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Abstract. This paper introduces a randomized variation of the alternating least squares (ALS)
algorithm for rank reduction of canonical tensor formats. The aim is to address the potential numer-
ical ill-conditioning of least squares matrices at each ALS iteration. The proposed algorithm, dubbed
randomized ALS, mitigates large condition numbers via projections onto random tensors, a technique
inspired by well-established randomized projection methods for solving overdetermined least squares
problems in a matrix setting. A probabilistic bound on the condition numbers of the randomized ALS
matrices is provided, demonstrating reductions relative to their standard counterparts. Additionally,
results are provided that guarantee comparable accuracy of the randomized ALS solution at each
iteration. The performance of the randomized algorithm is studied with three examples, including
manufactured tensors and an elliptic PDE with random inputs. In particular, for the latter, tests
illustrate not only improvements in condition numbers, but also improved accuracy of the iterative
solver for the PDE solution represented in a canonical tensor format.
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1. Introduction. The approximation of multivariate functions is an essential
tool for numerous applications including computational chemistry [1, 24], data mining
[2, 9, 24], and recently uncertainty quantification [11, 23]. For seemingly reasonable
numbers of variables d, e.g. O(10), reconstructing a function, for instance, using
its sampled values, requires computational costs that may be prohibitive. This is
related to the so-called “curse of dimensionality.” To mitigate this phenomenon, we
require such functions to have special structures that can be exploited by carefully

crafted algorithms. One such structure is that the function of interest u(z1, 22, . . ., 24),
depending on variables z1, 22, . .., 24, admits a separated representation, [3, 4, 24], of
the form
,
(1) u(z1,22,...24) = Zalull (z1) tly (22) - - -y (24) -
1=1

The number of terms, r, is called the separation rank of u and is assumed to be

small. Any discretization of the univariate functions ui (zj) in (1) with uij = uﬁ (2i,),

ij=1,...,M;and j=1,...,d, leads to a Canonical Tensor Decomposition, or CTD,
T

(2) U:U(il...id):Zmuélu52~-~uﬁd.
=1
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The functions ué (zj) in (1) and the corresponding vectors uﬁj in (2) are nor-
malized to unit norm so that the magnitude of the terms is carried by their positive
s-values, o;. It is well understood that when the separation rank r is independent of
d, the computation costs and storage requirements of standard algebraic operations
in separated representations scale linearly in d, [4]. For this reason, such represen-
tations are widely used for approximating high-dimensional functions. To keep the
computation of CTDs manageable, it is crucial to maintain as small as possible sep-
aration rank. Common operations involving CTDs, e.g. summations, lead to CTDs
with separation ranks that may be larger than necessary. Therefore, a standard
practice is to reduce the separation rank of a given CTD without sacrificing much
accuracy, for which the workhorse algorithm is Alternating Least Squares (ALS) (see
e.g., [3,4,06,7, 21,24, 31]). This algorithm optimizes the separated representation (in
Frobenius norm) one direction at a time by solving least squares problems for each
direction. The linear systems for each direction are obtained as normal equations
by contracting over all tensor indices, i = 1,...,d, except those in the direction of
optimization k.

It is well known that forming normal equations increases the condition number of
the least squares problem, see e.g. [16]. In this paper we investigate the behavior of
the condition numbers of linear systems that arise in the ALS algorithm, and propose
an alternative formulation in order to avoid potential ill-conditioning. As we shall
see later, the normal equations in the ALS algorithm are formed via the Hadamard
(entry-wise) product of matrices for individual directions. We show that in order
for the resulting matrix to be ill-conditioned, the matrices for all directions have to
be ill-conditioned and obtain estimates of these condition numbers. To improve the
conditioning of the linear systems, we propose a randomized version of ALS, called
randomized ALS, where instead of contracting a tensor with itself (in all directions
but one), we contract it with a tensor composed of random entries. We show that
this random projection improves the conditioning of the linear systems. However, its
straightforward use does not ensure monotonicity in error reduction, unlike in stan-
dard ALS. In order to restore monotonicity, we simply accept only random projections
that do not increase the error.

Our interest here in using CTDs stems from the efficiency of such representations
in tackling the issue of the curse of dimensionality arising from the solution of PDEs
with random data, as studied in the context of Uncertainty Quantification (UQ).
In the probabilistic framework, uncertainties are represented via a finite number of
random variables z; specified using, for example, available experimental data or expert
opinion. An important task is to then quantify the dependence of quantities of interest
u(21,...,24) on these random inputs. For this purpose, approximation techniques
based on separated representations have been recently studied in [12, 25, 26, 11, 27, 13,
18, 23, 10, 17, 19] and proven effective in reducing the issue of curse of dimensionality.

The paper is organized as follows. In section 2, we introduce our notation and
provide background information on tensors, the standard ALS algorithm, and the ran-
dom matrix theory used in this paper. In section 3, we introduce randomized ALS and
provide analysis of the algorithm’s convergence and the conditioning of matrices used.
Section 4 contains demonstrations of randomized ALS and comparisons with standard
ALS on three examples. The most important of these examples provides background
on uncertainty quantification and demonstrates the application of randomized ALS-
based reduction as a step in finding the fixed point solution of a stochastic PDE. We
conclude with a discussion on our new algorithm and future work in section 5.
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2. Notation and Background.

2.1. Notation. Our notation for tensors, i.e. d-directional arrays of numbers, is
boldfaced uppercase letters, e.g. F € RM1>xxMa  These tensors are assumed to be
in the CTD format,

TF
F = g leFllouooFil,
=1

where the factors Fﬁ € RM» are vectors with a subscript denoting the directional index
and a superscript the rank index, and o denotes the standard vector outer product.
We write operators in dimension d as A = A (j1,41;.--;Jd,75), while for standard
matrices we use uppercase letters, e.g. A € RV*XM _ Vectors are represented using
boldfaced lowercase letters, e.g. ¢ € RN, while scalars are represented by lowercase
letters. We perform three operations on CTDs: addition, inner product, and the
application of a d-dimensional operator.

e When two CTDs are added together, all terms are joined into a single list
and simply re-indexed. In such a case the separation rank is the sum of the
ranks of the components, i.e. if the CTDs have ranks 7 and 7, the output
CTD has rank 7 + 7.

e The inner product of two tensors in CTD format, F and E is defined as

PP
<FF> =33 53 <F11,Fll> o <FZd,Ffi> ,
I=1i=1
where the inner product (-, -) operating on vectors is the standard vector dot

product.
e When applying a d-dimensional operator to a tensor in CTD format, we have

Th TF R ~ R _
AF =35 shsF (AQFQ) oo (AldFld) .
=1 1=1
We use the symbol || - || to denote the standard spectral norm for matrices, as well as
the Frobenius norm for tensors,

1
[F|| = (F,F)>,

and || - || and || - ||2 to denote the standard Euclidean ¢; and ¢5 vector norms.

For analysis involving matrices we use three different types of multiplication in
addition to the standard matrix multiplication. The Hadamard, or entry-wise, prod-
uct of two matrices A and B is denoted by A x B. The Kronecker product of two
matrices A € RNAa*Ma and B € RVe*Ms s denoted as A ® B,
A(L,1)B ... A(l,Ms)B
A B= z - :
A(Na,)B ... A(Na,Ma)B
The final type of matrix product we use, the Khatri-Rao product of two matrices
A e RNaxXM and B € RVN8XM i denoted by A ® B,

AoB=[AGL1D)®B(,1) A(G:2)®B(42) ... A(GM)®B(;,M) ].

We also frequently use the maximal and minimal (non-zero) singular values of a
matrix, denoted as oax and oy, respectively.
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2.2. ALS algorithm. Operations on tensors in CTD format lead to an increase
of the separation rank. However, this separation rank is not necessarily the smallest
possible rank to represent the resulting tensor for a given accuracy. ALS is the most
commonly used algorithm for finding low (near-minimal) separation rank approxima-
tions of CTDs given a user-supplied tolerance. Specifically, given a tensor G in CTD
format with separation rank rq,

rG
G:ZSlc;Gllo”'onh
=1
and an acceptable error €, we attempt to find a representation
rE ~ B
F:ZSIFFZIO~-~OFZ
=1

with lower separation rank, g < rq, such that |F — G|/ ||G| < e.

