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A new slant on seismic imaging: Migration and integral geometry 

D. Miller*, M. Oristaglio”, and G. Beylkin* 

ABSTRACT 

A new approach to seismic migration formalizes the 
classical diffraction (or common-tangent) stack by relat- 
ing it to linearized seismic inversion and the generalized 
Radon transform. This approach recasts migration as 
the problem of reconstructing the earth’s acoustic scat- 
tering potential from its integrals over isochron surfaces. 

The theory rests on a solution of the wave equation 
with the geometrical-optics Green function and an ap- 
proximate inversion formula for the generalized Radon 
transform. 

The method can handle both complex velocity 
models and (nearly) arbitrary configurations of sources 
and receivers. In this general case, the method can be 
implemented as a weighted diffraction stack, with the 
weights determined by tracing rays from image points 
to the experiment’s sources and receivers. When tested 

on a finite-difference simulation of a deviated-well verti- 
cal seismic profile (a hybrid experiment which is difficult 
to treat with conventional wave-equation methods), the 
algorithm accurately reconstructed faulted-earth 
models. 

Analytical reconstruction formulas are derived from 
the general formula for zero-offset and fixed-offset sur- 
face experiments in which the background velocity is 

constant. The zero-offset inversion formula resembles 

standard Kirchhoff migration. 
Our analysis provides a direct connection between 

the experimental setup (source and receiver positions, 
source wavelet, background velocity) and the spatial 
resolution of the reconstruction. Synthetic examples il- 
lustrate that the lateral resolution in seismic images is 
described well by the theory and is improved greatly by 
combining surface data and borehole data. The best 
resolution is obtained from a zero-offset experiment that 
surrounds the region to be imaged. 

INTRODUCTION 

Traditionally, migration has meant constructing an image 
of the earth from seismic reflections recorded at its surface 
(Robinson, 1983; Gazdag and Sguazzero, 1984). The earliest 
migration was graphical; it was based on geometrical ideas 
that can be traced back to J. C. Karcher in 1921 (see Gardner, 
1985) and were developed systematically by Hagedoorn 
(1954). These geometrical ideas were also the basis of the first 
digital methods-the diffraction and common-tangent stacks 
of what is now called classical or statistical migration (Lindsey 
and Hermann, 1970; Rockwell, 1971; Schneider, 1971; John- 
son and French, 1982). In the 1970s however, classical migra- 
tion was largely abandoned in favor of the wave-equation 
methods that Claerbout (1971) introduced. In their review art- 
icle, Gazdag and Sguazzero (1984) summarize the current view 

“that while these [classical] migration procedures make good 
sense and are intuitively obvious, they are not based on a 
completely sound theory.” 

As wave-equation methods have grown in popularity, 
migration has come to mean reverse propagation, in which 
recorded waves are downward continued or propagated back- 
ward in time and the image is extracted from the wave field by 
an imaging condition (Berkhout, 1984; Stolt and Weglein, 
1985). A problem with this approach, which was recognized 
early (Claerbout and Doherty, 1972; Schultz, 1976), is that 
migration is often done with data from composite experiments 
that do not satisfy a single wave equation. This problem can 
be overcome by modifying the wave equation or by invoking a 
hypothetical experiment, such as the exploding-reflector 
model, which simulates the data, but the correct construction 
is often difficult to find. 
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In contrast, the classical diffraction stack always provides a 
straightforward procedure for imaging a point in the earth: 
One just stacks the data over the locus of points at which 
energy from the given image point could have arrived (French, 
1974; Gardner et al., 1974). Problems with this method arise 
from its apparent dependence on the locations of sources and 
receivers, and on its ambiguous relation to the wave equation. 
Recently, in adapting the diffraction stack to borehole seismic 
experiments (Miller, 1983; Miller et al., 1984), we have found a 
new approach to seismic migration which addresses both of 
these issues and provides a sound theory for classical migra- 
tion. This new approach decouples the forward and inverse 
problems in a way that retains the wave equation for analysis 
of the forward problem, but gives inversion algorithms that 
are applicable to hybrid (multisource, multireceiver) experi- 
ments where the data cannot be regarded as boundary con- 
ditions on a wave equation. It is also flexible enough to handle 
nearly arbitrary velocity models. 

The ideas underlying our approach are summarized very 
simply: Seismic data at high frequencies, or in the far field, can 
be regarded as coming from integrals of the earth’s acoustic 
scattering potential over surfaces determined by the velocity 
model. Using the terminology of medical imaging (Herman, 
1980), we call these integrals “projections” of the scattering 
potential. A weighted diffraction stack then arises as a natural 
backp?ojection opetator in reconstructing the scattering poten- 

Offset 

tial from its projections, i.e., from seismic data. The problem of 
reconstructing a function from its integrals over general geo- 
metric objects is part of the field of integral geometry 
(Gel’fand et al., 1966, 1969). When such problems involve inte- 
grals over surfaces, they are termed problems of inverting a 
generalized Radon transform (e.g., Helgason, 1984; Quinto, 
1980). Our approach can thus be described as “migration by 
inversion of a generalized Radon transform” (Beylkin, 1985). 

In fact, as we show here, neither a full theory of integral 
geometry nor of the generalized Radon transform is needed to 
obtain the main result. Once the geometry of the reconstruc- 
tion problem has been understood, the basic inversion formula 
[equation (27)] follows directly from a localization of Radon’s 
classical formula (Radon, 1917) for recovering a function from 
its integrals over planes (straight lines, in two dimensions). 
This approach was first proposed in Miller (1983) and is out- 
lined in Miller et al. (1984). An alternative derivation and 
analysis of this formula were developed in Beylkin (1985), 
where connections with the theory of Fourier integral oper- 
ators and with earlier work on the generalized Radon trans- 
form (Beylkin, 1982, 1984) are emphasized. The theory of 
Fourier integral operators provides a mathematicai formaiism 
for analyzing the accuracy of the inversion formula. Beylkin 
(1985) showed that the formula accurately images dis- 
continuities in the scattering potential, which is the meaning 
normally given to seismic migration. 

time
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FIG. 1. Reflection-time surfaces R, and R, (outer panels) for two points A and B in a fixed-source experiment with 
receivers on the surface and in two boreholes flanking the points (inner panel). time increases from left to right in the 
borehole panels; from top to bottom in the surface panel. 
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Development of the method described here was stimulated 
greatly by results given in Norton and Linzer (1981), which 
treated ultrasonic experiments in medical imaging. In addition 
to obtaining exact inversions for zero-offset experiments in a 
constant-background medium, Norton and Linzer (1981) rec- 
ognized the analogy between acoustic scattering and the gen- 
eralized Radon transform, and derived approximate imaging 
algorithms using backprojection of the data. Fawcett (1985) 
made a similar analysis of the constant-background zero-offset 
case and its connection to the generalized Radon transform. 
Our imaging method based on the generalized Radon trans- 
form is applicable to general experimental geometries and 
general background media. 

MIGRATION AND INTEGRAL GEOMETRY 

We use the following notation throughout: s = (sl, s2, sJ 
represents a three-dimensional (3-D) source position, and r = 

(r,, rz, r3) represents a 3-D receiver position; x = (x,, x2, x3) 
and y = (y,, yZ, y3) represent typical points in a 3-D model of 
the earth, which we call the image or model space. 

