fig. 9, the ability of the Laplacian to satisfy the
constraints of potential theory depends on the accuracy of the model. In this case,
an MRQSphere accurate to 5 digits yields a Laplacian with a relative accuracy of
approximately 10−5.

Figure 19 illustrates the spatial distribution of errors in the estimated MRQ-
Sphere model. Errors do not correspond to regions of high gravity variability, but
are more coupled with the distribution of measurements over the surface of the
asteroid. In Fig. 20, we process observations for shell 8 with large regions deprived
of measurements. Peak anomalies on the plot correspond to regions with no obser-
vations and have doubled in magnitude. Regions with observations exhibit results
mostly comparable to those in Fig. 19. Of course, this is an issue with spherical
harmonics gravity model as well. A primary example of this phenomenon is esti-
mation of the lunar gravity field where little is known about the Moon’s far side
gravity terms (Konopliv et al, 2001).

In Figure 21, we provide the degree variances of the NEAR15A model, the nom-
inal and estimated MRQSphere models, the differences between the MRQSphere
models and the NEAR15A, and the estimated error in the NEAR15A model. To
generate the variances for the nominal MRQSphere model, we evaluate the poten-
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Fig. 18 Relative accuracy of the Laplacian (∇2Ũ) of the estimated MRQSphere model when
compared to the maximum diagonal element of the variational equation matrix, with the figure
on the right illustrates the distribution of significant digits with radius

Fig. 19 Gravity anomalies for estimated h=0.425 MRQSphere model at R=2RE

tial at 2,000 random points with a radial distance of 2 RE . Given the resulting
values of potential, we perform a least squares fit to generate the spherical har-
monic model, specifically the Cn,m and Sn,m coefficients in Eq. 3, that represents
this nominal model. We then compute the sum of the squares for all coefficients of
a given degree n, and repeat this procedure for the estimated MRQSphere model.
This figure indicates that the MRQSphere closely approximates the degree vari-
ances of the defined truth model up to degree 14. As stated in Konopliv et al
(2001) and seen in Figure 21, the NEAR15A model reasonably approximates the
Eros gravity field to degree 10. Although the MRQSphere model closely approxi-
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Fig. 20 Gravity anomalies for estimated h=0.425 MRQSphere model at R=2RE with spatial
gaps in data

Fig. 21 Degree variances for the nominal and estimated MRQSphere models, the NEAR15A
model, and their errors

mates the truth to degree 14, this is possibly an optimistic assessment of its gravity
estimation capabilities given the simplification of this proof-of-concept study.

Figure 22 illustrates the 3D RMS orbit propagation error after 24 hours using
the same method as that of the orbit propagation test in Section 2.5. In this
discussion, we ignore orbits at altitudes less than 1 RE since such orbits correspond
to regions of orbit instability, and propagation errors are also a product of orbit
altitudes below the applicable range of the MRQSphere model. Orbits initially
at a 20 km altitude, corresponding to the range required for shell eight, have a
3D RMS accuracy on the order of 1 m. This error decreases with altitude as the
absolute error of the estimated MRQSphere model decreases, i.e. the two-body
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Fig. 22 Summary of 3D RMS position and velocity errors for orbits propagated with the
estimated MRQSphere model versus the spherical harmonic model.

term dominates and gravity perturbations attenuate. However, a 1 m 3D RMS
error is less than the 5 m orbit determination error for the NEAR mission satellite
at comparable altitudes.

4 Conclusions and Future Work

In this paper, we defined the MRQSphere model and provided its example rep-
resenting the gravity field of the asteroid 433 Eros. We used this example to de-
scribe performance of the model in the idealized situation. The construction of the
MRQSphere model is dependent on several user-defined tuning parameters, most
notably the accuracy of the Gaussian approximation of inverse powers of distance
ρ. This approximation allows for the multiresolution representation of the gravity
field and leads to the definition of the shells to account for its angular variations.
Other presented results include the derivation of the acceleration vector and the
variational equations within the MRQSphere model.

This paper also demonstrated the estimation capabilities of the MRQSphere
gravity representation for a small body using measurements of the gravity poten-
tial. We have presented a systematic method for estimating the gravity field using
a multiresolution representation. Given an initial gravity model, each shell of the
MRQSphere model is estimated separately as the satellite slowly approaches the
primary body. As information on the total gravity field improves, a redistribution
algorithm applies corrections to previously estimated shells. Using measurements
with relatively low accuracy and relatively good spatial distribution, a MRQSphere



A Multiresolution Model for Small-Body Gravity Estimation 27

model was estimated with accuracies comparable to the measurements provided.
Like the spherical harmonics model, large regions without measurements yielded
a reduced accuracy in the total gravity field.