The standard ALS algorithm starts from an initial guess, F, with a small separa-
tion rank, e.g., rr = 1. A sequence of least squares problems in each direction is then
constructed and solved to update the representation. Given a direction k, we freeze
the factors in all other directions to produce a least squares problem for the factors in
direction k. This process is then repeated for all directions k. One cycle through all
k is called an ALS sweep. These ALS sweeps continue until the improvement in the
residual ||F — G|/ ||G|| either drops below a certain threshold or reaches the desired
accuracy, i.e. |F — G|/ ||G| < e. If the residual is still above the target accuracy e,
the separation rank rg is increased and we repeat the previous steps for constructing
the representation with the new separation rank.

Specifically, as discussed in [4], the construction of the normal equations for direc-
tion k can be thought of as taking the derivatives of the Frobenius norm of |F — G||?
with respect to the factors FL, [ = 1,...,rr, and setting these derivatives to zero.
This yields the normal equations

(3) Bk Cjk = bjk’

where ji corresponds to the j-th entry of F{ and c¢;, = cj, (1) is a vector indexed by
[. Alternatively, the normal system (3) can be obtained by contracting all directions
except the optimization direction k, so that the matrix By is the Hadamard product
of Gram matrices,

i) =TT (¥, Fi
(4) By (1.1) i1;£<FZ,FZ>7

and, accordingly, the right-hand side is

b (D) = > s8Gh (i) [T (GLF).
=1

i#k

We solve (3) for c;, and use the solution to update F%. Pseudocode for the ALS
algorithm is provided in Algorithm 1, where maz_rank and maz_iter denote the
maximum separation rank and the limit on the number of iterations (i.e. ALS sweeps).
The threshold ¢ is used to decide if the separation rank needs to be increased.
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Algorithm 1 Alternating least squares algorithm for rank reduction
input : € >0, § > 0, G with rank rq, maz_rank, max_iter
initialize rg = 1 tensor F = F} o --- o F} with randomly generated F}.
while rg < max_rank do

iter =1
if rg > 1 then

add a random rank 1 contribution to F: F=F +F{Fo--. o F/F
end if
res = |[F— G|/ |G
while iter < max_iter do

res_old = res

for k=1,...,d do

solve Byjc;, = bj, for every ji in direction k

define v; = (cl(l),...,ch_(l)) forl=1,...,rp

sl!‘i: HVZ~H2 fo~r l=1,. . JTF
Fl(r) = cjk(l)/le forl=1,...,rp
end for

res = [|F — G| /|G|
if res < € then
return F
else if |res — res_old| < § then
break
else
iter = iter + 1
end if
end while
re =7TF +1
end while
return F

A potential pitfall of the ALS algorithm is poor-conditioning of the matrix By
since the construction of normal equations squares the condition number as is well
known in matrix problems. An alternative that avoids the normal equations is men-
tioned in the review paper [24], but it is not feasible for problems with even moderately
large dimension (e.g. d = 5).

2.3. Estimate of condition numbers of least squares matrices. It is an
empirical observation that the condition number of the matrices By, is sometimes sig-
nificantly better than the condition numbers of some of the Gram matrices comprising
the Hadamard product in (4). In fact we have

LEMMA 1. Let A and B be Gram matrices with all diagonal entries equal to 1.
Then we have

Omin (B) S Omin (A * B) S Omax (A * B) S Omax (B) .
If the matrix B is positive definite, then

k(A% B) <k(B).
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Since Gram matrices are symmetric non-negative definite, the proof of Lemma 1
follows directly from [22, Theorem 5.3.4]. This estimate implies that it is sufficient for
only one of the matrices to be well conditioned to assure that the Hadamard product is
also well conditioned. In other words, it is necessary for all directional Gram matrices
to be ill-conditioned to cause the ill-conditioning of the Hadamard product. Clearly,
this situation can occur and we address it in the paper.

2.4. Modification of normal equations: motivation for randomized meth-Ji
ods. We motivate our approach by first considering an alternative to forming normal
equations for ordinary matrices (excluding the QR factorization that can be easily
used for matrices). Given a matrix A € RV*" N > n, we can multiply Ax = b by a
matrix R € R"*N with independent random entries and then solve

(5) RAx = Rb,

instead (see, e.g. [20, 29, 30, 33] ). The solution of this system, given that R is of
appropriate size (i.e., n’ is large enough), will be close to the least squares solution
[29, Lemma 2]. In [29], (5) is used to form a preconditioner and an initial guess for
solving min ||Ax—b||3 via a preconditioned conjugate gradient method. However, for
our application we are interested in using equations of the form (5) in the Hadamard
product in (4). We observe that RA typically has a smaller condition number than
AT A. To see why, recall that for full-rank, square matrices A and B, a bound on the
condition number is
k(AB) < k(A)k(B).

However, for rectangular full-rank matrices 4 € R”*N and B € RVX", r <1/ < N,
this inequality does not necessarily hold. Instead, we have the inequality

01 (B)

(6) k(AB) < K(A)—Umin (P (B))

where Pyr (B) is the projection of B onto the row space of A (for a proof of this
inequality, see Appendix A). If A has a small condition number (for example, when A
is a Gaussian random matrix, see [8, 14, 15]) and we were to assume oy, (Par (B)) is
close to omin (B), we obtain condition numbers smaller than x?(B). The assumption
that omin (Par (B)) is close to omin (B) is the same as assuming the columns of B lie
within the subspace spanned by the row of A. This is achieved by choosing r’ to be
larger than r when A is a randomized matrix.

2.5. Definitions and random matrix theory. The main advantage of our
approach is an improved condition number for the linear system solved at every step
of the ALS algorithm. We use a particular type of random matrices to derive bounds
on the condition number: the rows are independently distributed random vectors, but
the columns are not (instead of the standard case where all entries are i.i.d). Such
matrices were studied extensively by Vershynin [32] and we rely heavily on this work
for our estimates. To proceed, we need the following definitions from [32].

Remark 2. Definitions involving random variables, and vectors composed of ran-
dom variables, are not consistent with the notation of the rest of the paper, outlined
in subsection 2.1.

DEFINITION 3. [32, Definition 5.7] Let P{-} denote the probability of a set and E
the mathematical expectation operator. Also, let X be a random variable that satisfies
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one of the three following equivalent properties,

LP{X|>t} <exp(l—t*/K}) forallt >0

2. (E|X\p)1/p < Ks\/p for allp >1

3. Eexp (XQ/K??) <e,
where the constants K;, 1 = 1,2,3, differ from each other by at most an absolute
constant factor (see [32, Lemma 5.5] for a proof of the equivalence of these properties).

Then X is called a sub-Gaussian random variable. The sub-Gaussian norm of X is
defined as the smallest Ko in property 2, i.e.,

E[X)"
N .
Examples of sub-Gaussian random variables include Gaussian and Bernoulli random

variables. We also present definitions for sub-Gaussian random vectors and their
norm.

DEFINITION 4. [32, Definition 5.7] A random vector X € R™ is called a sub-
Gaussian random vector if (X, x) is a sub-Gaussian random variable for all x € R™.
The sub-Gaussian norm of X is subsequently defined as

X = su
[ H¢2 pZI;

[ X1y, = sup [[{X, %), .
xeSn—1

n—

where 8"~ is the unit Euclidean sphere.

DEFINITION 5. [32, Definition 5.19] A random vector X € R™ is called isotropic
if its second moment matriz, ¥ = % (X) = E [XXT], is equal to identity, i.e. ¥ (X) =
1. This definition is equivalent to

E(X,x)* = ||x||§ for all x € R".
The following theorem from [32] provides bounds on the condition numbers of matrices
whose rows are independent sub-Gaussian isotropic random variables.

THEOREM 6. [32, Theorem 5.38] Let A be an N X n matriz whose rows A (i,:)
are independent, sub-Gaussian isotropic random vectors in R™. Then for everyt > 0,
with probability at least 1 — 2 exp (—ct2), one has

(7) VN = Cy/n =t < Omin (A) < Omax (4) < VN + Cv/n+ t.
Here C = Ck, ¢ = cx > 0, depend only on the sub-Gaussian norm K = max [|A (4,:)||,,, I

An outline of the proof of Theorem 6 will be useful for deriving our own results, so
we provide a sketch in Appendix A. The following lemma is used to prove Theorem 6,
and will also be useful later on in the paper. We later modify it to prove a version of
Theorem 6 that works for sub-Gaussian, non-isotropic random vectors.

