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Abstract. We use optimal rational approximations of projection data col-
lected in X-ray tomography to improve image resolution. Under the assump-
tion that the object of interest is described by functions with jump discontinu-
ities, for each projection we construct its rational approximation with a small
(near optimal) number of terms for a given accuracy threshold. This allows us
to augment the measured data, i.e., double the number of available samples in
each projection or, equivalently, extend (double) the domain of their Fourier
transform. We also develop a new, fast, polar coordinate Fourier domain algo-
rithm which uses our nonlinear approximation of projection data in a natural
way.

Using augmented projections of the Shepp-Logan phantom, we provide
a comparison between the new algorithm and the standard Filtered Back-
Projection (FBP) algorithm. We demonstrate that the reconstructed image
has improved resolution without additional artifacts near sharp transitions in
the image.

1. Introduction

As perceptively noted in [29], despite the development of many new algorithms
for the inversion of the Radon transform, the quality of image reconstruction (in e.g.,
X-ray tomography) has not improved noticeably when compared with the output
of the traditional Filtered Back-Projection (FBP) algorithm (see, for example [28]).
This lack of improvement in image quality may be traced to the fact that the signal
model for collected data is subject to the Nyquist sampling criterion. Since we are
typically interested in reconstructing piece-wise continuous objects, the collected
data (within the standard signal model) may be insufficient to resolve the image in
the vicinity of discontinuities.

We introduce a different signal model for collected data and, as a consequence,
for reconstruction. Assuming that the object of interest is described by functions
with a limited number of jump discontinuities, the measured projections have, in
the worst case, the same type of discontinuities (for most projections only the first
derivative is discontinuous). As shown in [6], this implies that the projections are
well approximated by proper rational functions yielding a robust recovery of signals
from band-limited data. In this paper, we demonstrate that a rational model of
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a (periodic) signal allows us, in principle, to recover its entire Fourier series from
a small number of samples. In practice, even though the presence of noise limits
such a recovery, a rational model still outperforms models based on the Nyquist
sampling criterion. For objects with a limited number of isolated singularities,
optimal rational approximations of projection data yield a significant improvement
in resolution without introducing artifacts near singularities.

Classical Shannon-Nyquist sampling theory (see, for example, [36]) describes
band-limited signals as a linear combination of sinc-functions. This signal model
requires at least two samples per period corresponding to the highest frequency
present in the signal. In practice, the data must be oversampled to attenuate the
impact of noise and allow for local interpolation. The Shannon-Nyquist model
may be generalized by replacing the sinc-functions by an alternative basis set, e.g.,
splines or wavelets [36]. However, in all such models the sampling requirements are
directly related to the highest frequency present in the signal.

For band-limited periodic functions (i.e., trigonometric polynomials of degree
less or equal to N), it is well-known that they may be recovered from their samples
via

(1.1) f (x) =

2N∑

l=0

f

(
l

2N + 1

)
DN

(
x− l

2N + 1

)
, x ∈ [0, 1),

where

DN (x) =
1

2N + 1

∑

|l|≤N

e2πilx =
1

2N + 1

sin (2N + 1)πx

sinπx

is the Dirichlet kernel.
In our signal model, a real-valued periodic function is represented by a rational

function with 4M + 1 real parameters,

(1.2) g (x) = a0 + 2Re

M∑

m=1

wm

e−2πix+ηm − 1
, x ∈ [0, 1)

where wm ∈ C, ηm ∈ C, Re (ηm) > 0, and a0 ∈ R is a constant. The frequency
content of this rational function does not depend on the number of terms M but,
rather, on the proximity of nodes e−ηm , m = 1, . . . ,M to the unit circle (the use
of the term “nodes” will become clear later). This is fundamentally different from
the signal model (1.1), where the sampling rate is controlled by the degree N , i.e.,
the number of terms in the model. In other words, we have a sparse representation
for functions with isolated singularities as described in [6].

One of the goals of this paper is to present a robust reconstruction algorithm for
the signal model (1.2) in the presence of noise. Our algorithms are based on repre-
senting Fourier values of g via decaying exponentials [6]. Using this representation,
we extend (double) the domain of the Fourier transform, or, equivalently, double
the number of available samples in each projection. By augmenting the measured
data in this fashion, we improve the resolution of reconstruction near singularities.
This approach introduces a another mechanism for increasing resolution, different
from previous approaches (see, for example, [14, 10, 9, 12, 13, 17, 16]).

We also present a new fast numerical algorithm for inverting the Radon trans-
form. Following [3], we construct a polar grid in the Fourier domain that allows us
to mimic the Fourier slice theorem in setting up the image reconstruction. Con-
structing an image from such grids via the Unequally Spaced Fast Fourier transform
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(USFFT) [11, 2, 26] requires O(N2 logN) operations, where N is the number of
projection samples and the number of projections is O(N).

We start in Section 2 by a brief description of our rational model and provide
background information in Section 3. In Section 4 we introduce a new approach
for the computation of weights in the rational model of projection data. Then,
in Section 5, we describe a new, fast, Fourier domain algorithm (dubbed Polar
Quadrature Inversion) for tomographic reconstruction using polar grids. Finally, in
Section 6, we perform numerical tests demonstrating the improved resolution result-
ing from the use of nonlinear approximations for the projections. We also compare
the performance of the new fast algorithm and the standard FBP algorithm.

2. A rational model for signals

Let us describe analytic relations between samples of g and the parameters of
the rational model (1.2). For this purpose, we derive a relation between the Fourier
series coefficients of g and the Discrete Fourier transform (DFT) of its samples
gn = g (n/N), n = 0, . . . , N−1, where N ≥ 4M+1, the total number of parameters
in (1.2).

The coefficients {ak}k∈Z
of the Fourier series of g in (1.2) are readily available,

(2.1) ak =

ˆ 1

0

g (x) e−2πikxdx =

M∑

m=1

wme−ηmk, a−k = ak k ∈ N,

and

a0 =

ˆ 1

0

g (x) dx,

which coincides with the constant term in (1.2), i.e., the proper rational terms in
(1.2) do not contribute to a0. We emphasize that all Fourier coefficients are fully
described by 4M+1 real parameters whereas the frequency content of g is controlled
by the distance of the nodes, e−ηm , m = 1, . . . ,M , from the unit circle, i.e., the
real part of the exponents, Re (ηm).