Seismic experiments yield data u(r, s, t) which are functions 
of source position s, receiver position r, and time 1 (or fre- 
quency w). A point in data space is denoted by the triplet 
d = (r, s, t); u(d) is the value of the data at the point d. As 
shown in this section, points in the data and image spaces are 
connected by the traveltime function 5(x, y), which gives the 
traveltime between two points x and y within a known veloci- 

Figure I depicts two reflection-time surfaces in a 2-D case 
where the velocity is constant, the source position is fixed, and 
receivers lie both along the surface and in two boreholes 
flanking the image points. The result of a diffraction stack 
along the reflection-time surface R, has been viewed as a mea- 
sure of the probability that a reflector exists at x (Schneider, 
1971; French, 1975). Below, we reinterpret the diffraction 
stack as a backprojection operator that solves an integral re- 
construction problem derived from the wave equation. 

ty model co(x). The counterparts of reflection-time surfaces in data space 

time Offset 

Data 

Data Space 

Geometry of classical migration 

A basic principle of migration is that each point in the earth 
can be imaged by detecting the field scattered by that point. 
The most direct use of this principle was the classical diffrac- 
tion stack, which evolved into wave-theoretical Kirchhoff mi- 
gration (French, 1974; Schneider, 1978). The diffraction stack 
is a summation of the seismograms along Hagedoorn’s (1954) 
curve of maximum convexity, also known as a diffraction 
curve or “reflection-time surface” (French, 1975). For a fixed 
image point x, the reflection-time surface R, is the locus of 
data points at which energy from the image point could arrive 
(after single scattering). Mathematically, R, can be described 
as the set of triplets d = (r, s, t) in which the time t corre- 
sponds to the total traveltime from source s, to image point x, 
to receiver r. In set notation, 

R,= 
1 

d:t=T(r,x)+$x,s) . 
1 

(1) 

lsobhron 
Surface 

Model Space 

FIG. 2. lsochron surface I, (right panel) for the data point d that lies at the intersection of the reflection-time surfaces 
R, and R, (left panel). Note that a point x belongs to I, if and only if d belongs to R,. 
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are surfaces in model space that come from fixing a point 
d = (r, s, t) in the data and finding the surface of image points 
x associated with d by the traveltime function. We denote such 
a surface by I,; it is the set 

I,= x:f=$r,x)+t(x,s) 
( I 

Points in this set satisfy the constraint that the total traveltime 
from the source s to the image point x and to the receiver r is 
constant and equal to t. Hagedoorn (1954) called this set of 
points a surface of maximum concavity in the model; we call 
it an “isochron surfuce.” Figure 2 depicts an isochron surface 
for the same geometry as in Figure 1. With a constant- 
background velocity, an isochron surface is an ellipsoid 
(ellipse in two dimensions) with the source and receiver at the 
foci. 

It is well-known that a diffraction stack can be implemented 
indirectly by smearing the data points u(d) along their corre- 
sponding isochron surfaces I,. This process, commonly called 
backprojection, was the basis of the common-tangent stack 
(Rockwell, 1971: Schneider, 1971). In a common-tangent 
stack, the final image at a point x is the sum of all data points 
u(d) that were backprojected along isochron surfaces passing 
through x (Figure 3). Since each isochron surface passing 
through x is associated with a data point on the reflection- 
time surface R,, the common tangent and diffraction stacks 
give the same image. The numbers are just added in a different 
order. 

The geometrical idea embodied in equations (1) and (2) is 

that the traveltime r induces a natural correspondence be- 
tween points in one space and surfaces in another space. These 
dual geometric associations naturally give rise to a corre- 

FIG. 3. Set of isochron surfaces passing through scatter point 
A of Figure 1 viewed in close-up perspective. The figure width 
represents 35 percent of the panel showing model space in 
Figures 1 and 2. 

sponding pair of projection operators (Miller, 1983): 

(a) Given an objectfunctionf(x) defined on the model 
space, we obtain a data function .f^ (d) defined at each 
data point d by integrating f over the isochron surface 
I d, 

f”(d) = [ f(x). (3) 

(b) Given a data function u(d) defined on the data 
space, we obtain an object function u”(x) defined at each 
model point x by integrating u over the reflection-time 
surface R,, 

u”(x) = 
s 

$4. 
R, 

The integral signs in the above expressions are symbolic and 
are meant to include appropriate measures for the integrations 
over x and d. Variation of the measures gives rise to families 
of related operators. f*(d) is termed the projection of the 
object function f over the surface I,, while u”(x) is the 
(back) projection of u over the surface R, 

In the following sections, we clarify the meaning of these 
two projection operators in the context of seismic inversion by 
giving precise meaning to two basic premises: (1) Seismic data 
u(d) provide samples of the projections f A, wheref is a scatter- 
ing potential related to the earth’s acoustic velocity profile; 
and (2) the scattering potentialf(x) can be approximately re- 
covered by appropriately weighted backprojection of the data 
(weighted diffraction stack): u(d)+ u”(x) zf(x). The first 
point is implicit in the high-frequency asymptotics of acoustic 
scattering; it follows from using the geometrical-optics Green 
function in the basic integral equation for scattering. The 
second point is obtained from the mathematics of generalized 
Radon inversion. Although not treated here, a similar pro- 
cedure can be derived for elastic scattering. 

The acoustic generalized Radon transform 

Start with the Fourier transform of the scalar wave equa- 
tion for a point source, 

e? 
V%(x, s, w) + ~ u(x, s, 0) = -6(x - s). 

2(x) 
(4) 

Here u(x, s, w) is the total acoustic pressure field, s is the 
source position, CO is the frequency, and c(x) is the variable 
acoustic velocity. The density is taken to be constant. As de- 
fined above, u(x, s, o) is actually the Green function G(x, s, co) 

for propagation in the velocity model c(x). Given an initial 
estimate c&x) for the velocity, split c(x) into known and un- 
known parts, letting 

c - 2(x) = c; Z(x) l f(X). (5) 

The background velocity co(x) need not be constant, while 
f(x) is the unknown perturbation to be determined from the 
data. The perturbation f is called the (acoustic) scattering po- 
tential of the medium, since it is a measure of the scattering 
strength at points where the actual medium differs from the 
background medium. 
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Let G,(x, y, w) be the Green function for the background 
medium, so that 

VZG, (x, y, wj + - 
4 (x) 

G,(% y, 0) = -S(x - y). (6) 

With these definitions, equation (4) can be recast as an integral 
equation, analogous to the Lippman-Schwinger equation of 
quantum mechanics (see, e.g., Taylor, 1972), 

U(Y, s, 0) = G,(Y, .% 0) 

+ WZ I d3x G,(Y, x, ~W’(x)u@, s, WI. 

When evaluated at receiver position s, this- equation gives the 
observed total field as a sum of the incident field within the 
background model G, plus the scattered field, represented 
by the integral term. Denoting the scattered field by 
u,,(r, s, w) = u(r’, s, w) - G,(r, s, w), then 

u,,(r, s, w) = wz ’ d’x G,(r, x, o)f(x)u(x, s, 0). 
! 

(7) 

Equation (7) relates the recorded data to the unknown scat- 
tering potential ,f It admits the interpretation that the scat- 
tered field originates at points where the actual medium differs 
from the background medium through the interactionf(x)u(x, 
s, w) between the scattering potentialfand the total field U. 
The scattered wave field is then propagated by the back- 
ground Green function G, to the receiver. Equation (7) is a 
nonlinear equation for ji because the total field u, which multi- 
plies ,f. also depends on,f: The standard technique of replacing 
the total field inside the integral u(x, s, o) by the background 
or incident field G, (x, s, o) yields the linearized integral equa- 
tion 

u,,(r, s, 0) = 02 d3x G, (r, x, o)G,(x, s, w)f(x). (8) 

Equation (8) is a single-scattering approximation about the 
background medium cO. When c0 is constant, this equation is 
usually termed the (first) Born approximation. When c0 is 
spatially variable. it is called the distorted-wave Born approxi- 
mation (Taylor, 1972: Devaney and Oristaglio, 1984: Beylkin 
and Oristaglio, 1985). 