LEMMA 7. [32, Lemma 5.86] Consider a matriz B that satisfies
|B"B - I|| < max (6,6°)
for some § > 0. Then
(8) | =5 < oin (B) < e (B) < 116,
Conversely, if B satisfies (8) for some 6 > 0, then |BTB — I|| < 3 max (4,46?).
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3. Randomized ALS algorithm.

3.1. Alternating least squares algorithm using random matrices. We
propose the following alternative to using the normal equations in ALS algorithms:
instead of (4), define the entries of By via randomized projections,

©) Bi(1.0) = T (FLRI).

itk

where Rg is the [-th column of a matrix R; € ]RMMT/, r’ > r, with random entries

corresponding to direction ¢. The choice of ' > r is made to reduce the condition

number of By. As shown in subsection 3.3, as 7/’ — 0 the bound on « (By) goes to
1

k(Br) <k ((B;CA‘LS) 2), where BAS is the By, matrix for standard ALS, i.e. (4). In

this paper we consider independent signed Bernoulli random variables, i.e., R;(j;,!)
is either —1 or 1 each with probability 1/2. The proposed change also alters the
right-hand side of the normal equations (3),

(10) by, () = 35664 (o) [T (GLRI).
=1

ik

Equivalently, By may be written as

By = [[ R F.
ik

Looking ahead, we choose random matrices R; such that By is a tall, rectangular ma-
trix. Solving the linear system (3) with rectangular By will require a pseudo-inverse,
computed via either the singular value decomposition (SVD) or a QR algorithm.

To further contrast the randomized ALS algorithm with the standard ALS algo-
rithm, we highlight two differences: firstly, the randomized ALS trades the monotonic
reduction of approximation error (a property of the standard ALS algorithm) for
better conditioning. To adjust we use a simple tactic: if a randomized ALS sweep
(over all directions) decreases the error, we keep the resulting approximation. Oth-
erwise, we discard the sweep, generate independent random matrices R;, and rerun
the sweep. Secondly, the randomized ALS algorithm can be more computationally
expensive than the standard one. This is due to the rejection scheme outlined above
and the fact that By in the randomized algorithm has a larger number of rows than
its standard counterpart, i.e., v’ > r. Pseudocode of our new algorithm is presented
in Algorithm 2.

Remark 8. We have explored an alternative approach using projections onto ran-
dom tensors, different from Algorithm 2. Instead of using By in (9) to solve for c;,,
we use the QR factorization of By to form a preconditioner matrix, similar to the
approach of [29] for solving overdetermined least squares problems in a matrix set-
ting. This preconditioner is used to improve the condition number of By, in (4). The
approach is different from Algorithm 2: we solve the same equations as the standard
ALS algorithm, but in a better conditioned manner. Solving the same equations pre-
serves the monotone error reduction property of standard ALS. With Algorithm 2 the
equations we solve are different, but, as shown in subsection 3.2, the solutions of each
least squares problem are close to the those obtained by the standard ALS algorithm.
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Algorithm 2 Randomized alternating least squares algorithm for rank reduction

input : € > 0, G with rank rq, max_tries, max_rank, max_iter
initialize rg = 1 tensor F = F} o - - o F}, with randomly generated F}.
while rg < max_rank do
tries =1
iter =1
construct randomized tensor R
if rg > 1 then
add a random rank 1 contribution to F: F =F + F{F o-.. o F/F
end if
while iter < max_iter and tries < max_tries do
Foa=F
for k=1,...,d do
construct By, using (9)
solve Byc;, = by, for every jj in direction k

define v; = (cl(l),...,cM,c(l)) forl=1,....rp

le = Hvl~H2 forl=1,...,rp
Fl(jx) = cjk(ZN)/le forl=1,...,rp
end for
if |F — G| /|G| < € then
return F
else if [|[Foiq — G|/ |G| < [[F — G| /[|G]| then
F =Fou

tries = tries + 1
iter = iter + 1
else
tries =1
iter = 1ter + 1
end if
end while
re=1rp+1
end while
return F

Remark 9. A possible application of Algorithm 2 is to use it in concert with
Algorithm 1. If (4) becomes poorly conditioned during standard ALS iterations,
future iterations can be performed using randomized ALS sweeps from Algorithm 2.

We provide convergence results and theoretical bounds on the condition number of
By, with entries (9) in subsections 3.2 and 3.3, respectively. Additionally, in section 4,
we empirically demonstrate the superior conditioning properties of By, defined in (9)
relative to those given by the standard ALS in (4).

3.2. Convergence of the randomized ALS algorithm. Before deriving boundsjj

on the condition number of (9), it is important to discuss the convergence properties
of our algorithm. To do so for our tensor algorithm, we derive a convergence result
similar to [33, Lemma 4.8]. In this analysis, we flatten our tensors into large matrices
and use results from random matrix theory to show convergence. First, we construct
the large matrices used in this section from (9). Writing the inner product as a sum
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allows us to group all the summations together,
We have

S Y Y S () (R ),

where we have expanded the product to get the sum of the products of individual
entries. Introducing a multi-index j = (j1,...,Jk-1,Jk+1,---,Jd), we define two ma-
trices, Ay € RM*" and Rj, € RMX™ | where M = H#k M; is large, i.e., we write

A (30) = FLG) - By Gie) Bl Giesn) - Fi Gia)
S (50) = BL (1) - by Gie-1) R Gisn) - R i)
We note that these matrices can also be written as Khatri-Rao products,

Ay =F10 - 0F_10FL0---0F,;
(11) Sk=R1O - - OR_1ORr41 0 © Rg.

Since M islarge, M > 1’ > r, both Ay and S}, are rectangular matrices. Similarly,
we rewrite a vector b in (10),

My—1 Mgt

bj,.( Z Zsl Gk Jk) Z Z Z Z Gl J1) (Rl (1) -- )

ji=1 Je—1=1jr41=1 Ja=1
using the multi-index j as

by () = > sCGL () (G (1) - Ghomy (k1) Gy Gkra) -+ Gl (Ga)) -

=1

Using the introduced notation, Ay, Sk, and by, we rewrite the normal equations (3)
for direction k£ and coordinate ji as

(12) AgAka = Agbk,
and the randomized version of those equations as
(13) SgAka = Sgbk

We highlight the notable difference between the random matrix S, above and
those found in the usual matrix settings, for instance, in randomized least squares
regression [20, 29, 30, 33]. Specifically, in the former, the entries of Sy are not statis-
tically independent and are products of random variables, whereas in the latter the
entries are often i.i.d realizations of single random variables.

Next, we present a convergence result showing that the solution to the least
squares problem at each iteration of randomized ALS is close to the solution we
would get using standard ALS.
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LEMMA 10. Given arbitrary A, S, and b such that A € RM*" § ¢ RMxr"
beRM, andr < < M, and assuming that x € R” is the solution that minimizes
| ST Ax — STbH2 and 'y € R" is the solution that minimizes | Ay — b||2, then

(14) |Ax = bll2 < x (STQ) [|Ay — bl

where @ € RMXre ro < r 41, is a matriz with orthonormal columns from the QR
factorization of the augmented matriz [Aib] and where STQ is assumed to have full
rank.

Proof. We form the augmented matrix [Aib] and find its QR decomposition,
[Aib] = QT, where T = [TaiTy), Ta € R"@*" and Ty, € R™?, and Q € RM*"e has
orthonormal columns. Therefore, we have

A=QTx
b = QTy.

Using these decompositions of A and b, we define a matrix © such that

esTA=A
05Tb = b,
and arrive at .
0=0((s"Q)" (s"Q) (s"Q)". 0

where (STQ)T (STQ) has full rank because rank(S7Q) = rq.
Starting from the left-hand side of (14), we have
|Ax —b||, = H@STAX - @STbH2
< 19| ||STAx - STbH2
< l©]{|s™ Ay = $™b],.