In order to compute the DFT of gn, we substitute the representation (2.1) into
the Fourier series of g. For any integer N > 0, summing the geometric series, we
have

g (x)− a0 =
∑

k≥1

(
ake

2πikx + ake
−2πikx

)

= 2Re
∑

n≥0

N−1∑

j=0

M∑

m=1

wme−ηm(j+Nn)e2πi(j+Nn)x − 2Re

M∑

m=1

wm

= 2Re

N−1∑

j=0

M∑

m=1

wm

1− e−ηmNe2πiNx
e−ηmje2πijx − 2Re

M∑

m=1

wm.(2.2)

Sampling g (x), we obtain

(2.3) g
( n

N

)
= a0 − 2Re

M∑

m=1

wm + 2Re

N−1∑

j=0

M∑

m=1

wm

1− e−ηmN
e−ηmje2πijn/N ,
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where n = 0, . . . , N − 1. Computing the DFT of g
(
n
N

)
, n = 0, . . . , N − 1,

ĝj =
1

N

N−1∑

n=0

g
( n

N

)
e−2πinj/N , j = 0, . . . , N − 1,

we obtain

(2.4) ĝj =

M∑

m=1

wm

1− e−ηmN
e−ηmj +

M∑

m=1

wm

1− e−ηmN
e−ηm(N−j), j = 1, . . . , N − 1,

and

ĝ0 = a0−2Re

M∑

m=1

wm+2Re

M∑

m=1

wm

1− e−ηmN
= a0+2Re

M∑

m=1

wm

(
1

1− e−ηmN
− 1

)
.

Note that the DFT coefficients and the Fourier coefficients (2.1) of g share the same
nodes e−ηm , m = 1, . . . ,M . On the other hand, the DFT coefficients also contain
(what we call) companion nodes eηm , m = 1, . . . ,M which lie outside the unit
disk. These companion nodes appear due to aliasing, i.e., folding of Fourier series
coefficients corresponding to high frequencies onto low frequencies. We note that
if the sampling rate is sufficient, then the DFT coefficients ĝj , j = 1, . . . , N/2 − 1
accurately approximate the Fourier series coefficients with the same indices and the
companion nodes may be ignored. In our case, due to presence of singularities, we
have to deal with the potential influence of the companion nodes. The algorithm
for finding nodes given the DFT coefficients is described in Section 3.4 and the
details of computing weights are described in Section 4.

In the presence of noise, recovering the 4M +1 real parameters in (1.2) requires
appropriate oversampling of g. However, the required sampling rate is typically less
than the rate dictated by the Nyquist criterion.

Finally, let us emphasize that the exponential representation of the Fourier co-
efficients in (2.1) defines the rational spatial representation (1.2) and vice versa [6].
We use this correspondence throughout the paper.

3. Preliminary considerations

3.1. Tomographic reconstruction problem. We consider the classical problem
of X-ray tomography, the inversion of the Radon transform. Given a function u
defined on the plane, the Radon transform is defined as integral over the lines
{x : s = ν · x} parametrized by s ∈ [−1, 1] and ν = (cos θ, sin θ) a unit vector,

(3.1) v(s,ν) = (Ru) (s,ν) = (Rθu) (s) =

ˆ

R2

u(x)δ (s− ν · x) dx.

Note that the points (s,ν) and (−s,−ν) define the same line. The inversion of the
Radon transform may be accomplished via the FBP algorithm which formally may
be written in operator form as

I = R∗KR,

where the back-projection operator (the dual transform) is defined as

(R∗v) (x) =

ˆ

‖ν‖=1

v (s,ν) |s=ν·x dν
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and the operator K (applied to each projection separately)

(Kf) (s) =
1

2

ˆ

R

|ρ| f̂ (ρ) e2πiρsdρ.

Since multiplication by |ρ| is an unbounded operator, in practice it is replaced by
its band-limited approximation,

(Kf) (s) =
1

2

ˆ

R

|ρ|W (ρ) f̂ (ρ) e2πiρsdρ =

ˆ

R

k(s− t)f(t)dt,

where

k(t) =
1

2

ˆ

R

|ρ|W (ρ) e−2πiρtdρ.

In FBP algorithms a typical choice for |ρ|W (ρ) and, therefore k(t), is the Shepp-
Logan filter (see e.g., [28] for details). Since any filter modifies the measured data
within its bandlimit, our goal is to first extend the bandlimit of the data so that
when we apply the filter (see Algorithm 5.1), its impact on the measured data
(within its original bandlimit) is reduced.

We also have from (3.1) the Fourier slice theorem,

û (ρν) =

ˆ

R2

u(x)e−2πiρν·xdx =

ˆ

R

(Ru) (s,ν) e−2πiρsds,

which we use to build a fast and accurate Fourier domain reconstruction algorithm
as an alternative to FBP. In this paper we only examine the so-called parallel
beam tomography, i.e. the most simple geometry for the tomographic reconstruction
problem. However, the methods used in this paper are applicable to other, more
complex geometries, such as fan beam tomography.

3.2. Quadratures for the disk. In order to have an accurate and fast reconstruc-
tion algorithm in the Fourier domain, we construct, for any user-specified accuracy
ǫ > 0, quadratures for integration (in polar coordinates) in the Fourier domain.
Following [3, 4], we discretize integrals using quadratures for band-limited expo-
nentials. In the radial variable these quadratures integrate exponentials against
the weight |ρ|. In the angular variable we integrate using the trapezoidal rule.

Let us first examine the behavior of the Fourier transform of a real function
supported within the box B = [−1, 1]× [−1, 1] .

Proposition 3.1. Consider a real function f supported in B such that, in polar

coordinates, f̂(cρ, θ), θ ∈ [0, 2π], is negligible for ρ > 1, where c > 0 is the bandlimit.