The background velocity can be chosen arbitrarily in the 
exact equation (7), but the approximation (8) will be good only 
if the perturbation ,f is small in some sense. We assume the 
validity of equation (8) throughout this paper. We also assume 
that the Green function G, is available. G, can be written 
explicitly only for simple models, but numerical or asymptotic 
approximations can be computed for general models. For ex- 
ample, Clayton and Stolt (1981) considered the inversion of an 
equation similar to equation (8) in a layered background, 
where a WKBJ approximation was used for G, (see also Blei- 
stein and Gray, 1985). Here, we allow arbitrary c0 and use the 
first-order asymptotic approximation given by geomctTi& 
optics for G, Thus, we set 

G,(x, y, w) = .4(x, ~)c~-‘~(~*Y’, 

where the traveltime function T satisfies the eikonal equation 

[ 1 
2 

v, 7(x, Y) = co w (9) 

and the amplitude or geometrical spreading term A satisfies 
the transport equation 

A(% Y)V, T(X, y)ZV, 4x. y) * V,,(x, y) = 0, 

along the ray connecting the points x and y 
Substituting for G, in equation (8) gives 

(10) 

u,, (r. s, 01) = CO* 
j 

&x A(r, x)A(x, s) 

x exp iw $r, x) + T(x, s) 
i[ II f(x) 

= Qg J’ 6-h A(r, x, s) exp [i03T(r. x, s)]_Qxj, (11) 

where iye haves defined- A@, x, sj and r(r, x, s) as the total 
amplitude and traveltime functions 

A(r, x, s) I A(r, x)A(x, s), 

and 

t(r, x, s) = T(r, x) + r(x, s), 

which consist of separate terms for the incident and scattered 
raypaths. Finally, we return to the time domain with an in- 
verse Fourier transform, which gives 

u,,(r, s, t) = - $ 
s 

d’x A(r, x, s) 6 t --T(r x s) 
[ 4 f(x) 

= - 
s 

d3xA(r,x,s)S’.[r-r(r,x,s)]f(x). 

(12) 

The delta function in the volume integral in equation (12) 
collapses the spatial integration to the set of points satisfying 
the traveltime relation 

1 = 7(r, x, s) = T(r, x) + 7(x, s), (13) 

that is, to points on the isochron surface I, [see equation (2)]. 
Equation (12) therefore relates the scattered acoustic pressure 
at the data point d = (r, s, t) to the second time derivative of 
the weighted integral (projection) of f(x) over the isochron 
surface I,, 

22 
us, (4 = - jp 

s 
46 x, W(x). (14) 

Ifl 

The integral is weighted by the geometrical-spreading factors 
from the source to the scattering point and from the scattering 
point to the receiver and is differentiated twice with respect to 
time Additional weighting comes from the appropriate inte- 
gration measure, which is the surface measure induced by the 
delta function in equation (12) (Gel’fand and Shilov, 1966, p. 
222). The meaning of the time derivative is illustrated in 
Figure 4. If the time function of the source is not a delta 
function, as implied by equation (4), equations (12) and (14) 
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will contain a convolution with the source wavelet. One can 
then shift the time derivative onto the source wavelet itself (see 
Tarantola, 1984). For reasons explained in a later section, we 
keep these equations in the given form. In the final section, we 
briefly discuss the effect of a band-limited source. 

We call equation (12) [or (14)] the “acoustic GRT” and use 
the notation f A for the integral transform itself. In terms of 
the projection operator defined in equation (3), 

A simple example of equation (12) is a 3-D model with a 
constant background velocity, where the geometrical-optics 
Green function is exactly the free-space Green function, 

G,(x, Y, 0) = 
ew [imIx - Ylico] 

4KIX-yl 

For this case, the amplitude term A(x, y) is 1/(4n (x - y(), 
where )x - y ( is the distance between x and y, and T = 
Ix - y l/c,, is the traveltime. Equation (14) becomes an integral 
over an ellipsoid with the source and receiver at the foci. 

1: 

i 

e 

d- = (r&t-At) 

--% 

d+ = (r,s,t + At) 

#-- 

time
- 

I 

I 

Data Space Model Space 

Analogy with the classical Radon transform 

As r, s, and t vary over the data, the acoustic GRT gives 
weighted integrals of the scattering potential over isochron 
surfaces in the model. We derive an approximate inverse 
acoustic GRT by analogy with the classical Radon transform 
(Radon, 1917, translation in Deans, 1983). 

For a 3-D function f(x), the classical Radon transform in- 
volves integratingfover all planes. An arbitrary plane can be 
described as the set of points satisfying the equation 
p - 5 . x = 0, where 5 is a unit vector normal to the plane and 
p is the distance of the plane from the origin. In set notation, 

T (E,, p) = ix: P = g - x>. 

The 3-D Radon transform can thus be written 

f *CL P) = i f(x) 

= 
I 

d3X S(p - g ’ x)&f(x), (15) 

where we use the notation f”(& p) to denote the Radon trans- 
form off(x), evaluated at the data point (5, p). 

Given the Radon transform off(x) for all planes ‘$,,, the 

Offset 

I 
Ray to 
Source 

FIG. 4. The time derivative in the acoustic generalized Radon transform [equation (14)]. (left) Data point d (cross) and 
neighboring points df and d-. (right) The derivative needed to obtain u,,(d) = u,,(r, s, t) is the second derivative of 
integrals over parallel isochron surfaces I, 

u,, (r, s, t) = lim 
At-0 

f^(r,s,t+A~)-22f”(r,s,r)++f”(r,s,t_Aht) AtZ. II 
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value off at any point x0 can be recovered by the inversion 
formula (Radon, 1917; Gel’fand et al., 1966; Deans, 1983) 

= - $ 
J 

(16) 

Equation (16) is the 3-D version of the filtered backprojection 
algorithm of X-ray tomography (see, e.g., Herman, 1980). For 
fixed L$, the functionf6(& p) is a one-dimensional function of p 
that gives the integrals offover planes perpendicular to 5. For 
any 6, the parameter p = p. = 4 - x,, marks the plane passing 
through a point of reconstruction x0. In reconstructing f(xo), 
the transformf*(l;, p) is differentiated twice with respect to p 
and evaluated at po: a2fA(& po)/i3pz (the filtering step). Values 
of the filtered transform for all planes passing through x,, are 
then integrated with respect to d%,, which is the solid angle 
measure over the unit sphere surrounding x0 (the backprojec- 
tion step). If the unit vector 5 is specified in terms of a polar 
angle 8 and azimuthal angle 4, 

5 = (cos 4 sin 8, sin + sin 8, cos O), 

then d*t = d$ d0 sin 0. Figure 5 illustrates the geometry of the 
two steps in the Radon inversion algorithm. 

The forward and inverse Radon transforms can be merged 
into an equation that is useful in developing an approximate 

inversion of the acoustic generalized Radon transform. From 
equation (15), we can write for the filtered transform 

$ P(43 PI = $ 
J 

fh w - 4 * XMX) 

= 
J 

d3X S”(P - 5 - x)f(x). 