Since multiplication by A maps a vector to the column space of A, there exists Ty, €
R"@ such that Ay = Q7). Hence, we obtain

| Ax — b||2 < el HSTQTy - STQTbH2
< lell[[sTQl Ty — Tol,
<lell|[s* Q| Ay = bl
where in the last step we used the orthonormality of the columns of Q).
Next we estimate norms, ||| and ||[STQ||. First, we decompose S7Q using the
singular value decomposition, STQ = UXV?T. From the definition of the spectral

norm we know HS’TQH = Omax (STQ). Using the SVD of STQ and the definition of
© we write

ol =[e (7" 57@) " 57)"
- H (vs2y?) VEUTH

= |[vs2vTvsuT||
= [[ve=—tuTy.
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Hence [|O] = 1/0min(STQ), and the bound is

1A% = blly < Omax (S7Q) /omin (ST Q) [ Ay — b,
< 5 (57Q) |l Ay — b,
We later substitute S = Sy in Lemma 10 and use results from [32] to bound « (5} Q),
since STQ is a random matrix whose rows are independent from one another but

whose columns are not. To use this machinery, specifically Theorem 6, we require the
following lemma.

LEMMA 11. STQ, where Q € RM*™@ has orthonormal columns, Sy, € RM*"" s
defined in (11), and rq < ' < M, is a random matriz with isotropic rows.

Proof. Using the second moment matrix, we show that the rows of S{Q are
AT 7 .
isotropic. Given a row of S{ @ written in column form, {Sk (:, l) Q] =Q7S, (:, l),

we form the second moment matrix,

E [QTSk (:.0) s (i :)T Q} = Q'E [Sk (1) s (L :)T] Q.
E [Sk (;,i) Sk (;,Z)T} — Inrsnt.

. ~\T

Hence E [QTSk ( z) S (z, :) Q} = QTQ = Iy xr, and STQ is isotropic.

From the Khatri-Rao product definition of the matrix Sj (11), we write a column
of S; as

s()= @ R,
i=1:d
1#k

Therefore, using properties of the Kronecker product (see, e.g. [24, equation (2.2)])
we can switch the order of the regular matrix product and the Kronecker products,

Si (1) 5k (1) = ® o (1) B (=)

1=1

itk 0

and show

Taking the expectation and moving it inside the Kronecker product gives us

Blsc () () | = @ | (0)r(a0)]
Zzz?élkd

® IMiXMi

i1=1:d

ik

=Inxm-
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Since SYQ is a tall rectangular matrix (S Q € RT/XTQ) with independent sub-
Gaussian isotropic rows, we may use Theorem 5.39 from Vershynin to bound the
extreme singular values.

LEMMA 12. For SF'Q defined in Lemma 11, and every t > 0, with probability at
least 1 — 2exp (—ct2) we have

- 14+ C\/(r+1) /1 + 1t/
(15) Q) e =

where C = Ck and ¢ = cxg > 0 depend only on the sub-Gaussian norm K =
S (:,i)TQ‘ . of the rows of ST Q.
2

Proof. Using Lemma 11 and Theorem 6, we have the following bound on the
extreme condition numbers of SF'@Q € R™ X" for every ¢ > 0, with probability at least
1—2exp (fctQ),

max;

Vi —C\frg —t < omin (SFQ) < 0max (SFQ) < Vi + C\frg +1t,

where C = Ck and ¢ = cx > 0 depend only on the sub-Gaussian norm K =
max; || (S,{C‘))in2 of the rows of S} Q. Since rg < r+ 1, we have

VI = CVr+1 =t < omin (STQ) < Oumax (STQ) < Vi + CVr +1+1,

with the same probability. 0
We now state the convergence result.

THEOREM 13. Given A € RM*" and Sy, € RM*"" defined in (11), where r < 1’ <
M, and assuming that x € R” is the solution that minimizes ||SgA§< — Sgb”Z and
y € R" is the solution that minimizes ||Ay —bl||2, then for every t > 0, with probability
at least 1 — 2exp (—ct2) we have

1+ C\/(r+1) /1 +t/Vr'
[Ax — bl < Ay — b,
L—C\/(r+1) /v =t/
where C = Ck and ¢ = cxg > 0 depend only on the sub-Gaussian norm K =
S (:,i)TQ‘ . The matriz Q € RM*re ro < r+ 1, is composed of or-
2

thonormal columns from the QR factorization of the augmented matriz [Aib] and
STQ is assumed to have full rank.

max;

Proof. The proof consists of substituting S = Sy in Lemma 10 and then bounding
K (S,CTQ) with Lemma 12 via Lemma 11. 0

Remark 14. The convergence properties communicated by Lemma 10 and Theo-
rem 13 rely on the residual ||Ay — b|| being small. If it is not small, i.e., the original
tensor does not admit a low-rank separated representation, then Algorithm 2 will
converge slowly or not at all.

3.3. Bounding the condition number of Bj,. To bound the condition number
of By, we use a modified version of Theorem 6. If the rows of Bj were isotropic
then we could use Theorem 6 directly. However, unlike S¥Q in Lemma 11, this
is not the case for By. While the second moment matrix ¥ is not the identity, it
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does play a special role in the bound of the condition number since it is the matrix
B?LS from the standard ALS algorithm. To see this, we take the [—th row of By,

Bk(i, ES {H#k <F€7 R€>}i , and form the second moment matrix of X,

=1,....n

s(,0) =E | [T (FLRD) (FY R
itk
N T
~ITe | (@) i (i) P
itk
N iR\ w
-] ®) E|R (Ri) F.
itk
Since Rg is a vector composed of either Bernoulli or standard Gaussian random

R ~N T
variables, E [R§ (Rg) ] = I. Therefore, we are left with X (I,1') = BAS (1,1') =

[y (F)" V.

We need to modify Theorem 6 for matrices that have independent, non-isotropic
rows. In [32, Remark 5.40] it is noted in the case of a random matrix A € RV*" with
non-isotropic rows that we can apply Theorem 6 to AX"2 instead of A, where ¥ is
the second moment matrix of A. The matrix AX "2 has isotropic rows and, thus, we
obtain the following inequality that holds with probability at least 1 — 2exp (—ct2),

1 T 2 n t
— — < — e
@) s <y, w5 oy o

and C =Cg, c=cg > 0.
To clarify how (16) changes the bounds on the singular values o, (A) and
Omax (A) of a matrix A with non-isotropic rows, we modify Lemma 7.

LEMMA 15. Consider matrices B € RN*" and £=2 € R"*" (non-singular) that
satisfy

(17) 1—6 < opin (Bz—%) < Ounas (Bz—%) <143,
for § > 0. Then we have the following bounds on the extreme singular values of B:
Fmin (2) - (1= 6) < 0win (B) < s (B) < e (1) - (14 9).

The proof of Lemma 15 is included in Appendix A. Using Lemma 15, we observe that
the bound on the condition number of a matrix B satisfying (17) has the following

form:
k(B) < Ei—l—g)h}(zé>.

Using Lemma 15, we prove an extension of Theorem 6 for matrices with non-isotropic
rOws.

~—

THEOREM 16. Let A be an N X n matriz whose rows, A(i,:), are independent,
sub-Gaussian random vectors in R™. Then for every t > 0, with probability at least
1—2exp (fctQ) one has

amin (51):(VN = OV = 1) < oin (4) < 0 (4) < 0 (3F)- (VN + v+ ) |}
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Here C = Ck, c=ck > 0, depend only on the sub-Gaussian norm K = max || A (4, :)||w2I
and the norm of Dt

Proof. We form the second moment matrix ¥ using rows A (4, :) and apply Theo-
rem 6 to the matrix AE*%, which has isotropic rows. Therefore, for every ¢ > 0, with
probability at least 1 — 2 exp (—ct2), we have

(18) VN —Cvin—t < omin (AZ*%) < Cinax (AE*%) <VN+Cvn+t,

where C = C, ¢ = cg > 0, depend only on the sub-Gaussian norm K = max HE’%A (1, :)T‘

Applying Lemma 15 to (18) with B = A/v/N and § = C\/n/N + t/V/N, results in
the bound

Tmin (E%)-(\/ﬁ— Cvn — t) < Omin (A) < Omax (A) < Omax (2%>-<\/N+C\/ﬁ+t) ,I

P2 I

with the same probability as (18).
To move X7 2 outside the sub-Gaussian norm, we bound K from above using the
sub-Gaussian norm of A, K = max || A (4, :)Hw2 ,
(]

HZ_%A(z’,:)T‘ = sup <Z_%A(i7:)T,x>‘
P2 rzeSn—1 P2
[[CCREISEEN 1
= sup L Z_fa:H
o 2
2
. \T 1
< sup <A(z,:) ,y>‘ sup ||2 Z:CH
yGS'nfl 1[)2 reSn—1 2
= ||A(i,: T' n2 ,
a6,
hence K < K ||X~z||. Using this inequality, we bound the probability in (31) for the

case of Theorem 6 applied to AX"2.