Extending the integration domain to a spatial disk of radius
√
2 containing B, we

write

f̂(cρ, θ) =

ˆ 2π

0

ˆ

√
2

0

f(r, ϕ)e−icrρ cos(θ−ϕ)rdr dϕ =
∑

l∈Z

ql (cρ) e
iθl,

where

ql(cρ) =
1

2π

ˆ 2π

0

f̂(cρ, θ)eilθdθ.

Then, for any ǫ > 0, we have
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(3.2)

∣∣∣∣∣f̂ (cρ, θ)−
L∑

l=−L

ql (cρ) e
iθl

∣∣∣∣∣ ≤ ǫ, 0 ≤ ρ ≤ 1

where

(3.3) L ≥ max
{
7, e

√
2c, log2

(
2‖f‖∞ǫ−1

)}
.

For the proof see Appendix 8. A similar observation was made in [27, 28] in the
context of sampling for tomographic reconstruction algorithms.

Since the function f is real and (ρ, θ + π) and (−ρ, θ) describe the same point in

a disk, we extend f̂ (cρ, θ) for negative ρ as

f̂ (−cρ, θ) = f̂ (cρ, θ + π) = f̂ (cρ, θ),

so that the coefficients ql (cρ) in (3.2) for negative ρ are extended as

ql (−cρ) = q−l (cρ).

Under the assumptions of Proposition 3.1, the number of angular modes to

represent f̂ is proportional to c, so that we can use polar grid quadratures in [3] to

discretize the inverse Fourier transform of f̂ ,

f (x) ≈ c2
ˆ

{p | ‖p‖≤1}
f̂(cp)eicp·xdp(3.4)

=
c2

2

ˆ π

−π

ˆ 1

−1

f̂ (cρ, θ) eicρ(x1 cos θ+x2 sin θ) |ρ| dρdθ,

where x = (x1, x2), x ∈ B. We obtain

(3.5)

∣∣∣∣∣∣
f (x)− πc2

Nθ

Nρ∑

ν=−Nρ

Nθ−1∑

k=0

wν f̂ (cρν , θk) e
icρν(x1 cos θk+x2 sin θk)

∣∣∣∣∣∣
≤ ǫ,

where ρν , |ρν | < 1, are (unequally spaced) quadrature nodes on the diameters, wν

are corresponding quadrature weights, and θk = 2πk/Nθ. The choice of quadratures
on the diameters (and the number of nodes) depends on the bandlimit c and the
desired accuracy ǫ. The number of diameters, Nθ, is proportional to c. An example
of such a grid is illustrated in Figure 3.1. The sum in (3.5) is evaluated on aNimage×
Nimage Cartesian grid using USFFT at the cost of O

(
c2 log c

)
since Nimage, Nρ

and Nθ are all proportional to c.

Remark 3.2. The evaluation of (3.4) follows the approach in [3] which provides a
method to obtain quadratures for functions essentially supported on a disk in the
Fourier domain. On the diameters we use quadratures for band-limited exponentials
for the weight |ρ| [4, 3]. Unlike quadratures for polynomials, the nodes of these
quadratures do not concentrate excessively towards the end points of diameters.
As a result, even for large bandlimits, we avoid clustering of nodes near such points
[8]. We also note that using (3.5) in the new algorithm described in Section 5, we
apply the filter (5.3) to enforce the bandlimit.
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Figure 3.1. A polar grid for integration in the Fourier domain
where the number of nodes per diameter is 74 and the number
of diameters is 37. This grid (along with appropriate weights)
is designed to yield an accuracy of 1.68 · 10−7 for computing the
inverse Fourier transform of functions with bandlimit 31.75π (i.e.,
supported within the disk).

3.3. Space-limited and band-limited functions in tomography. In a tomog-
raphy setup the objects of interest are compactly supported and, at the same time,
only band-limited measurements are available to solve the inverse problem. The
natural class of functions that captures this setup are the eigenfunctions of space-
limiting and band-limiting operators defined on appropriate domains. Such integral
operators and their analysis were first introduced by Slepian et. al. in a series of
papers [35, 24, 25, 31, 32, 33, 34], where they observed that the differential oper-
ator for the Prolate Spheroidal Wave Functions commutes with the space-limiting
and band-limiting operator and, thus, provides a way to compute its eigenfunc-
tions. Our approach to identifying the class of functions for tomography problems
is based on [3], where the Slepian operator mapping a square in space to a disk in
the Fourier domain is considered. This differs from the original construction in [31]
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of the disk-to-disk mapping since, inter alia, for the square-to-disk case no ordi-
nary differential equation is available to compute the eigenfunctions of the integral
operator.

We believe that in the tomography setup, the eigenfunctions of the square-to-disk
Slepian operator provide a linear space that naturally describes both the measured
data and the reconstructed image. The well-localized nature of tomographic pro-
jections allow us to approximate them using only the eigenfunctions corresponding
to eigenvalues close to 1 since these eigenfunctions are well-localized in the spatial
box (slightly away from the boundary) while their Fourier transforms are supported
in the disk (see [3, Sections 2.2-2.3] for details). In practice, this property leads
to quadratures with controlled accuracy for functions band-limited within a disk
(as described in the previous section) and, also, allows us to extend the Fourier
transform of the projections without modifying significantly their spatial support
(see Section 5).

3.4. Methods of approximation via exponentials. For each real-valued, sam-
pled projection, we compute its DFT and approximate positive frequencies via a
linear combination of exponentials with a (near) minimal number of terms for a
user-selected accuracy. For this purpose, we use the algorithm in [5, 7], whose key
steps are presented below in Algorithm 3.3. Given a user-selected accuracy ǫ > 0
and 2L + 1 equally spaced samples of a complex-valued function h(cξ), ξ ∈ [0, 1],
this algorithm yields an approximation

(3.6)

∣∣∣∣∣h(c
l

2L
)−

M∑

m=1

wme−cηml

∣∣∣∣∣ < ǫ, Re (ηm) > 0,

for 0 ≤ l ≤ 2L, where the number of terms, M , is near minimal for the choice of
c and ǫ. In this formulation, the constant c > 0 scales the problem to the interval
[0, 1].