Combining this with equation (16) gives 

f(xo)= -& JPS JM+(~,-x+(x). (17) 

The analogy between the classical Radon transform and the 
acoustic generalized Radon transform is easily seen. In the 
classical Radon transform, the unit vector 4 specifies a family 
of parallel planes, while the scalar parameter p fixes one plane 
in the family. The family of planes passing through a point x0 
is obtained by allowing 5 to vary over the unit sphere and by 
taking p = 5 . x,, for each 5. In the acoustic generalized Radon 
transform, a source-receiver pair (r, s) plays the role of 5, while 
the time t plays the role of the parameter p. A source-receiver 
pair specifies a family of “parallel” isochron surfaces (when co 
is constant, concentric ellipsoids with r and s as common foci) 
and t fixes one isochron surface in the family. The family of 
isochron surfaces passing through a point x0 is obtained by 
allowing source and receiver positions to vary and by taking 
t = r(r, x0, s) for each (r, s) pair. These data lie on the 

FIG. 5. Radon inversion as filtered backprojection. (left) The filter is a second derivative of integrals over parallel planes 
T c5, P,, where the unit vector 5 is perpendicular to the planes and p parameterizes parallel planes, 

$P(L PI = lim [ f% P + AP) - Y”(L PI +f’K> P - API AP*. *p_o I/ 
(right) The backprojection is an average (of the filtered transform) over planes through an image point. 
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reflection-time surface RXO. Note, finally, that acoustic scatter- 
ing gives directly what may be called a “filtered” generalized 
Radon transform in which the integrals over isochron surfaces 
are already differentiated twice with respect to time t [com- 
pare equations (12) and (15)]. 

Inversion of the acoustic generalized 

Radon transform 

An approximate inversion of the acoustic GRT can be ob- 
tained by applying the classical Radon inversion formula lo- 
cally to each image point x0. The isochron surfaces passing 
through x0 locally resemble planes, as can be seen by com- 
paring Figures 3 and 5. Identifying each isochron surface with 
its tangent plane at x0 and comparing equations (12), (15), and 
(18) suggests the following backprojection formula as an esti- 
mate (f(x,)> of the scattering potential at the point x0, 

07x0)) = c dW, x0, 4 $ f‘^(r, s, t) [, 1 t=T(r,XO,s, 
= 

J 
dW(r, x0, s) u,, 

L 
r, s, f = z(r, x0, s) I (18) 

Equation (18) is a weighted diffraction stack, an integral of the 
data lying on the reflection-time surface R._. The weighting 
function dW(r, x0, S) is allowed to vary for each x0 and repre- 
sents an appropriate measure for the integral. 

The identification of isochron surfaces with their tangent 
planes at a point x0 becomes precise on making some ap- 
proximations in equation (12). As discussed in the Appendix, 
the weighted diffraction stack obtained by this identification 

gives an asymptotic inversion of the acoustic generalized 
Radon transform. To obtain the identification, first shift the 
origin of coordinates in the integral to the point x0. Letting 
x = x0 + y, equation (12) becomes 

u,,(r. s, t) = - 
s 

d’y A(r, x0 + y, s)6” 

x 
[ 

t - 7@, x0 + Y, 4 1 Ox, + Y). (19) 

Assume thatfis localized about the point x0, so thatf(x, + y) 
is nonzero only if 1 y ( is small. We also assume that the total 
amplitude function A is approximately constant near x0 and 
can be moved outside the integral 

u,, @, s, d = - A(r, x0, s) d’y 6” 

x 
[ 
t - r(r, x0 + Y, s) I Ox0 + Y). (20) 

We now expand the traveltime function $r, x, s) in a first- 
order Taylor series about the point x0, 

T(r, x0 + Y, 4 = T(r, x0, s) + 
[ 

V, t(r, x, s) I.=.: y 
E ~~ + V, z(r, x0, s) . y. (21) 

Here, the gradient vector of the total traveltime is the sum of 
gradients for the incident and scattered raypaths 

Vx T(r, x0, s) = V, s(r, x0) + Vx 7(x0, s). (22) 

Rav 
from 

Source 

FIG. 6. The geometry matching an isochron surface with its tangent plane near an image point x. To simplify the figure, 
we have omitted the subscript zero used in the text. The gradient vector V, z(x, s) is the incident ray at x; V, ~(r, x) is 
the scattered ray; a is half the angle between these two rays; 5 is a unit vector in the direction of the total traveltime 
gradient V, ~(r, x, s). 
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Consider first V, ~(r., x0)_ Since rays are perpendicular to sur- 
faces of equal traveltime (phase) and traveltime increases as x0 
moves away from r, this gradient points in the opposite direc- 
tion from the ray that leaves x0 and reaches r in the back- 
ground model, or along the ray that arrives at x0 from r. 

Similarly, V, ~(x”, s) points in the direction of the ray that 
arrives at x,, from the source s. The geometry is illustrated in 
Figure 6. We call these gradient vectors the incident and scat- 
tered rays at the image point x0. 

From the eikonal equation (9), the magnitudes of the inci- 
dent and scattered rays are equal to l/c,(x,), the slowness of 
the background model at the point x,,. The total traveltime 
gradient V, z(r, x0, s) lies in the plane of the incident and 
scattered rays at x0 and bisects the angle between them 
(Figure 6). Let a be half the angle between the incident and 
scattered rays; using equations (22) and (9), one finds 

2 
IV, $r, x0, s)I = - 

co (x0) 
CDS a = p. (23) 

Finally, let &(r, x,,, s) be a unit vector in the direction of the 
total traveltime gradient, so that 

V, T(r, x0, 4 = I%, x0, s) 

Substituting these results into equation (19) gives 

us,@, s, t) z --A@, x0, 5) 
i 

d3y S” 

x t - z. - Mr, x0, s) . Y 
1 

f(x, + Y). (24) 

The original integrals over isochron surfaces are now approxi- 
mated by integrals over planes. The unit vector Qr, x0, s) is 
normal to the planes, while time t parameterizes parallel 
planes. Evaluating this expression for the scattered field at a 
point on the reflection-time surface for x0, where t = T,, = 
z(r, x0, s), one obtains 

n 
u,,(r, s, t = TV) z - A(r, x,, , s) 

! 
d3y 6” 

X L - Kk x0, s) e Y 
1 

AX, + y), 

=- A@~~~2 ‘) Jd’y 8.[5(r, x0, s). y] 

x mo + sh 

using the relation 6”(-0.x) = 6”(x)/( a (j. Restoring the original 
variable x = x0 + y gives 

u,,(r, s, t = TJ x - 46 x0, s) 
IPI’ s 

d3X s,, 

x 
[ 
Sk, x0, 4 . (x - x0) 1 f(x). (25) 

Within the approximations leading to equation (25), the 
scattered data along the reflection-time surface of x0 are pro- 
portional to (twice-differentiated) integrals off over planes 
passing through x0. The identification of isochron surfaces 
and their tangent planes is thus complete. Comparing equa- 
tion (2.5) with the classical inversion formula [equation (17)] 

gives the weighting function d W directly, 

dYr, x0, s) = -$ d*S(r, x0, 4 
lco~3~@~xo~s)l ( 2 6 )  

4 (x,)A(r, x0, s) ’ 

and the final inversion formula 

1 
U(xo)> = ;;j: 

s 
d*S(r, x0, s) 

x I cm3 a@, x0, s) I 
ci (x0)&, x0, ~1 

u,,(r, s, t = Q). (27) 

The inversion integral we have derived is given explicitly in 
terms of the angular variable 5 rather than the experimental 
variables (r, s). As such it represents a scheme for generating 
explicit inversions for various experimental configurations. 
Passage from the generic expression (27) to any specific ver- 
sion consists of evaluating the Jacobian d2& Formally, the 
mapping from 5 to the source-receiver pair (r, s), defined at 
each image point x0, must be one-to-one and differentiable. In 
special cases (such as those given below) it is possible to derive 
an explicit expression for d*k in terms of the experimental 
variables. In general numerical implementation, however, we 
have found it more efficient to work directly with formula (27), 
either by computing (r, s, rO) as a function of regularly sam- 
pled 5, or by computing (5, TV) as a function of (r, s). In the 
former case, one numerically interpolates the field between its 
sampled values: in- the iatter case, one numerically computes 
the rate of change of 5 as its values vary according to the 
experimental setup and background model. 