The two major goals for future work are: (1) integrating the MRQSphere model
with a more traditional orbit determination scheme using a SRIF, and (2) altering
the representation for evaluation within the circumscribing sphere. Integration of
the model with the SRIF would further demonstrate the MRQSphere’s applicabil-
ity to small-body gravity estimation and provide a more realistic characterization
of the model’s estimation capabilities using radio science observations. A challenge
in this task is defining an algorithm to correct the estimation error covariance ma-
trix using the redistribution algorithm. Research to allow for evaluation of the
MRQSphere determined gravity field within the circumscribing sphere is ongoing.

A Acceleration Vector and the Variational Equations

Since the MRQSphere model is semi-analytic, we take the derivatives of Eqs. 6 and 21 to solve
for the gradient, and thus the acceleration vector. We express the coordinates of the system
in Cartesian coordinates where

r = [ x, y, z ]T (45)

and the angles φ and λ are represented by the unit vector r̂. Starting with Eq. 21,

∂Ũ

∂r
=

µ

R

X
j∈Z

»
Zj(r̂)

∂

∂r

“
e−(ln ρ)2σ2

j /2
”

+ e−(ln ρ)2σ2
j /2

∂Zj(r̂)

∂r

–
. (46)

Solving for the first partial derivative in the right hand side with ρ = r/R,

∂

∂r

“
e−(ln ρ)2σ2

j /2
”

= −e−(ln ρ)2σ2
j /2

σ2
j

2

∂(ln ρ)2

∂r

= −e−(ln ρ)2σ2
j /2

 
σ2
j ln ρ

r2

!
r. (47)

Upon differentiating Zj(r̂) in Eq. 24,

∂Zj(r̂)

∂r
=

∂

∂r

 
MX
l=1

KN (r̂ ·αl)wlZj(αl)
!

=
MX
l=1

wlZj(αl)
∂KN (r̂ ·αl)
∂(r̂ ·αl)

∂(r̂Tαl)

∂r

=
MX
l=1

wlZj(αl)
∂KN (γ)

∂γ

 »
∂r̂

∂r

–T
αl

!
(48)

where γ = r̂ ·αl. Finally, differentiating Eqs. 7, 10, 11, and 12 yields

∂Kn(γ)

∂γ
=
n+ 1

4π

∂K̄n(γ)

∂γ
(49)

where
∂K̄n(γ)

∂γ
= c1K̄n−1(γ) +

„
c1γ +

1

c0

«
∂K̄n−1(γ)

∂γ
− c2

∂K̄n−2(γ)

∂γ
(50)
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with

∂K̄0(γ)

∂γ
= 0 (51)

∂K̄1(γ)

∂γ
=

3

2
. (52)

The resulting acceleration vector, with terms expressed using matrix operations, is

r̈ = ∇Ũ

=
µ

R

X
j∈Z

e−(ln ρ)2σ2
j /2

" 
−
σ2
j

r2
(ln ρ)Zj(r̂)

!
r +

„
∂r̂

∂r

« MX
l=1

wlZj(αl)
∂KN (γ)

∂γ
αl

!#
(53)

where
∂r̂

∂r
=

„
∂r̂

∂r

«T
=

1

r
I3×3 −

rrT

r3
. (54)

To facilitate future integration of the MRQSphere model with the orbit determination
process, and to evaluate the Laplacian (∇2Ũ), we solve for the Jacobian of the acceleration

vector with respect to the state. This Jacobian is also the second derivative of Ũ with respect
to the satellite position. These are often referred to as the variational equations.

We begin by solving for the second partial derivative of Eq. 21,

∂2Ũ

∂r2
=

µ

R

X
j∈Z

»
Zj(r̂)

∂2

∂r2

“
e−(ln ρ)2σ2

j /2
”

+2
∂
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e−(ln ρ)2σ2

j /2
”„∂Zj(r̂)
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«T
+e−(ln ρ)2σ2
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∂r2

–
. (55)

The first derivatives were previously provided in Eqs. 47 and 48. After taking the second
derivative of the exponential,

∂2
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e−(ln ρ)2σ2
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σ2
j

r2
e−(ln ρ)2σ2

j /2

 
2 ln ρ+ σ2
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. (56)

The derivative of Eq. 48 is then
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26664
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where
∂2Kn(γ)

∂γ2
=
n+ 1

4π
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, (58)
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and
∂2K̄0(γ)

∂γ2
=
∂2K̄1(γ)

∂γ2
= 0. (60)

The ∂r̂/∂x, ∂r̂/∂y, and ∂r̂/∂z terms refer to the first, second, and third column, respectively,
of the matrix provided by Eq. 54. Thus, we have the variational equations, expressed in a
slightly more compact form,
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