1 2
P{gle%( N HAEf%xHZ — 1‘ > ;} <9".2exp [;{14 (C2n+t2)}

n ! 2 2
< 9" -2 exp —74(0 n+t)

K4 ”27%

t2
< 2exp —0174
IS

The last step, similar to the proof of Theorem 6, comes from choosing C' large enough,
2
for example C' = K2 HE_% VIn(9) /eq1). |

The combination of Lemma 15, the fact that ¥ for (9) equals BAMS| and Theorem 16,
leads to our bound on the condition number of By in (9): for every ¢ > 0 and with




16 M.J. REYNOLDS, A. DOOSTAN, AND G. BEYLKIN

probability at least 1 — 2exp (—ct?),

(19) k (By) < 1+2F“;;:+Z$K((B?LS);>7

where the definitions of C' and ¢ are the same as in Theorem 16.

Remark 17. In both (15) and (19) the ratios v/’ and t//r’ are present. As
both ratios go to zero, our bound on the condition number of By, goes to & (Bg) <

1
K ((B,?LS) 2 ), and the bound on the condition number of ST Q goes to x (S,{Q) <l1.

These properties explain our choice to set 7’ as a constant multiple of r in the ran-
domized ALS algorithm. As with similar bounds for randomized matrix algorithms,
these bounds are pessimistic. Hence r’ does not have to be very large with respect to
r in order to get acceptable results.

Remark 18. Algorithm 2 and the proofs in the present work use products of ran-
dom variables extensively. For such problems the choice of signed Bernoulli random
variables is a natural one, since their products are also signed Bernoulli random vari-
ables. While we had some success using Gaussian random variables in experiments,
we have not included their use in this paper as they theoretically result in slower
concentration of BY By around its expectation ¥ = B#LS from Section 3.3. These
experiments have led to an interesting question: is there an optimal choice of dis-
tribution for setting the entries of R;? This question requires a careful examination
which is beyond the scope of this paper.

4. Examples.

4.1. Sine function. Our first test of the randomized ALS algorithm is to reduce
a CTD generated from samples of the multivariate function sin (z1 + - - - 4 z4). This
reduction problem was studied in [4], where the output of the standard ALS algorithm
suggested a new trigonometric identity yielding a rank d separated representation of
sin (21 4+ -+ + z4). As input, we use standard trigonometric identities to produce a
rank 291 initial CTD.

We ran 500 tests using both standard ALS and the new randomized algorithm
to reduce the separation rank of a CTD of samples of sin (z; + - -+ + z4). The tests
differed in that each one had a different random initial guess with separation rank
rp = 1. In this example we chose d = 5 and sampled each variable z;, i = 1,...,d,
with M = 64 equispaced samples in the interval [0,27]. Our input CTD for both
algorithms was rank 16 and was generated via a standard trigonometric identity.
The reduction tolerance for both algorithms was set to € = 107°, and the maximum
number of iterations per rank, i.e. maz_iter in Algorithm 1 and Algorithm 2, was set
to 1000. For tests involving the standard ALS algorithm we used a stuck tolerance
of § = 107%. To test the randomized ALS algorithm we used B matrices of size
(257F) x rp and set maz_tries in Algorithm 2 to 50.

According to Lemma 2.4 in [4], there exists exact rank 5 separated representations
of sin (21 + - -+ + z4). Using € = 107 for our reduction tolerance, we were able to find
rank 5 approximations with both standard ALS and our randomized ALS whose
relative errors were less than the requested e (for a histogram of residuals of the tests,
see Figure 1).

Due to the random initial guess F and our choices of parameters (in particular
the stuck tolerance and max _tries) both algorithms had a small number of runs that
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did not find rank 5 approximations with the requested tolerance €. The randomized
ALS algorithm produced fewer of these outcomes than standard ALS.

Large differences in maximum condition number (of ALS solves) are illustrated
in Figure 2, where we compare tests of the standard and randomized ALS algorithms.
We observe that the maximum condition numbers produced by the randomized ALS
algorithm are much smaller than those from the standard ALS algorithm. This is
consistent with our theory.

Furthermore, as shown in Figure 3, the number of iterations required for ran-
domized ALS to converge was smaller than the number required by standard ALS.
For these experiments the ALS sweeps rejected by Algorithm 2 are included in the
iteration count. It is important to remember that the number of iterations required
by the standard ALS algorithm to reduce a CTD can be optimized by adjusting the
tolerance, stuck tolerance, and maximum number of iterations per rank. In these ex-
periments we chose the stuck tolerance and maximum number of iterations to reduce
the number of tests of the standard ALS algorithm that did not meet the requested
tolerance e.

To better illustrate the behavior of the condition numbers in these experiments,
we display condition numbers from a single experiment in Figure 4. Specifically,
Figure 4(a) shows the condition number of the matrix By defined by (4) and used in
Algorithm 1, and Figure 4(b) shows the condition number of the non-rejected matrix
By, defined by (9) and used in Algorithm 2. We emphasize that these plots contain the
condition numbers of all matrices By used in this experiment corresponding to each
directional update and ALS sweep. In Figure 4(a) we observe the condition number of
By, growing rapidly as the iteration number increases. Figure 4(b), however, displays
a milder increase in the condition number of By for the randomized ALS algorithm.

4.2. A manufactured tensor. Our next test is to compare the performance
of the standard and randomized ALS algorithms on a manufactured random tensor
example. To construct this example we generate factors by drawing M = 128 random
samples from the standard Gaussian distribution. We chose d = 20 and set the
separation rank of the input tensor to r = 50. Then we normalized the factors
and set the s-values of the tensor equal to s; = ¢!, 1 = 0,...,7 — 1, where r was
predetermined such that s.,q is small.

Similar to the sine example, we ran 500 experiments and requested an accuracy
of € = 10~* from both algorithms. The maximum number of iterations for both
algorithms was set to 1000, while the stuck tolerance for the standard ALS algorithm
was set to 1076, We used the following parameters for the randomized ALS algorithm:
the By matrices were of size (257F) X rF, and the repetition parameter, max_tries in
Algorithm 2, was set to 50. We started all tests from randomized guesses with rank
rg = 9 . This value was chosen because in all previous runs the reduced separation
rank never fell below rg = 10. Such an experiment allows us to compare how the
algorithms perform when the initial approximation has rank greater than one.

We show in Figure 5 the output separation ranks from 500 tests of both the
randomized and standard ALS algorithms. The CTD outputs from randomized ALS
had, on average, lower separation ranks than those from standard ALS. Furthermore,
as seen in Figure 5, some of the output CTDs from the standard ALS algorithm had
separation rank of 40. In these instances, standard ALS failed to reduce the separation
rank of the input CTD because simple truncation to rg = 35 would have given double
precision. These failures did not occur with the randomized ALS algorithm. We can
also see a contrast in performance in Figure 6: all tests of the randomized ALS
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FiG. 1. Histograms displaying ALS reduction residuals, in log,y scale, for reducing the length
of a CTD of samples of sin(z1 + --- 4 z5). The experiments shown in (a) used randomized ALS,
whereas the experiments shown in (b) used standard ALS. We note that both algorithms produced
a small number of results with approzimation errors worse than the requested tolerance. However,
the randomized ALS method produced fewer results that did not meet our requested tolerance.

algorithm produced CTDs with reduced separation rank whose relative reduction
errors were less than the accuracy e. Also, in Figure 6, we observe instances where
the standard ALS algorithm failed to output a reduced separation rank CTD with
relative error less than e.

There was a significant difference in the maximum condition numbers of matrices
used in the two algorithms. In Figure 7, we see that matrices produced by standard
ALS had much larger condition numbers (by a factor of roughly 10'°) than their
counterparts in the randomized ALS algorithm. Such large condition numbers may
explain the failures of the standard ALS algorithm to output reduced separation rank
CTDs with relative errors less than e.