Acoustic CRT in two dimensions 

The acoustic GRT and its inverse are easily modified to a 
2-D world, which is useful for synthetic calculations (and for 
drawing pictures). In two dimensions, the geometrical-optics 
Green function is 

Go(x, Y, 4 = (-io)-“‘A(x, y) exp [ 1 io~(x, y) , 
where 7 and A satisfy 2-D eikonal and tranport equations. The 
scattering equation becomes 

f(x), 

(124 

The 2-D Radon inversion formula (Radon, 1917; Gel’fand et 
al., 1966; Deans, 1983) is 

.f(xo) = -& J dt x ; f*(& JI = 5 . x0), (174 

where N denotes the Hilbert transform (principal-value inte- 

gral) 

XlJ(C) = i 
J 

m 
dt, u(f) -. 

n -02 
t - t’ 
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The analysis described above carries through with only minor 
changes to yield the 2-D acoustic inversion formula 

1 
<.0x,)> = ; 

s 
dS(r, x0, 4 

X 
cod a(r, x0, s) 

4 (x0)&, x0, s) 
Su,,(r, s, t = TV). (27a) 

Thus, the only changes are in the dimension of the integral (5 
now varies over unit vectors in the plane), in the exponent in 
the obliquity factor cos’ a, and in the additional Hilbert trans- 
form which is applied to the scattered data before backprojec- 
tion. 

SPECIAL CASES 

As noted, inversion formulas (27) and (27a) are suitable for 
direct numerical implementation; all the necessary quantities 
can be determined by tracing rays from image points to the 
experiment’s sources and receivers. Nevertheless, it is instruc- 
tive to derive explicit expressions in selected cases. We consid- 

h 
S 

5 

FIG. 7. Geometry of a fixed-offset experiment. a, is the angle 
between the vertical and the ray from the source s to the 
image point x; a, is the angle between the vertical and the ray 
from the receiver r to the image point; h is the offset. Note 
that the midpoint m between the source and receiver does not 
lie on the ray through 5 that bisects the source and receiver 
rays. 

er here zero-offset and fixed-offset experiments in a constant 
background velocity. The zero-offset migration formula was 
first derived in Norton and Linzer (1981) by a different ap- 
proach ; the fixed-offset formula was derived in Beylkin (1985). 

Zero-offset migration 

Consider a zero-offset acoustic experiment with source- 
receiver pairs (“transceivers”) on the surface of a half-space 
that contains the structure to be imaged. This geometry is 
commonly used to model common-midpoint stacked surface 
seismic data. Let r = s = (rl, r2, r3 = 0) be the position of the 
transceiver and let the background velocity co be constant. 
The acoustic generalized Radon transform becomes an inte- 
gration over hemispheres; the data at position r and time t 
come from an integral off(x) over a hemisphere centered at r 

of radius R = co t/2. Since the rays from r to an image point x 
and back to r lie along the straight line connecting r and x, the 
unit vector g(r, x, r) is 

x-r 1 
5=,x_r,-,x_r,(~~-rl~~2-~2~~~)~ (28) 

An explicit migration formula for this case requires a 
change of variables from 5 to the coordinate r that parame- 
terizes the experiment. For example, at any arbitrary image 
point x, specify 5 = (cos 4 sin 8, sin 4 sin 8, cos 6) with polar 
angle tl and azimuthal angle 4. Substituting from equation 
(28) and using the relation 

sin 8 = - ,,T r, tan 8, 

one finds 

x1 - r1 = x3 tan 8 cos 4, 

and 

x2 - r2 = x3 tan 0 sin 9. 

The Jacobian computation gives 

d*r = x: (1 + tan2 O)(tan e) de dc$ 

The angle a(r, x, r) has the constant value zero, so the cosine 
term drops out of equation (27). Including the geometrical 

FIG. 8. Geometry for calculating zero-offset data for a reflecting half-space using the acoustic generalized Radon 
transform. (a) I, is the isochron surface centered on a transceiver, with radius t/2. The half-space starts at z = zo; u, is 
the angle between the vertical and the intersection of I, with the top of the half-space. (b) A, is the region of a unit 
sphere similar to the intersection of I, with the half-space. 
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factor A(r, x, r) = (47~ 1 x - r I)-’ and substituting into equa- ever it is possible to specify 5 explicitly in terms of the Car- 

tion (27) yields tesian coordinates of the experiment. 

<f(x)> = $ r,=0 Pr -%- 
s lx-r1 

u,, (r, t = 2 lx - r l/c,) Fixed-offset experiments 

16 

s 

Consider next a fixed-offset experiment on the surface of a 
=- 3 d’r cos 0 u,, (r, t = 2 1x - r l/c,). (29) 

co 13=0 
half-space with constant background velocity. The experiment 
can be parameterized by the midpoint m = (ml, mz, 0) of the 

A second algebraic derivation follows directly from equa- source-receiver pair. Let h = (h,, h,, 0) be the half-offset 
tion (28). By definition, the surface integral vector, so that the receiver position r = m + h and the source 

{d%=~d’rl$x~l, 

position s = m - h. Then 

(30) 
1 

where the magnitude of the vector cross-product is the Jacobi- 
an factor. This again yields equation (29); moreover, if the 

5= 112 
2+(x-s).(x-r)/(x-s](x--s( 

data are collected on an irregular surface rs = rs(r,, I~), the 
only change in the derivation is that the third component of 5 
becomes x3 - r3(r,, rJ. The latter construction works when- 

time

L 
Data Space 

Offset 

Data Space 

Object 
Area 

mL Receivers Ai 
m 

f 
m 

Model Space 

time

(31) 

Data Space 

FIG. 9. Synthetic data (outer panels) from a single-source, multiple-receiver acoustic experiment with the geometry 
shown in the inner panel. A family of point scatterers, distributed to form the letter “S,” occupies the object area, 
which is 350 m wide and 500 m high. The data were computed using the 2-D acoustic generalized Radon transform 
[equation (12a)] using a homogeneous background velocity of 2500 m/s. The source wavelet was a four-point 
Blackman-Harris window, with a duration of 25 ms. time runs from 0.0 to 0.75 s. 156 traces were constructed; every 
second trace is displayed. Receivers 1 to 64 are in the left borehole at - 250 m offset, with depths varying from 1000 m 
to 0 m. Receivers 65 to 9 1 are on the surface, with offsets varying from - 250 m to + 250 m. Receivers 92 to 156 are in 
the right borehole at 250 m offset, with depths varying from 0 m to 1000 m. 
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FIG. 10. Images of point scatterers occupying the object area of Figure 9. Images were obtained by applying the 2-D 
inverse acoustic generalized Radon transform [equation (27a)] to all the data in Figure 9 (LSR) and to the subsets of 
the data corresponding to the left borehole and surface (LS); left borehole only (L), and surface only (S). 
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A change of variables can now be made from 5 to m using 
equations (30) and (31); however, the algebra is dense. For 
simplicity. consider the 2-D case and work with the angular 
variables defined in Figure 7: the polar angle 8 determines 5, 
a, is the angle between the vertical and the ray from the 
source to the image point x, and a, is the angle between the 
vertical and the ray from the receiver to the image point x. 
Then, 

0 = i (a, + a,) + x 

1 

=-( 

m-h 
tan-’ - + tan-’ 

2 Z 

where z is the depth of the image point. Changing 
from 5 to m gives 

(32) 

variables 

cos a 
L+L dm. 