Provided that h(cξ) is sufficiently sampled, by defining τm = 2Lηm, and replacing
l/(2L) with a continuous variable ξ in (3.6), we obtain

(3.7)

∣∣∣∣∣h(cξ)−
M∑

m=1

wme−cτmξ

∣∣∣∣∣ < ǫ′,

for ξ ∈ [0, 1]. The new error ǫ′ is only slightly worse than ǫ.

Algorithm 3.3. [5, 7]
The algorithm to produce the approximation (3.6) has the following steps:

• Construct the (L+ 1)× (L+ 1) Hankel matrix Hll′ = hl+l′ , where hl+l′ =

h(c l+l′

2L ), 0 ≤ l, l′ ≤ L.
• Find a vector u satisfying Hu = σu with positive σ close to ǫ. A solution
is guaranteed by Tagaki’s factorization [19] and may be reduced to finding
the Singular Value Decomposition (SVD) of H. Given singular values σ0 ≥
σ1 ≥ · · · ≥ σM ≥ · · · ≥ σL, we choose M such that ǫ ≈ σM/σ0 and the

corresponding singular vector u = {ul}Ll=0.
• Compute the roots γm of the polynomial

(3.8) u(z) =
L∑

l=0

ulz
l.
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• The exponents ηm in equation (3.6) are defined by the roots γm via ηm =
− log(γm)/c, where log is the principal value of the logarithm. We also
compute τm = 2Lηm.

The usual last step of Algorithm 3.3 is to form a linear Vandermonde system

(3.9) h

(
cl

2L

)
=

M∑

m=1

wmγl
m

and solve for the weights wm as the best fit in the ℓ2 sense. However, due to the
nature of problems in tomography, we depart from this conventional approach. In
the next section we provide a new method for calculating weights wm using the ℓ1

norm.

Remark 3.4. An important feature of Algorithm 3.3 is that it detects the level of
noise in the data. Specifically, the rate of decay of the singular values of the matrix
H changes significantly once the ratio σm/σ0 reaches the level of noise in the signal.
Indeed, unlike a coherent signal, noise does not have an efficient representation via
exponentials. For this reason, the gain in accuracy of fitting the data becomes
negligible as we add additional terms. This directly affects the rate of decay of
singular values, which we use as a tool for the selection of the singular value, σM ,
and hence, the number of terms M in the representation. For more details see
[5, 6, 7].

Remark 3.5. We want to point out alternatives to Algorithm 3.3 for finding (near)
optimal approximations via linear combinations of exponentials. For this purpose,
we may use the HSVD [23] or the (equivalent) matrix pencil method [20, 21, 22].
The advantage of such methods is that we avoid the step of finding roots of the
polynomial (3.8). On the other hand, Algorithm 3.3 is faster (if properly imple-
mented) since we need to find only a single singular vector of a structured (Hankel)
matrix. The alternative methods mentioned above require computing all singular
vectors up to the index corresponding to that of the accuracy threshold.

4. Calculating weights for tomography problems

The results of Section 2 show that in order to represent a projection g using a
rational signal model it is enough to approximate its DFT values ĝj , 1 ≤ j ≤ N/2−1
as a sum of exponentials. This approximation is achieved via Algorithm 3.3. Since
we would like to extrapolate the Fourier data beyond the original bandlimit, we have
to ensure that all exponents in the representation of ĝj have negative real parts.
Unfortunately, as mentioned at the end of Section 2, the exponential representation
of the DFT coefficients (2.4) differs from that of the Fourier coefficients (2.1) in that
it has a second sum,

(4.1)

M∑

m=1

wm

1− e−ηmN
e−ηm(N−j), Re (ηm) > 0.

which typically has a small contribution within the range 1 ≤ j ≤ N/2− 1 , but, as
a function of j, it contains growing terms eηmj . Hence, when using Algorithm 3.3
on ĝj , some roots γm may occasionally end up just outside the unit disk. Since
such roots (typically with small weights) would prevent us from extrapolating the
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Fourier data, we discard them at the expense of introducing an additional error.
The following approach aims to isolate such errors to the vicinity of singularities,
which are responsible for the slow decay of the Fourier data and the mismatch
between DFT and Fourier series coefficients.

The proximity of a node to the unit circle controls the frequency contribution
of that node while the position of the corresponding pole (of the rational approxi-
mation) is directly associated with the location of a singularity [6]. Therefore, the
impact of removing nodes just outside the unit disk should be localized to neighbor-
hoods of singularities. However, when we remove nodes from just outside the unit
circle and use the ℓ2 norm to calculate the weights via (3.9), the error spreads out
to a large neighborhood of the singularity as illustrated in Figures 4.1 (a) and (c),
and Figure 4.2 (a). In order to remedy this situation, we calculate weights by min-
imizing the ℓ1 norm of the the residual with respect to the original spatial data.
We choose to minimize the ℓ1 norm due to its well known sparsity properties (see,
e.g., [30]). The effect of using the ℓ1 norm to calculate weights is illustrated in
Figures 4.1 (b) and (d), and Figure 4.2 (b).

Let us describe the details. Once we obtain the exponents ηm via Algorithm 3.3
and select all those with Re (ηm) > 0, we proceed to compute weights in the
space domain. Specifically, using the fact that the function is real we extend the
approximation of positive frequencies to negative frequencies and analytically sum
the Fourier series to obtain a rational function of the form (1.2). Denoting the grid

at which we measure the projection data as {xj}N−1
j=0 , we discretize (1.2) and obtain

a Cauchy-like system to solve for the weights wm.

(4.2) gn = g
( n

N

)
= ĝ0 + 2Re

M∑

m=1

wm

(
1

e−2πin/N+ηm − 1
− 1

1− e−ηmN
+ 1

)
,

where n = 0, . . . , N − 1. Let us denote the N × 2M matrix of this system as C

and the right hand side {gn − ĝ0}N−1
n=0 as g. We note that the contribution of terms

1/
(
1− e−ηmN

)
− 1 is minor since e−ηmN is typically small.