From Figure 8, we see that in most of the tests standard ALS required fewer
iterations than randomized ALS to converge. However, there were a few tests where
standard ALS required a larger number of iterations. These are the tests that failed
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F1G. 2. Histogram showing the mazimum condition numbers from our erperiments reducing the
length of a CTD of samples of sin (z1 + --- + z5). The condition numbers are shown in log;y scale;
the solid gray pattern represents condition numbers from standard ALS, while the hatch pattern
represents condition numbers from the randomized ALS algorithm.
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Fic. 3. Histogram showing the number of iterations required by randomized ALS (hatch pat-
tern) and the standard ALS algorithm (gray pattern) to reduce the length of a CTD of samples of
sin (z1 + - + 25).

to output a reduced separation rank CTD with relative error less than €. We note that
similar to the experiments in subsection 4.1, the randomized ALS sweeps rejected by
Algorithm 2 are included in the iteration count.

4.3. Elliptic PDE with random coefficient. As the key application of the
randomized ALS algorithm, we consider the separated representation of the solution
u(x,z) to the linear elliptic PDE

(20) -V - (a(x,2z)Vu(x,z)) =1, xeD,
u(x,z) =0, x¢€dD,
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(a) (b)
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Fic. 4. Side-by-side comparison of condition numbers of matrices By from reducing the rank
of a CTD of samples of sin (z1 + --- + 2z5) using (a) standard ALS and (b) randomized ALS. The
horizontal azis of each plot measures the total number of times the linear system (3) is solved for
standard ALS (a), and (3) is solved for randomized ALS using By and bj, specified in (9) and
(10), respectively (b). Note we only display the condition numbers from experiments not rejected in
Algorithm 2.

defined on the unit square D = (0,1) x (0,1) with boundary dD. The diffusion
coefficient a(x, z) is considered random and is modeled by

d
(21) a(x,2) = ag + 04 Z Crpr(x) 2k,
k=1
where z = (z1,...,24) and the random variables z; are independent and uniformly

distributed over the interval [—1,1], and we choose ag = 0.1, 0, = 0.01, and d = 5.
In (21), {¢x}{_, are the d largest eigenvalues associated with {¢y}¢_,, the Lo(D)-
orthonormalized eigenfunctions of the exponential covariance function

(22) Caa(xl, Xz) = exp <||X11X2|1>’

where [. denotes the correlation length, here set to I. = 2/3. Given the choices of
parameters ag, 0q4, d, and l., the model in (21) leads to strictly positive realizations
of a(x,z).

We discretize (20) in the spatial domain D via triangular finite elements of size
h = 1/32. This discretization, along with the affine representation of a(x,z) in zy,
yields the random linear system of equations

d
(23) (Ko +Y Kkzk> u(z) =f,

k=1

for the approximate vector of nodal solutions u(z) € RY. The sparse matrices K
and K}, are obtained from the finite element discretization of the differential operator
in (20) assuming a(x, z) is replaced by ag and 0,/(rdr(X), respectively.
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Fi1G. 5. Histograms showing output ranks from experiments in reducing the length of CTDs. (a)
shows ranks of CTDs output by the randomized ALS algorithm. (b) shows ranks of CTDs output
by the standard ALS algorithm. The CTDs output by the randomized ALS method typically have a
smaller separation rank. In many examples the standard ALS algorithm required 40 terms, i.e. it
failed since truncation of the input tensor to rp = 35 should give double precision.

To fully discretize (23), we consider the representation of u(z) at a tensor-product
grid {(z1(j1)s---,2a(Ja)) : ju = 1,..., My} where, for each k, the grid points zj(ji)
are selected to be the Gauss-Legendre abscissas. In our numerical experiments, we
used the same number of abscissas M = M = 8 for all k = 1,...,d. The discrete
representation of (23) is then given by the tensor system of equations

(24) KU = F,
where the linear operation KU is defined as
d TU R ~ R _ R _
KU =33 sV (Khup) o (KjU}) oo (KUY,
=0 I=1

Ké :Ki’
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Fi1G. 6. Histograms displaying ALS reduction errors, in log,q scale, for reduced-rank CTDs of
the random tensor example. (a) shows that in our 500 tests, the randomized ALS method always
produced a result that met the required tolerance. (b) shows how the standard ALS algorithm fared
with the same problem. Note that the standard ALS algorithm failed to reach the requested tolerance
in a small number of tests.

and for k=1,...,d,

where

0 Zk (M)
and Ips is the M x M identity matrix. The tensor F in (24) is defined as

F=folyo---0lyy,
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Fic. 7. Histogram showing the maximum condition numbers from experiments in reducing the
length of CTDs of the random tensor example. The condition numbers of By are shown in logg
scale; solid gray represents condition numbers from standard ALS while the hatch pattern represents
condition numbers from the randomized ALS algorithm. Similar to the sine example, the condition
numbers from randomized ALS are much smaller than those from the standard ALS algorithm

where 1) is an M-vector of ones. We seek to approximate U in (24) with a CTD,

(25) U:ZS}IUE;OUlim--OUZ,
=1

where the separation rank ry will be determined by a target accuracy. In (25) U} €
RN and UL e RM k =1,...,d. To solve (24), we use a fixed point iteration similar
to those used for solving matrix equations and recently employed to solve tensor
equations in [23]. In detail, the iteration starts with an initial tensor U of the form
n (25). At each iteration i, U is updated according to

U1 =1-K)U,; +F,
while requiring ||T — K|| < 1. To assure this requirement is satisfied we solve
(26) Ui =c(F - KU;) + U,

where ¢ is chosen such that ||I — c¢K]|| < 1. We compute the operator norm ||I — K||
via power method; see, e.g., [4, 5].

One aspect of applying such an iteration to a CTD is an increase in the output
separation rank. For example, if we take a tensor U of separation rank ry and use it
as input for (26), one iteration would increase the rank to rg + (d + 2) ry. Therefore
we require a reduction algorithm to decrease the separation rank as we iterate. This
is where either the standard or randomized ALS algorithm is required: to truncate
the separated representation after we have run an iteration. Both ALS methods work
with a user-supplied truncation accuracy €, so we denote the reduction operator as
Te. Including this operator into our iteration, we have

(27) Ui+1 = Te (C (F - KUZ) + Uz) .

Pseudocode for our fixed point algorithm is shown in Algorithm 3
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F1G. 8. Histograms showing iterations required to produce reduced-length CTDs for the random
tensor example. (a) shows iterations required by randomized ALS, while (b) shows the iterations
required by the standard ALS algorithm. As seen in (b), a few examples using standard ALS required
large numbers of iterations to output CTDs. These examples failed to produce a reduced separation
rank CTD with relative error less than €. However, for most of the experiments the standard ALS
algorithm required fewer iterations than the randomized ALS algorithm.

Remark 19. In this example, the separation rank of K is directly related to the
problem dimension d, i.e. rx = d + 1, which is a consequence of using a Karhunen-
Loeve-type expansion for finite-dimensional noise representation of a(x,z). This will
increase the computational cost of the algorithm to more than linear with respect to
d, e.g. quadratic in d when an iterative solver is used and N > M. Alternatively,
one can obtain the finite-dimensional noise representation of a(x,z) by applying the
separated rank reduction technique of this study on the stochastic differential operator
itself to possibly achieve rg < d. The interested reader is referred to [3, 4] for more
details.

First, we examine the convergence of the iterative algorithm given a fixed ALS reduc-
tion tolerance in Figure 9. The randomized ALS method converges to more accurate
solutions in all of these tests (see Table 1). However, the ranks of the randomized ALS
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Algorithm 3 Fixed point iteration algorithm for solving (27)

input : € >0, > 0, operator K, F, ¢, max_iter, mazx_rank, § >0
(for standard ALS), maz_tries (for randomized ALS)

initialize ry = 1 tensor Uy = U} o - -- o U} with either randomly generated
U; or U; generated from the solution of the deterministic version
of (20), i.e., when a(x,z) is replaced by ag in (21). Also initialize
the fixed point iteration counter to i = 0.

Dy =F — KU,

res — |Do|l / | ¥

while res > u do

i=1i+1

U;=cD;_1 +U;

U; =17, (Uz)

D, = F — KU;

res = Dl /[[F|
end while

return U;

ALS type ALS tol | max x (Bg) | max rank | rank residual

standard | 1 x 1072 | 5.35 x 10! 5 4 | 4.16 x 1072
1x107% | 5.29 x 10° 13 11 | 5.72x 1073

1x107% | 1.07 x 10° 37 34 | 418 x 1074

randomized | 1 x 1073 | 2.59 x 102 7 6 | 2.36x 1072
1x107% | 3.59 x 103 22 19 | 235 x1073

1x1075 | 2.72 x 10* 57 54 | 3.00 x 1074

TABLE 1

Table containing ranks, mazximum condition numbers, and final relative residual errors of ex-
pertments with fized ALS tolerance.

solutions are larger than the ranks required for solutions produced by the standard
ALS algorithm.