1x-s) i 

The geometrical-optics Green function for a homogeneous 
2-D medium, 

G,(x, y, w) = (--ia)- ‘~*A@, y) exp [iw 1 x - y I/co], 

has the amplitude factor 

4% Y, = (,,,:‘_ ,1>“‘. 
Thus, 

is the 2-D total-amplitude factor. Substituting into equation 
(27a), one obtains the inversion formula 

x co? (a, - a,)Pu,,(r, s, I = ro), (33) 

where ‘c,, = (Ix - r 1 + 1 x - s 1)/c,,). Setting h = 0 in this equa- 
tion yields the 2-D version of equation (29). The migration 
formula for a 2-D fixed-source experiment (shot gather) can 
also be derived from equation (32) by computing the change of 
variables with s = m - !-I fixed and r = m + h varying over the 
surface line. 

EXAMPLES 

Next consider one analytical example and several numerical 
examples of migration by an inverse generalized Radon trans- 
form. The analytical example helps to clarify the notion of an 
approximate inversion that images discontinuities. The nu- 
merical examples are designed to show the resolution that can 
be obtained from different seismic experiments. Examples of 
generalized Radon transform migration of field data (offset 
vertical seismic profiles) can be found in Dupal and Miller 
(1985) and Miller and Dupal (1986). 

Step-function increase in scattering potential 
-200.0 -1io.o 40.0 -5b.o 6.0 50.0 mb.0 ail.0 

The analytical example consists of a zero-offset experiment 
on the surface of a half-space that has a step-function increase 

FIG. 12. Reconstruction from the data of Figure 11 using the 
inverse acoustic generalized Radon transform. 

in the scattering potential. Consider the velocity function de- 
fined by the relation 

c-z(Z) = 1 + O(z - ZJ, 

where O(z) is the Heaviside step function and z = z0 is the 
depth of the reflector. Taking c;’ = 1 gives the scattering 
potential 

f(z) = Q(z - zo). 

(meters) 
-260.0 

(meters) 

FIG. 11. Synthetic data from a zero-offset experiment with 
transceivers at the receiver locations in Figure 9. Traces are 
displayed in_ a coordinate system wrapped around the receiver 
set and centered on the source in Figure 9. The left borehole 
traces are positioned from - 1250 to -250 m (1000 to 0 m 
actual depth), the surface traces from -250 to 250 m, and the 
right borehole traces are from 250 to 1250 m (0 to 1000 m 
actual depth). Every second trace is displayed. The scattering 
medium and the source wavelet were identical tc those of 
Figure 9. 

(4 
-200.0 -150.0 -100.0 -50.0 0.0 50.0 100.0 150.0 
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The scattered data within the Born approximation are easily when t -=L 2~. Otherwise, 
computed from integrals offover hemispheres. It follows from 
equation (14) that Oh(t) = & 

I 

cos- 1 ,2zo,r, 

a2 
0 

da 2rc sin a = i-& (1 

u,,(t) = - 2 0 ^(t)> Thus, 

where 
(1 - 2z,/t)O(t - 22,) 

ll- t r 1 

%/t). - 

oyt) = 2 ! d’x (2rct)) *0(x3 - i,,) = rz;;i 
J 

d*&. 
J, At s(t - 22,) - 

42, @(t - 22,) I. (34) 
Here, 1, is the spherical shell of radius t/2, t3 

A, = {c: 151 = 1 and c3 2 Zz,/c} 

is the region on the unit sphere similar to the intersection of I, 
with the half-space (x: x3 2 z,) (see Figure 8). Clearly OA = 0 

Because of the symmetry in this example, it is easy to work 
directly with equation (27). However, an additional factor of 2 
must be inserted in this equation since the integration over 5 
will be taken only over a hemisphere. This still gives full 

(meters) 
!60.0 1so.o X0.0 

do.0 7io.o 
(meters) 

FIG. 13. (a) Synthetic zero-offset data for a homogeneous block occupying the object area of Figure 9. Data were 
computed with equation (12a) by representing the block as a fine grid of point objects. The display geometry is the 
same as in Figure 1 I. (b) Reconstructed block: (left) wiggle plot; (right) perspective view. 
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coverage of tangent planes passing through an image point; 
integration over the full sphere implies double coverage of 
the tangent planes. The amplitude factor is (4rcr)-‘, and the 
obliquity factor is unity. Thus 

(f(z)) = $ 
s 

d*5(16~r’)u,,(t = 2r) 

2 2n 
= -- 

I s 

n/2 

d+ de sin 8 rz 
K 0 0 

x k S(2r - 22,) - 
[ 

z0 0(2r - 22,) 
2r3 

1 
. 

The change of variables cos 0 = z/r yields 

(f(z)) = : O(z - ze). (35) 

The location and size of the discontinuity are recovered exact- 
ly, but the value forfitself decays by the smooth function ze/z 
away from the interface. A similar result would be obtained if 
a more accurate expression for the data were substituted into 
the inversion formula (this example was suggested to us at the 
1985 International Meeting of the SEG by Richard Day who 
performed a similar calculation using the data given by geo- 
metrical optics). Since inverse scattering is linear in the Born 
approximation, the result is easily extended to an arbitrary 
number of interfaces. For example, in the case of two inter- 

(ml 
3 26&O 600.0 760.0 1( I I , ., 

1 80 sources A 

faces, by setting the scattering potential to be 

f(z) = O(z - zO) - O(z - z0 - a), 

where a is the thickness of the layer, within the Born approxi- 
mation 

(f(z)) = T O(z ~ z,) - ?!I-? O(z - z. - a). 
z 

The discontinuities are again recovered exactly. Moreover, for 
fixed Z, the value of the reconstruction has the correct limiting 
value as the layer thickness approaches zero. If exact data are 
used in the multilayer case, the locations of deeper interfaces 
may not be positioned correctly, since they will “migrate” 
with the background velocity co. This is a well-known defect 
of linearized inversion. 

Synthetic examples: Surface and borehole data 

Figures 9 through 16 show four synthetic examples of the 
acoustic GRT migration algorithm specialized to a 2-D geom- 
etry. In performing the first three synthetic experiments, we 
used equation (12a) to generate the data and equation (27a) to 
perform the reconstructions. These examples were performed 
with a homogeneous background velocity. The source wavelet 
was a four-point Blackman-Harris window (Harris, 1978, p. 
65), which resembles a band-limited delta function. 