We first solve

(4.3) Cw = g, with argmin
w
‖Cw− g‖2 ,

where g is the vector containing the (shifted) data samples. We then verify if the
residual is within the error tolerance. If it is not (which is the case for only a few
projections), we then solve

(4.4) Cw = g, with argmin
w
‖Cw− g‖1 .

In this approach we rely on an observation that if solving (4.3) satisfies the error
tolerance, then the difference in using ℓ1 or ℓ2 norms is insignificant.

For solving (4.3) we use the SVD while for (4.4) we use convex optimization.
For the latter, since C is complex valued, we solve via a second order cone program
implemented in CVX [15]. An alternative approach for solving (4.4) relies on the
iteratively re-weighted least squares algorithm (see, e.g. [30]).

We illustrate the difference between using the ℓ2 norm vs the ℓ1 norm in an
example. In Figure 4.1 (a), using the ℓ2 norm, we show a clearly visible artifact
near one of the sharp transitions in the projection. This should be compared with
Figure 4.1 (b) where, using (4.4), the error is significantly reduced away from the
sharp transition. The comparison of the errors for the entire projection is presented
in Figures 4.2 (a) and (b).
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Figure 4.1. Rational approximation of a projection in the vicinity
of a sharp transition. The result of using weights obtained by ℓ2

minimization of the residual (a) and ℓ1 minimization of the residual
(b). The corresponding errors are illustrated in (c) and (d). We
observe a significant improvement in error localization using the ℓ1

norm.

Remark 4.1. If we were to form the N/2×N/2 Hankel matrix H using all ĝj, j =
1, . . . N−1 (for evenN) and, thus, insist on the form (2.4), then the resulting matrix
is equivalent to a self-adjoint Toeplitz matrix. This may be seen by multiplying H

by the matrix J with entries
{
δi,N/2−j−1

}
i,j=0,...,N/2−1

. This leads to a construction

similar to that in [4] and, in this case the roots (except those on the unit circle)

indeed come in pairs, γout
m = 1/γin

m . However, in this case some nodes may lie on
the unit circle which creates problems with the extension. An approach to deal
with such nodes may provide an alternative to the method of this paper.

5. Polar Quadrature Inversion

Current numerical implementations of Fourier methods for inverting the Radon
transform, the so-called gridding methods, use interpolation in the Fourier domain
to generate values on a rectangular (typically square) equally spaced grid so that
inversion can then proceed via the FFT [28, Section 5.2]. In contrast, our new
algorithm uses a carefully designed polar grid for inversion (see Section 3.2) which
is a natural choice within the setup of the projection slice theorem. This grid allows
us to accurately discretize the Fourier domain integral (3.4) to represent the image
via the sum in (3.5). We evaluate this sum via USFFT [11, 2, 26]. Note that the
only inputs into this algorithm are the values of the Fourier transform at the grid
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Figure 4.2. Errors in rational approximation of the entire projec-
tion in Figure 4.1 using weights obtained by ℓ2 minimization of the
residual (a) and ℓ1 minimization of the residual (b). We observe a
consistent improvement of the error away from sharp transitions.

points. Finding these values is fairly straightforward due to the functional form of
our approximation of projections.

We denote projections as gn(k), n = 0, . . . , N − 1 and k = 0, . . . , Nθ − 1, where
the index k identifies a projection corresponding to the angle θk = πk/Nθ, and the
index n identifies a location within a projection. For each projection k we compute
the DFT,

ĝj(k) =
1

N

N−1∑

n=0

gn(k)e
−2πijn/N ,

yielding both positive and negative discrete frequencies. For simplicity, we assume
that the number of samples N in each projection is a multiple of 4. For each
projection k, we use Algorithm 3.3 to construct a (near) optimal approximation of
the values ĝj (k) , j = 1, . . . , N/2− 1,

(5.1)

∣∣∣∣∣ĝj(k)−
Mk∑

m=1

wmke
−cηmkj

∣∣∣∣∣ ≤ ǫ, j = 1, . . . , N/2− 1, Re (ηmk) > 0,

where ǫ > 0 is the user-supplied accuracy and the weights wmk are calculated using
either (4.3) or (4.4), whichever is appropriate (see considerations in Section 4).
Based on (5.1), we then define a continuous representation of the Fourier transform
of the projection,

(5.2) ĝext (ρ, k) =

M∑

m=1

wmke
−cτmkρ, ρ ≥ 0, Re (τmk) > 0,

where τmk = (N/2) ηmk (so that the Nyquist frequency of the sequence {gn(k)}N−1
n=0

corresponds to ρ = 1). While (5.2) only matches the measured data for ρ ∈ [0, 1],
we use its functional form to extend its definition to values ρ > 1. We restrict the
extension to a finite radius since the rate of decay of ĝext is faster than that of the
Fourier transform of a function with, for example, jump discontinuities. We choose
to restrict (5.2) to ρ ∈ [0, 2], effectively defining the new bandlimit cnew = 2c.
Additionally, to ensure that the resulting extension is supported within the disk of
radius cnew , we apply the radial Hann window W (ρ),



RATIONAL APPROXIMATIONS FOR TOMOGRAPHIC RECONSTRUCTIONS 13

(5.3) W (ρ) = sin2
(π
4
ρ− π

2

)
, ρ ∈ [0, 2] .

In comparison, within the FBP algorithm, the bandlimit c (corresponding to the
measured data) is enforced by e.g., the Shepp-Logan filter. Since we first extend to
the larger bandlimit cnew, and then apply the filter (5.3), the impact of the filter
on the measured data of bandlimit c is significantly reduced, since the filter mostly
modifies the extended part of ĝext.

Therefore, we obtain

(5.4) ĝbl (ρ, k) = ĝext (ρ, k)W (ρ),

where the window is specified in (5.3). Since the image is a real valued function,
we define

(5.5) ĝbl (−ρ, k) = ĝbl (ρ, k)

for each projection, k = 0, . . . , Nθ − 1 and then sample ĝbl (ρ, k) on the diameter
using quadrature nodes 2ρν , ν = −Nρ, . . . , Nρ described in Section (3.2) (we may
also choose a quadrature with an even number of nodes on the diameters).