In Figure 10, we observe different behavior in the relative residuals using fixed
ranks instead of fixed accuracies. For these experiments the ALS-based linear solve
using the standard algorithm out-performs the randomized version, except in the
rank 7 = 30 case (see Table 2). In this case, the standard ALS algorithm has issues
reaching the requested ALS reduction tolerance, thus leading to convergence problems
in the iterative linear solve. The randomized ALS algorithm does not have the same
difficulty with the rank r = 30 example. This difference in decay between the standard
and randomized ALS residuals corresponds to a significant difference between the
maximum condition numbers of By. For the r = 30 case, the maximum condition
number of Bj, matrices generated by randomized ALS was 3.94 x 107, whereas the
maximum condition number of By matrices generated by standard ALS was 3.00 x
1013.
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FiG. 9. Residual error versus fized point iteration number of results from linear solvers. The
black lines represent linear solve residuals where standard ALS was used for reduction, while the
gray lines represent linear solve residuals where randomized ALS was used for reduction. In the
three examples shown above the ALS tolerances, for both standard and randomized ALS, were set to
1 x 1073 for curves labeled (a), 1 x 10~% for curves labeled (b), and 1 x 10~° for curves labeled (c).

5. Discussion and conclusions. We have proposed a new ALS algorithm for
reducing the rank of tensors in canonical format that relies on projections onto random
tensors. Tensor rank reduction is one of the primary operations for approximations
with tensors. Additionally, we have presented a general framework for the analysis
of this new algorithm. The benefit of using such random projections is the improved
conditioning of matrices associated with the least squares problem at each ALS itera-
tion. While significant reductions of condition numbers may be achieved, unlike in the
standard ALS, the application of random projections results in a loss of monotonic
error reduction. In order to restore monotonicity, we have employed a simple rejec-
tion approach, wherein several random tensors are applied and only those that do not
increase the error are accepted. This, however, comes at the expense of additional
computational cost as compared to the standard ALS algorithm. Finally, a set of
numerical experiments has been studied to illustrate the efficiency of the randomized
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Fic. 10. Plots showing relative residuals of fized point solutions versus fized point iteration
number. (a) two fized point solutions are shown here: solutions for fized ranks r = 10, and r = 20.
Gray lines are residuals corresponding to reductions with randomized ALS and black lines correspond
to reductions with the standard ALS algorithm. (b) One experiment with r = 30 and the same color
scheme as in (a).

ALS type | ALS tol | max k(By) | rank residual

standard | 1x 107° | 9.45 x 10" | 10 | 7.29 x 1073
5x 1076 | 1.27x 10 | 20 | 1.97 x 1073
1x107% | 3.00 x 10'3 | 30 | 4.73x 1073
randomized | 1 x 107° | 9.39 x 10> | 10 | 1.30 x 1072
5x 1076 | 4.12x10% | 20 | 293x 1073
1x107% | 3.94x 10" | 30 | 1.72x 1073

TABLE 2
Table containing maximum condition numbers and final relative residual errors of erperiments
with fized separation ranks.

ALS in improving numerical properties of its standard counterpart.

The optimal choice of random variables to use in the context of projecting onto
random tensors is a question to be addressed in future work. In our examples we
have used signed Bernoulli random variables, a choice that worked well with both our
numerical experiments and analysis. On the other hand, there are limitations of such
a construction of random tensors, which motivate further investigations. A topic of
interest for future work is the extension of the proposed randomized framework to
other tensor formats including the Tucker, [24], and tensor-train, [28].

Another area of future work involves directly solving systems such as (24) with
a randomized ALS variant, instead of utilizing a fixed point algorithm (e.g. Algo-
rithm 3). A standard ALS algorithm for this purpose was derived in [4, Section 4.2],
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where the approach is to solve AF = G by minimizing |AF — G|| with an imposed
separation rank constraint on F. The resulting equations are also normal equations
similar to (3) and (4), thus we anticipate our randomized machinery will extend to
this approach for solving AF = G.

Finally we have suggested an alternative approach to using projections onto ran-
dom tensors that merits further examination. This approach uses the QR factoriza-
tion to construct a preconditioner for the least squares problem at each ALS iteration.
Hence it solves the same equations as the standard ALS, but the matrices have bet-
ter conditioning. Also, because it solves the same equations, the monotonic error
reduction property is preserved. This is an important distinction from randomized
ALS, which solves different linear systems, but the solutions to which are close to the
solutions from standard ALS.

Appendix A. Proofs of (6), Theorem 6, and Lemma 15. First, we prove
(6).
Proof. To bound the condition number of AB we bound o,ax (AB) from above

and oy (AB) from below. The bound we use of opax (AB) is straightforward; it
comes from the properties of the two norm,

Omax (AB) < Omax (A) Omax (B) .

To bound oy, (AB) we first note that AAT is nonsingular, and write oy, (AB) as
follows,

)

owin (AB) = | AAT (447) ™" ABx"

where ||x*|| = 1 is the value of x such that the minimum of the norm is obtained
(see the minimax definition of singular values, e.g. [22, Theorem 3.1.2]). If we define

y = AT (AAT)"! ABx*, then

A .
i (48) = EIL L o)y,
Iyl
from the minimax definition of singular values. To bound ||y||, we observe that

AT (AAT)f1 AB is the projection of B onto the row space of A. Denoting this
projection as Pyr (B) we have,

[¥ll = [Par (B)x*|| = omin (Par (B)),

since ||x*|| = 1. Combining our bounds on the first and last singular values gives us
the bound on the condition number,
max A max B max B
5 (AB) < —2 (A) Omax (B) o (A) . —max ( )

Omin (A) Omin (Par (B)) Omin (Par (B)) o
The proof of Theorem 6 is broken down into three steps in order to control ||Ax|| for
all x on the unit sphere: an approximation step, where the unit sphere is covered using
a finite epsilon-net N (see [32, Section 5.2.2] for background on nets); a concentration
step, where tight bounds are applied to ||Ax]|| for every x € A; and the final step
where a union bound is taken over all the vectors x € N.

Proof. (of Theorem 6)
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Vershynin observes that if we set B in Lemma 7 to A/v/ N, the bounds on the
extreme singular values omin (A) and omax (A) in (7) are equivalent to

(28) H]bATA - IH < max (4,6%) =t €,

where 6 = C'\/x + ﬁ In the approximation step of the proof, he chooses a i-net

N to cover the unit sphere S"~!. Evaluating the operator norm (28) on N, it is
sufficient to show

1 2 €
— ||A -1 < =,
o | 1413 — 1] < 5

with the required probability to prove the theorem.
Starting the concentration step, [32] defines Z; = (4;,x), where A; is the i-th row
of A and ||x||, = 1. Hence, the vector norm may be written as

N
(29) 1Ax]5 = Z}.
i=1

Using an exponential deviation inequality to control (29), and that K > %, the

following probabilistic bound for a fixed x € 8"~ ! is,

1 ¢ 1 N

2 2
P Ax > =P 75 7
{‘N” I 1‘2} {Ni1 i1

(30) =2 exp {—%52N} < 2 exp {_

> ;} < 2exp {—% min (62,6) N]
! 2 2
where ¢; is an absolute constant.

Finally, (30) is applied to every vector x € N resulting in the union bound,
(31)

P {max
zeN
where we arrive at the second inequality by choosing a sufficiently large C' = Ck ([32]

gives the example C = K2./In (9) /c1). ad

We now prove Lemma 15.

! 2 € n €1 (A2 2 c1t?
N”Axngfl 25 <9 '2€Xp[*ﬁ(cn+t)]§2exp —%T )

Proof. To prove this lemma we use the following inequality derived from (17),
(1-10)° < omin (E*%BTBZ*%) < Omax (Z*%BTBE*%) < (1406)7.
First we bound opax (B) from above:

Tmax (B)? < HE%H : HE*%BTBE*%

.HE%

1 2 1 1
< |5t - omax (52 BTBE )

< o (24) - (1497,
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implying omax (B) < Omax (Z%> - (14 9). Second we bound o, (B) from below:

(32)

Omin (B)z = Omin (E%E_%BTBE_%E%)

Nl

v

2 1ol
Tunin (2 ) -amin(Z } BTBY. z)
1

o (24)"- (1 - 0.

v

implying omin (B) > Omin (E%) -(1 = ¢) . The first inequality in (32) is from [22, prob.