FIG. 14. Synthetic deviated-well VSP experiment.-(a) The acoustic model consisted of a family of faulted and dipping 
layers with a point anomaly at (x, z) = (454, 1076) m. Three vertical traces graph the scattering potential relative to a 
background model, consisting of the flat cross-section of the true model at the borehole (2500 m/s above z = 275 m, 
2750 m/s between 275 and 460 m, 3500 m/s below 460 m). (b) The scattered data, consisting of time traces for 80 
source-receiver pairs. Each trace is the difference between a total-field trace and a background-field trace computed by 
a pair of finite-difference simulations for the corresponding source point. 
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(m) 

2 

FIG. 15. Reconstruction from the synthetic DVSP experiment. (a) Ten wiggle plots showing profiles of the reconstruc- 
ted scattering potential are superimposed on a gray-level display of the same image. Vertical profiles of the true 
scattering potential are shown at x = 260, 600, and 840 m. (b) Wiggle display of the vertical derivative of the previous 
image. Layer boundaries from the true model are superimposed. 
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The first example consists of data for a single-source, 
multiple-receiver experiment with the source and receivers ar- 
ranged as in Figure 1. The scattering object consisted of a 
famiil of point scatterers, which were separated by roughly 
one wavelength at the central frequency of the source and 
distributed to form the letter “S.” Figure 10 shows the syn- 
thetic data after application of the Hilbert transform. The re- 
constructed images in Figure 10 illustrate the resolution ob- 
tained from different subsets of the data. 

The second and third examples involve data from zero- 
offset experiments in which transceivers are placed at the 
receiver locations of Figure 1. The scattering objects were the 
same family of point objects and a homogeneous block. Fig- 
ures 11 and 13a show the synthetic data, while Figures 12 and 
13b show the corresponding reconstructions. 

The final example is a bit closer to real life. The geometry of 
the experiment has been described as a “vertical raypath 
deviated-well VSP” (DVSP for short). In this type of survey, 
the receiver moves up a deviated borehole, while the source 
moves along the surface directly above the receiver; that is, for 
r = (rI, rz, r3), s = (r,, r2, 0). This type of experimental geome- 
try is easily handled by a direct application of the basic inver- 
sion algorithm. We know of no other wave-equation method 
that can treat this geometry. 

The model is shown in Figure 14a. It consists of faulted and 
dipping layers, plus a point anomaly at the position (x, z) = 
(454, 1076) m. The background model was layered, with the 
velocities along the well extended laterally; the velocity at the 
deepest part of the well was extended downward. By running a 

(ml 
-fS.O -60.0 -26.0 a.0 26.0 60.0 76.0 

-76.0 -66.0 -2ir.0 6.0 2k.o 

FIG. 16. Typical point from Figure 1Oc (left well only) together 
with the family of isochron surfaces corresponding to data 
points on the associated reflection-time surface. Every fifth 
isochron is plotted. 

2-D acoustic finite-difference program 160 times, synthetic 
scattered data were obtained for 80 source-receiver pairs. The 
source wavelet was a Blackman-Harris window with a dura- 
tion of 21.3 ms (which contains frequencies ranging from 0 to 
about 50 Hz). 

Figure 15a shows the reconstructed image using a direct 
implementation of equation (27a). To simplify computation, 
straight raypaths were used to compute all geometric factors 
(including dc), and slowness in the layered background was 
integrated along straight rays to compute traveltimes. Figure 
15b shows the vertical derivative of the image in Figure 15a, 
superimposed on the model. A similar result could be ob- 
tained by differentiating the data before inversion. 

Note that all boundaries are recovered with the correct po- 
larity. The shallow faulted layers are located very accurately. 
It is particularly interesting to note the accurate reconstruc- 
tion of amplitudes in and around the wedge-shaped region 
between 150 and 500 m offset, just below the faulted layers 
(850 to 950 m). The reconstructed shapes of the dipping layers 
and the deepest flat layer show some distortion due to the 
breakdown of the Born approximation. The loss in amplitude 
at the bottom of the leftmost dipping layer results from a lack 
of illumination. The loss of amplitude on the deepest flat layer 
as it intersects the dipping boundary is physically correct and 
is due to the change in velocity contrast at that point. 

CONCLUSIONS 

We have described an integral-transform approach to seis- 
mic imaging that formalizes the classical diffraction stack. The 
basis of this approach is that acoustic scattering transforms 
the scattering potential into the data as integrals over iso- 
chron surfaces; in turn, integrating the data over dual surfaces 
recovers an image of the scattering potential. Since the experi- 
mental geometry and the velocity model enter only in deter- 

FIG. 17. Geometry that translates the time variable t into 
distance p normal to an isochron surface. Parallel isochron 
surfaces satisfy the relation 

co (x,W 

cosa=T. 
To simplify the figure, we have set co (x,,) = 1. 
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mining the shapes and locations of the surfaces, the method is 
easily adapted to general source-receiver geometries and ve- 
locity models. Moreover, the dependence of spatial resolution 
on the geometry of the experiment, the reconstruction algo- 
rithm, and the assumptions about the medium is explicit in 
this method. It is thus possible to analyze the differences in 
performing just surface experiments, just borehole experi- 
ments, or both. It is also possible to describe an ideal experi- 
ment for a given configuration. 

Analysis of the spatial resolution of seismic experiments and 
migration (or inversion) algorithms was treated in detail in 
Beylkin et al. (1985) (this paper also shows that the integral- 
transform approach can be modified to resemble a full wave- 
field extrapolation approach). 

We conclude by pointing out the main geometric issues 

affecting the spatial resolution of the images obtained by the 
inverse acoustic generalized Radon transform. For example, 
the difference between Figure 1 Oa and Figure 12 raises 
questions regarding the angular resolution of a band-limited 
variable-offset experiment. These issues involve both the ex- 

perimental geometry and the finite bandwidth of the source 
wavelet. 

The first issue is the relation between the available source- 
receiver pairs and the spatial dip spectrum of the reconstruc- 
ted object. Locally, a restriction on the number of source 
points or receiver points restricts the set of available isochron 
surfaces in the generalized Radon transform, and hence, the 
set of tangent planes (parameterized by 5) available at each 
image point. Recall from the discussion of the classical Radon 
transform that integrals over planes in all directions are 
needed for a perfect reconstruction. Figure 15 shows a typical 
point from the image in Figure lOd, together with the set of 
isochron surfaces passing through that point. Roughly, the 
image spreads along the isochron surfaces. Comparison of the 
images in Figure 10 shows the effect of restricting the receiver 
set, and thus the dip spectrum at image points, while keeping 
other factors constant. 

The difference between the two full-aperture images, Figures 
10a and 12, is due to a more subtle effect. The correspondence 
that relates the time variable t at a typical data point (r, a, I) to 

FIG. 18. Spatial Fourier-domain coverage for a 2-D band-limited experiment. (a) Data from a finite-bandwidth, 
full-aperture experiment cover the angular aperture -I+? < 8 5 742 at an image point, where 0 is the angle that 
parameterizes 5, the unit vector normal to tangent planes (lines) through the image point. This range of 0 gives single 
coverage of all tangent planes. Frequencies vary from zero to the maximum frequency in the source wavelet. (b) The 
region of coverage in (a) when mapped into the domain of (local) spatial frequencies k = (k, , k,) near an image point. 
In a zero-offset experiment, the coverage of spatial frequencies is the region enclosed by the outer circle, which is 
defined by the polar equation 

2fmax r= Ikl=- 
co (x0) 

In a fixed-source experiment, the coverage is the region enclosed by the figure eight (shaded dark and light). In this 
case, taking 6 = 0 for the zero-offset receiver makes 0 = a, half the angle between the incident and scattered rays at an 
image point [see Figure 15 and equation (36)]. The limit of coverage is defined by the polar equation 

r = 1 k ( = %n.c cos 6, 
co (x0) 

where the top and bottom portions of the figure eight come from positive and negative temporal frequencies timaX. 
The shading in (a) and (b) illustrates the distortion of different frequency bands under the mapping. 
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the local spatial variable p normal to the corresponding iso- 
chron surface is [see Figure 17 and equation (23)] 

Ap = - co(xo) At, 

2 cos a 

A minimal time step in the data, corresponding to the highest 
available temporal frequency, translates to a minimal spatial 
step that varies as l/cos of the scattering angle and, hence, to 
a highest spatial frequency that varies as the cosine of the 
scattering angle. In a zero-offset experiment (as in Figure 12), 

this obliquity factor is constant, and the point spreads are 
symmetric. In a fixed-source experiment (as in Figure lo), the 
obliquity factor varies with scattering angle and the point 
spreads are ovals, with their minor axes aligned toward the 
source. 