The final step of the algorithm uses the USFFT [11, 2, 26] with input values
ĝbl(2ρν , k), ν = −Nρ, . . . , Nρ and k = 0, . . . , Nθ − 1 to produce an image. This step
(effectively) delegates interpolation in the Fourier domain to the USFFT (which
attains any finite user-specified accuracy). We now summarize the Polar Quadra-
ture Inversion (PQI) algorithm,

Algorithm 5.1.

(1) Compute the FFT of the projection data {gn(k)}N−1
n=0 for each k = 0, . . . , Nθ−

1.
(2) Using DFT coefficients ĝj (k) , j = 1, . . . , N/2 − 1 of each projection k,

construct its exponential approximation via Algorithm 3.3. The accuracy
ǫ > 0 may be estimated by examining the change in the rate of decay of
the singular values of the Hankel matrix.

(3) Find the weights using either (4.3) or (4.4).
(4) Evaluate the windowed approximations ĝbl (ρ, k) in (5.4-5.5) at the quadra-

tures nodes 2ρν , ν = −Nρ, . . . , Nρ, corresponding to the new bandlimit
cnew for each k = 0, . . . , Nθ− 1. Note that this step includes extrapolation.

(5) Obtain the image by computing the sum in (3.5) via the USFFT using as
function values those computed in the previous step.

Operation count. Step 1 of the algorithm requires O (NθN logN) operations.
Using Algorithm 3.3 for all projections in Step 2 currently requires O

(
NθN

3
)
but

may be reduced to O
(
NθNM2

)
, whereM is the number of terms in the exponential

approximation (this may be achieved using randomized projections, see the review
article [18]). We also note that Step 2 is trivially parallelizable as each projection
is treated separately. Step 3 currently requires O

(
NθNM2

)
when using (4.3) and

a similar complexity to solve (4.4) but with a larger constant. However, only
a few projections require using (4.4). The remaining steps require O(N2 logN)
operations.
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6. Numerical examples

We now analyze the impact on image resolution of the rational approximation of
projections and compare the new PQI algorithm with the FBP algorithm. Follow-
ing tradition, we demonstrate our reconstruction technique using the Shepp-Logan
phantom. To examine the effect of steps (1)-(3) of the PQI algorithm, we apply the
standard FBP algorithm to both the original projection data and the augmented
projections, where we double the number of samples via rational representations.
This choice corresponds to doubling the bandlimit in the Fourier domain as in the
PQI algorithm and allows us to isolate the impact of the rational approximation on
image formation. Namely, using FBP on the original and augmented projections,
we observe the impact of rational approximation; by using augmented projections
in FBP we compare its output with that of the PQI algorithm.

The test data consist of 512 projections and 512 samples per projection re-
sulting (via the standard FBP algorithm supplied in Matlab TM ) in a 512 × 512
reconstructed image while the output of PQI is a 1024× 1024 reconstructed image.
In all experiments we use the radial Hann window (5.3). We perform two types
of experiments: noiseless reconstruction and reconstruction after adding Gaussian
noise to each projection.

The choice of the number of projections relative to the number of samples follows
that in an example in [29] and may not be ideal (see [27, 28]). However, since our
goal is to show no additional artifacts near singularities are introduced by our
method (while achieving a higher resolution), this choice of parameters is sufficient
for the demonstration.

6.1. Noiseless examples. First, we take our original noiseless data set of 512
projections with 512 samples per projection and approximate all of the projections
by rational functions. For our experiments in a noiseless setting we use the threshold
of σM/σ0 ≤ 5 ∗ 10−4 to find rational approximations (see Section 3.4). Using
these approximations, we increase the sampling of each projection by a factor of
2. We then take these augmented projections, with 512 projections with 1024
samples per projection, and apply the standard FBP algorithm yielding a 1024×
1024 reconstructed image of the Shepp-Logan phantom. The reconstruction from
augmented projections is displayed in Figure 6.2 (a) and the reconstruction error is
displayed in Figure 6.2 (b). Comparing the output of FBP applied to augmented
samples with the output of FBP applied to our original data set (512 projections
and 512 samples per projection), see Figure 6.1, we observe better resolution near
the sharp boundaries when augmented projections are used as input. In both
cases the error highlights the jump discontinuities of the phantom and contains
streak artifacts typical in tomographic reconstructions where the angular variable
is under-sampled.

We compare the results of this experiment (using augmented projections with
1024 samples as input for FBP) with the output of the PQI algorithm described in
Section 5 yielding a 1024×1024 reconstructed image of the Shepp-Logan phantom.
Using this algorithm we double the size of the bandlimit in the Fourier domain
which corresponds to the increase of sampling in each projection by a factor of two
in using FBP. The result of the reconstruction using the PQI algorithm is shown in
Figure 6.3 (a) and the error in Figure 6.3 (b). When compared with Figure 6.1 we
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observe that the PQI algorithm achieves a significantly improved resolution without
introducing additional artifacts.

This also allows us to compare the output of our algorithm with that of the FBP
algorithm on augmented projections. We see no significant difference in the recon-
structions Figure 6.3 (a) and Figure 6.2 (a). A comparison of the reconstruction
errors, Figure 6.3 (b) and Figure 6.2 (b) also shows no significant difference.

6.2. Zooming on details. In order to demonstrate the increased resolution, we
zoom in on two areas of the reconstruction. The locations of these areas are shown
in Figure 6.3 (a). In Figures 6.4 and 6.5 we compare images near the center of the
phantom using the FBP and the PQI algorithms, respectively. Figure 6.4 compares
a 32 × 32 pixel patch (obtained from the original data set of 512 projections with
512 samples each and extracted from 512× 512 pixel reconstruction via FBP) and
a 64× 64 pixel patch extracted from 1024× 1024 reconstruction using the FBP on
augmented data. Similarly, in Figure 6.5, we compare the same 32× 32 pixel patch
with a 64×64 patch extracted from 1024×1024 reconstructed image using the PQI
algorithm. A similar comparison is shown in Figures 6.6 and 6.7 but zooming into
a different section of the Shepp-Logan phantom.