3.3.12]. Finally, using properties of singular values we combine the inequalities:

[10]

[11]

[12]

o O Q @

—

Q » =

Omin (1) - (1= 6) < O (B) < Omax (B) < omax (T2 - (1+9). .

REFERENCES

. APPELLOF AND E. DAVIDSON, Strategies for analyzing data from video fluorometric momni-

toring of liquid chromatographic effluents, Analytical Chemistry, 53 (1982), pp. 2053-2056.

. BADER, M. BERRY, AND M.BROWNE, Discussion tracking in enron email using parafac, in

Survey of Text Mining II, Springer London, 2008, pp. 147-163.

. BEYLKIN AND M. J. MOHLENKAMP, Numerical operator calculus in higher dimensions, Proc.

Natl. Acad. Sci. USA, 99 (2002), pp. 10246-10251.

. BEYLKIN AND M. J. MOHLENKAMP, Algorithms for numerical analysis in high dimensions,

STAM J. Sci. Comput., 26 (2005), pp. 2133-2159.

. J. Bracioni, D. BEYLKIN, AND G. BEYLKIN, Randomized interpolative decomposition of

separated representations, Journal of Computational Physics, 281 (2015), pp. 116-134.

. BrO, Parafac. Tutorial & Applications., in Chemom. Intell. Lab. Syst., Special Issue 2nd

Internet Conf. in Chemometrics (incinc’96), vol. 38, 1997, pp. 149-171.

. D. CARROLL AND J. J. CHANG, Analysis of individual differences in multidimensional scaling

via an N-way generalization of Eckart-Young decomposition, Psychometrika, 35 (1970),
pp. 283-320.

. CHEN AND J. DONGARRA, Condition number of gaussian random matrices, STAM J. Matrix

Anal. Appl., 27 (2005), pp. 603-620.

. CHEw, B. BADER, T. KoLDA, AND A. ABDELALI, Cross-language information retrieval

using parafac?, in Proceedings of the 13th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’07, New York, NY, USA, 2007, ACM,
pp. 143-152, http://dx.doi.org/10.1145/1281192.1281211.

. CHINESTA, P. LADEVEZE, AND E. CUETO, A short review on model order reduction based on

proper generalized decomposition, Archives of Computational Methods in Engineering, 18
(2011), pp. 395-404.

. DOOSTAN AND G. IACCARINO, A least-squares approzimation of partial differential equa-

tions with high-dimensional random inputs, Journal of Computational Physics, 228 (2009),
pp. 4332-4345.

DoosTAN, G. IACCARINO, AND N. ETEMADI, A least-squares approximation of high-
dimensional uncertain systems, Tech. Report Annual Research Brief, Center for Turbulence
Research, Stanford University, 2007.

. DoosTAN, A. VALIDI, AND G. IACCARINO, Non-intrusive low-rank separated approximation

of high-dimensional stochastic models, Comput. Methods Appl. Mech. Engrg., 263 (2013),
pp. 42-55.

. EDELMAN, FEigenvalues and condition numbers of random matrices, STAM J. Matrix Anal.

Appl., 9 (1988), pp. 543-560.

. EDELMAN, FEigenvalues and condition numbers of random matrices, ph.d. thesis, Mas-

sachusetts Institute of Technology, 1989.

. GoLuB AND C. V. LoAN, Matriz Computations, Johns Hopkins University Press, 3rd ed.,

1996.

. GRASEDYCK, D. KRESSNER, AND C. TOBLER, A literature survey of low-rank tensor approx-

imation techniques, CoRR, abs/1302.7121 (2013).


http://dx.doi.org/10.1145/1281192.1281211

(28]

[29]

(30]

(31]

32]

M.

A.

I.

V.

R - -

RANDOMIZED ALS FOR CANONICAL TENSOR DECOMPOSITION 31

. HACKBUSCH, Tensor spaces and numerical tensor calculus, vol. 42, Springer, 2012.

HabpicoL, A. DoosTaN, H. MATTHIES, AND R. NIEKAMP, Partitioned treatment of un-
certainty in coupled domain problems: A separated representation approach, Computer
Methods in Applied Mechanics and Engineering, 274 (2014), pp. 103-124.

. HALkO, P.-G. MARTINSSON, AND J. A. TROPP, Finding structure with randomness: proba-

bilistic algorithms for constructing approrimate matrixz decompositions, SIAM Review, 53
(2011), pp. 217-288, http://dx.doi.org/10.1137,/090771806.

«

. A. HARSHMAN, Foundations of the Parafac procedure: model and conditions for an “ex-

planatory” multi-mode factor analysis, Working Papers in Phonetics 16, UCLA, 1970.
A. HorN AND C. R. JOHNSON, Topics in matriz analysis, Cambridge Univ. Press, Cam-
bridge, 1994.

. KHOROMSKIJ AND C. SCHWAB, Tensor-structured Galerkin approximation of parametric and

stochastic elliptic PDEs, SIAM Journal on Scientific Computing, 33 (2011), pp. 364-385.

. G. KoLpa AND B. W. BADER, Tensor decompositions and applications, SIAM Review, 51

(2009), pp. 455-500, http://dx.doi.org/10.1137/07070111X.

. Nouy, A generalized spectral decomposition technique to solve a class of linear stochastic

partial differential equations, Computer Methods in Applied Mechanics and Engineering,
196 (2007), pp. 4521-4537.

. Nouy, Generalized spectral decomposition method for solving stochastic finite element equa-

tions: Invariant subspace problem and dedicated algorithms, Computer Methods in Applied
Mechanics and Engineering, 197 (2008), pp. 4718-4736.

Nouy, Proper generalized decompositions and separated representations for the numerical
solution of high dimensional stochastic problems, Archives of Computational Methods in
Engineering, 17 (2010), pp. 403-434.

V. OSELEDETS, Tensor-train decomposition, SIAM Journal on Scientific Computing, 33
(2011), pp. 2295-2317.

ROKHLIN AND M. TYGERT, A fast randomized algorithm for overdetermined linear least-
squares regression, in Proceedings of the National Academy of Sciences, vol. 105(36), Na-
tional Academy of Sciences, September 2008, pp. 13212-13217.

. SARLOS, Improved approximation algorithms for large matrices via random projections, in

Foundations of Computer Science, 2006. FOCS ’06. 47th Annual IEEE Symposium on,
2006, pp. 143-152, http://dx.doi.org/10.1109/FOCS.2006.37.

. ToMAsI AND R. BRO, A comparison of algorithms for fitting the PARAFAC model, Comput.

Statist. Data Anal., 50 (2006), pp. 1700-1734.

. VERSHYNIN, Introduction to the non-asymptotic analysis of random matrices, in Compressed

Sensing, Theory and Applications, Y. Eldar and G. Kutyniok, eds., Cambridge University
Press, 2012, ch. 5, pp. 210-268.

. WooLrg, E. LIBERTY, V. ROKHLIN, AND M. TYGERT, A fast randomized algorithm for

the approzimation of matrices, Appl. Comput. Harmon. Anal., 25 (2008), pp. 335-366,
http://dx.doi.org/10.1016/j.acha.2007.12.002.


http://dx.doi.org/10.1137/090771806
http://dx.doi.org/10.1137/07070111X
http://dx.doi.org/10.1109/FOCS.2006.37
http://dx.doi.org/10.1016/j.acha.2007.12.002

	Introduction
	Notation and Background
	Notation
	ALS algorithm
	Estimate of condition numbers of least squares matrices
	Modification of normal equations: motivation for randomized methods
	Definitions and random matrix theory

	Randomized ALS algorithm
	Alternating least squares algorithm using random matrices
	Convergence of the randomized ALS algorithm
	Bounding the condition number of Bk

	Examples
	Sine function
	A manufactured tensor
	Elliptic PDE with random coefficient

	Discussion and conclusions
	Appendix A. Proofs of eq:rec-cond-num-ineq, thm:Vershynin, and lem:modified-vershynin-lemma
	References