Figure 18 shows the predicted areas of coverage in the Fou- 
rier domain for the two cases, while Figure 19 shows Fourier 
transforms of actual reconstructions from single-point synthet- 
ic experiments similar to the ones that produced Figures 10a 
and 12. Figure 20 shows a typical point from Figure LOa, 

(4 

Contour Interval: 6 Db Contour Interval: 6 Db 

-0.06 

0.00 

0.06 

-0.10 -0.06 0.00 0.06 

together with the family of isochrons corresponding to data 
points one-half wavelength from the associated reflection-time. 
surface. This last figure illustrates the obliquity effect directly 
in the image domain. 

The mapping of the data into the spatial Fourier spectrum 
of the object, shown in Figures 18 and 19, is a local version of 
a relationship first pointed out by Wolf (1969) in the context 
of holographic imaging. With a harmonic plane-wave source, 
the spatial Fourier transform of the scattered field recorded 
along a line can be related to the Fourier transform of the 
object along a circular trajectory in the Fourier domain. This 
relationship forms the basis of diffraction tomography (Deva- 
ney, 1982) and is implicit in migration by Fourier transform 
(St&, !?78); Theintegrai trarrsfwm approach in the acoustic 
generalized Radon transform, and the theory of Fourier inte- 
gral operators which underlies it, simply provide a convenient 
formalism for localizing the relationship around image points 
and for analyzing the errors caused by the localization. 

Finally, the interpretation of acoustic scattering at high fre- 
quencies as a generalized Radon transform does not require 
use of the linearized (Born) scattering approximation. If 

10 -0.10 -0.06 0.00 0.06 

(cycles/m) 

FIG. 19. (a) Fourier transform of the image obtained from a one-point, zero-offset experiment similar to the experiment 
that produced Figure 12. (b) Fourier transform of the image obtained from a one-point, fixed-source experiment 
similar to the experiment that produced Figure 10a. The wavelet was identical to the one used in Figures 9l_&~and~ 13. 
LSample waveforms- (after IIi lbert~ trarrsformj are shown in Figure 20. The plots show amplitude contours at levels - 5, 
- 10, - 15, -20 dB with respect to the peak amplitude in the file. The Fourier coverage obtained in these numerical 
experiments should be compared with the theoretical coverage shown in Figure 18. The peak spatial frequency of ,075 
cycles/m for the -20 dB contours corresponds to a cutoff temporal frequency of 94 cycles/s. 
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Frc;. 20. A typical point from Figure 10a together with the family of isochron surfaces corresponding to data points 1 
ms from the associated reflection-time surface R,. The isochron surfaces corresponding to R, - At form the family 
above the image point, while the isochron surfaces corresponding to R, + At form the family below the image point. 
Every fifth isochron surface is shown. At = .Ol s is one half-wavelength for a signal at 50 Hz (which is roughly the 
dominant frequency in the Hilbert-transformed and differentiated wavelet). It corresponds to a peak spatial frequency 
of .04 cycles/m in Figure 19b. 

geometrical-optics approximations are used for G, and u in 
the exact equation (7), one obtains an acoustic generalized 
Radon transform similar to equation (12). However, the 
traveltime and amplitude terms along the incident raypath are 

then governed by the true velocity c(x). These terms are, of 
course, unknown, which is just another illustration of the non- 
linearity of the inverse problem. 
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APPENDIX 

Formula (27) :vas derived~ -within the linearized~ inverse this condition might not be satisfied; it thus becomes one of 
problem under the following additional assumptions: our assumptions. 

(1) the functionf(x) is localized around the point x,: 
(2) isochron surfaces can be approximated by tangent 

planes in the neighborhood of the point x6; and 
(3) the change of variables which results in the con- 

struction of the weight function [equation (26)] exists. 

Analysis of these assumptions is helpful in explaining the 
meaning of reconstructions via formula (27). For a more de- 
tailed discussion of these questions, see Beylkin (1985). 

Start with assumption (3). The construction of the weight 
function is essentially a change of variables. This means that 
to be valid, the corresponding Jacobian has to be nonzero. 
This condition has a clear geometrical and physical interpreta- 
tion. When isochron surfaces are replaced by tangent planes, 
we assume that these tangent planes are different for different 
isochron surfaces. Also, for technical purposes, we assume that 
from one isochron surface to another the change in the direc- 
tions of the normals to their tangent planes is continuous. 
This condition is always satisfied for a constant reference ve- 
locity and boundaries which are “star shaped” with respect to 
the point of reconstruction. For variable reference velocities, 

Now turn to assumptions (1) and (2). If the functionf(x) is 
not localized around the point x0, the difference between the 
reconstructed function and the original one is infinitely 
smooth; i.e., the discrepancy has an infinite number of deriva- 
tives. This discrepancy does not have to be small, in general, 
but when the curvatures of isochron surfaces are small, this 
discrepancy is also small. The replacement of isochron sur- 
faces by planes in the neighborhood of the point of recon- 
struction causes an error that has at least one derivative more 
than the function that is being reconstructed. Also, when cur- 
vatures are small, this error is also small. 

Accurate proof of these statements requires analysis of a 
Fourier Integral operator, which appears when one substitutes 
expression (12) for the scattered field into equation (27), 

(,f’(xo)) = _ _$ s s dxx 

x 6” T(r. x0, s) - z(r, x, s) 
I 

f(x), 

and then replaces the second derivative of the delta function 
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by its Fourier integral, yielding 

$r, x0, s) - ~(r, x, s) f(x), (A-l) 

where d2c = d*r(r, x, , s) and a = a@, x0, s). The inner inte- 
grals in equation (A-l) can be interpreted as an approximate 
construction of the 3-D delta function by integration over 3-D 
Fourier space in spherical coordinates (E, CO) with measure 
d’kdw w2. If the integrals in (A-l) are taken over an arbitrary 
bounded (compact) region in Fourier space instead of over the 
whole space, then the resulting function will have derivatives 
of all orders. This essentially follows from the fact that the 

integrals which express these derivatives exist. For large w, 
one can thus apply stationary-phase arguments to the ex- 
pression inside the integrals. A (first-order) stationary-phase 
analysis will account for contributions from the point x0, 
givingf(x,). It can be shown, moreover, that the second-order 
and higher-order terms in the Taylor expansion of the phase 
function, together with the first-order and higher-order terms 
in the Taylor expansion of the amplitude, give a total error 
that has at least one derivative more than the function to be 
reconstructed. 

Since the error is smooth, it follows that the discontinuities 
(surfaces of discontinuity) of the scattering potential f(x) are 
reconstructed reliably. In other words, the positions of these 
discontinuities and also the jumps at these discontinuities are 
recovered, within the limits of the linearized approximation to 
inverse scattering. 