We observe that higher resolution is not accompanied by any additional artifacts
and results in visibly sharper images.

6.3. Noisy examples. To test the stability of approximation by rational functions
in the presence of noise, we add (to each projection) Gaussian white noise with zero
mean and standard deviation of 2.5 ∗ 10−4. The noise level is of the same order
as the smallest features captured by the projections. In all experiments involving
noise we used the threshold σM/σ0 ≤ 2 ∗ 10−3 to find rational approximations
(see Remark 3.4). We construct rational approximations for each noisy projection
and increase the sampling rate by a factor of two. We then use the resulting
augmented projections as input to the FBP algorithm. The reconstruction error of
this experiment is displayed in Figure 6.8 (b) and compared with the reconstruction
error of the same experiment performed on noiseless data displayed in Figure 6.8 (a).
The Gaussian noise added to the projections appears as a speckle noise in the image
in addition to the error of noiseless reconstruction.

Similarly, we display the reconstruction error of the PQI algorithm applied to
noisy data in Figure 6.9 (b) next to the error of reconstruction from the noiseless
data in Figure 6.9 (a). The qualitative difference between the errors in Figure 6.9 (b)
and Figure 6.8 (b) is negligible.

7. Discussion

We present an approach to improve the resolution of X-ray tomography using
rational approximation of projections and the new, fast Fourier algorithm (PQI)
for this purpose. We also provide a comparison between the PQI algorithm and
the standard FBP.

While we use rational approximation to improve the resolution in the classical
X-ray tomography setup, a similar approach may be applied in Electron Microscope
Tomography and in MRI. However, in both of these modalities of non-destructive
evaluation one needs to consider additional issues associated with these techniques.
In particular, in Electron Microscope Tomography, one has to address a missing
cone of data as well as very high noise level when compared with X-ray tomography.
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In MRI the collected data needs to be carefully re-sampled before using the rational
model. An interesting potential application in MRI is to use the PQI algorithm to
reduce the sampling requirements in the Fourier domain. We plan to address these
issues in our future work.

Finally, we note that by modifying the input into the PQI algorithm, it is possible
to produce the same image (within a user-supplied accuracy) as that constructed
by an Algebraic Reconstruction Technique (ART), i.e., the PQI algorithm can re-
produce the ART solution.

8. Appendix: Proof of Proposition 3.1

Given the assumption that f̂ (cρ, θ) is negligible for ρ > 1, it is enough to show
that for 0 ≤ ρ ≤ 1 the tail of the Fourier series

f̂ (cρ, θ) =
∑

l∈Z

ql (cρ) e
iθl,

is also negligible ∣∣∣∣∣∣

∑

|l|>L

ql (cρ) e
iθl

∣∣∣∣∣∣
< ǫ.

Computing

ql(cρ) =
1

2π

ˆ 2π

0

f̂(cρ, θ)eilθdθ

=

ˆ 2π

0

ˆ

√
2

0

f(r, ϕ)

(
1

2π

ˆ 2π

0

e−icrρ cos(θ−ϕ)eilθdθ

)
rdr dϕ,

we obtain

ql(cρ) = (−i)l
ˆ 2π

0

ˆ

√
2

0

f(r, ϕ)Jl(crρ)e
ilϕrdr dϕ, l ∈ Z,

and, hence,

|ql(cρ)| ≤ 2π‖f‖∞ max
x∈[0,

√
2c]

|Jl(x)| .

Using [1, 9.1.62] and [1, 6.1.38], for x > 0 and l ≥ 7, we have

|Jl(x)| ≤
1

l!

(x
2

)l

≤ 1

2π

(ex
2l

)l

.

With l ≥ e
√
2c, we obtain

|ql(cρ)| ≤ ‖f‖∞2−l,

and arrive at
∣∣∣∣∣∣

∑

|l|>L

ql (cρ) e
iθl

∣∣∣∣∣∣
≤ 2‖f‖∞

∞∑

l=L+1

2−l = ‖f‖∞2−L+1 < ǫ

for some L,

L ≥ max
{
7, e

√
2c, log2

(
2‖f‖∞ǫ−1

)}
.



RATIONAL APPROXIMATIONS FOR TOMOGRAPHIC RECONSTRUCTIONS 17

References

[1] M. Abramowitz and I. A. Stegun. Handbook of mathematical functions. Dover Publications,
9 edition, 1970.

[2] G. Beylkin. On the fast Fourier transform of functions with singularities. Appl. Comput.

Harmon. Anal., 2(4):363–381, 1995.
[3] G. Beylkin, C. Kurcz, and L. Monzón. Grids and transforms for band-limited functions in a

disk. Inverse Problems, 23(5):2059–2088, 2007.
[4] G. Beylkin and L. Monzón. On generalized Gaussian quadratures for exponentials and their

applications. Appl. Comput. Harmon. Anal., 12(3):332–373, 2002.
[5] G. Beylkin and L. Monzón. On approximation of functions by exponential sums. Appl. Com-

put. Harmon. Anal., 19(1):17–48, 2005.
[6] G. Beylkin and L. Monzón. Nonlinear inversion of a band-limited Fourier transform. Appl.

Comput. Harmon. Anal., 27(3):351–366, 2009.
[7] G. Beylkin and L. Monzón. Approximation of functions by exponential sums revisited. Appl.

Comput. Harmon. Anal., 28(2):131–149, 2010.
[8] G. Beylkin and K. Sandberg. Wave propagation using bases for bandlimited functions. Wave

Motion, 41(3):263–291, 2005.
[9] E. J. Candès and L. Demanet. The curvelet representation of wave propagators is optimally

sparse. Comm. Pure Appl. Math., 58(11):1472–1528, 2005.
[10] E. J. Candès and D. L. Donoho. New tight frames of curvelets and optimal representations

of objects with piecewise C2 singularities. Comm. Pure Appl. Math., 57(2):219–266, 2004.
[11] A. Dutt and V. Rokhlin. Fast Fourier transforms for nonequispaced data. SIAM J. Sci.

Comput., 14(6):1368–1393, 1993.
[12] S. Engelberg and E. Tadmor. Recovery of edges from spectral data with noise—a new per-

spective. SIAM J. Numer. Anal., 46(5):2620–2635, 2008.
[13] A. Gelb and D. Cates. Segmentation of images from Fourier spectral data. Commun. Comput.

Phys., 5(2-4):326–349, 2009.

[14] A. Gelb and E. Tadmor. Detection of edges in spectral data. Appl. Comput. Harmon. Anal.,
7(1):101–135, 1999.

[15] M. Grant and S. Boyd. CVX: Matlab software for disciplined convex programming, version
1.21. http://cvxr.com/cvx, February 2011.

[16] L. Greengard and C. Stucchio. Spectral edge detection in two dimensions using wavefronts.
Appl. Comput. Harmon. Anal., 30(1):69–95, 2011.

[17] K. Guo, D. Labate, and W. Lim. Edge analysis and identification using the continuous shearlet
transform. Appl. Comput. Harmon. Anal., 27(1):24–46, 2009.

[18] N. Halko, P.-G. Martinsson, and J. A. Tropp. Finding structure with randomness: probabilis-
tic algorithms for constructing approximate matrix decompositions. SIAM Review, 53(2):217–
288, 2011.

[19] R. A. Horn and C. R. Johnson. Matrix analysis. Cambridge University Press, Cambridge,
1990.

[20] Y. Hua and T.K. Sarkar. Matrix pencil method and its performance. In Proceedings of the

International Conference on Acoustics, Speech, and Signal Processing, 1988.
[21] Y. Hua and T.K. Sarkar. Matrix pencil method for estimating parameters of exponentially

damped/undamped sinusoids in noise. IEEE Transactions on Acoustics, Speech, and Signal

Processing, 38(5):814–824, 1990.
[22] Y. Hua and T.K. Sarkar. On SVD for estimating generalized eigenvalues of singular matrix

pencil in noise. IEEE Transactions on Signal Processing, 39(4):892–900, 1991.
[23] S.Y. Kung, K.S. Arun, and D.V. Bhaskar Rao. State-space and singular-value decomposition-

based approximation methods for the harmonic retrieval problem. Journal of the Optical

Society of America, 73(12):1799–1811, 1983.
[24] H. J. Landau and H. O. Pollak. Prolate spheroidal wave functions, Fourier analysis and

uncertainty II. Bell System Tech. J., 40:65–84, 1961.
[25] H. J. Landau and H. O. Pollak. Prolate spheroidal wave functions, Fourier analysis and

uncertainty III. Bell System Tech. J., 41:1295–1336, 1962.
[26] J-Y. Lee and L. Greengard. The type 3 nonuniform FFT and its applications. J. Comput.

Phys., 206(1):1–5, 2005.
[27] F. Natterer. The Mathematics of Computerized Tomography. Wiley, NY, 1986.



RATIONAL APPROXIMATIONS FOR TOMOGRAPHIC RECONSTRUCTIONS 18
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(a)

(b)

Figure 6.1. A 512 × 512 reconstruction of the Shepp-Logan
phantom using FBP algorithm (a) (the gray scale is [−0.05, 1.05])
and the corresponding error (b) (the gray scale is [−.05, .05]). A
combination of filtering errors and under-sampling in angle pro-
duces streak artifacts associated with sharp transitions in the phan-
tom.
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(a)

(b)

Figure 6.2. A 1024 × 1024 reconstructed image of the Shepp-
Logan phantom via the FBP algorithm using projections (with
twice as many samples) generated by near optimal rational ap-
proximation (a) and the corresponding error (b). Gray scales are
the same as in Figure 6.1 which should be used for comparison.
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(a)

(b)

Figure 6.3. A 1024×1024 reconstructed image via the PQI algo-
rithm of Section 5 (a) and the corresponding error (b). The gray
scales are the same as in Figures 6.1 and 6.2, which should be used
for comparison. The two boxes in (a) outline areas of the recon-
structed image on which we zoom to examine the reconstruction
at a pixel level.
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(a) (b)

Figure 6.4. A zoom of a small area near the center of the phan-
tom indicated in Figure 6.3. In (a) we show a 32 × 32 square
(out of a 512× 512 reconstruction via the FBP algorithm) and in
(b) the same area with 64× 64 samples taken from a 1024× 1024
reconstruction via the FBP algorithm using as input augmented
projections.

(a) (b)

Figure 6.5. A different comparison for the area in Figure 6.4. In
(a) we show a 32 × 32 square (out of a 512 × 512 via the FBP
algorithm) and in (b) the same area with 64 × 64 samples taken
from a 1024× 1024 reconstruction via the PQI algorithm.
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(a) (b)

Figure 6.6. A zoom of a small area near the sharpest transi-
tion in the phantom indicated in Figure 6.3. In (a) we show a
32 × 32 square (out of a 512 × 512 reconstruction via the FBP
algorithm) and in (b) the same area with 64 × 64 samples taken
from a 1024× 1024 reconstruction via the FBP algorithm using as
input augmented projections.

(a) (b)

Figure 6.7. A different comparison for the area in Figure 6.6. In
(a) we show a 32 × 32 square (out of a 512 × 512 via the FBP
algorithm) and in (b) the same area with 64 × 64 samples taken
from a 1024× 1024 reconstruction via the PQI algorithm.
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(a)

(b)

Figure 6.8. Comparison of errors of 1024× 1024 reconstructions
in Figure 6.2 (via the standard FBP applied to noiseless data) (a)
and the same data with added Gaussian noise (b). We observe
that the Gaussian noise creates a speckle component in the error.
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(a)

(b)

Figure 6.9. The same comparison as in Figure 6.8 but using the
PQI algorithm of Section 5. The effect of introducing Gaussian
noise is qualitatively and quantitatively the same as that illustrated
in Figure 6.8.


