
Multiresolution quantum chemistry in multiwavelet bases:
Analytic derivatives for Hartree–Fock and density functional theory

Takeshi Yanai, George I. Fann, Zhengting Gan, and Robert J. Harrison
Oak Ridge National Laboratory, Oak Ridge Tennessee 37831

Gregory Beylkin
Department of Applied Mathematics, University of Colorado at Boulder, Boulder, Colorado 80309-0526

~Received 11 March 2004; accepted 12 May 2004!

An efficient and accurate analytic gradient method is presented for Hartree–Fock and density
functional calculations using multiresolution analysis in multiwavelet bases. The derivative is
efficiently computed as an inner product between compressed forms of the density and the
differentiated nuclear potential through the Hellmann–Feynman theorem. A smoothed nuclear
potential is directly differentiated, and the smoothing parameter required for a given accuracy is
empirically determined from calculations on six homonuclear diatomic molecules. The derivatives
of N2 molecule are shown using multiresolution calculation for various accuracies with comparison
to correlation consistent Gaussian-type basis sets. The optimized geometries of several molecules
are presented using Hartree–Fock and density functional theory. A highly precise Hartree–Fock
optimization for the H2O molecule produced six digits for the geometric parameters.
© 2004 American Institute of Physics.@DOI: 10.1063/1.1768161#

I. INTRODUCTION

In a previous work,1 we described a practical,
multiresolution2,3 solver in multiwavelet bases for the all-
electron local density approximation~LDA ! Kohn–Sham4

equations for molecules, and elsewhere5 describe the inclu-
sion of Hartree–Fock exchange. These works employed and
extended the approach described in Ref. 6 for the solution of
integral and partial differential equations. In this paper, we
extend the approach to include computation of analytic
derivatives of the energy with respect to the atomic
coordinates.

These derivatives play very important roles in molecular
electronic structure calculations. They enable efficient opti-
mization of molecular structures, as pioneered by Pulay,7,8

may be combined using numerical finite difference to obtain
harmonic vibrational spectra and anharmonic corrections,
and are increasingly employed inab initio molecular dynam-
ics simulations.9,10 Since these derivatives have to be com-
puted at many geometries on the potential surface for the
purpose of geometry optimizations or molecular dynamics, a
fast analytic gradient method is crucial. In the widely used
ab initio molecular calculations using Gaussian functions,
the derivatives of many one- and two-electron integrals must
be computed7,8,11which add greatly to the computational ex-
pense and software complexity of these programs. For this
reason, mostab initio molecular dynamics have been con-
ducted, as recommended by Car and Parrinello,9 using plane
wave basis sets for which the computation of analytic deriva-
tives is very efficient. However, plane wave bases are global
and not adaptive, and so cannot be efficiently applied di-
rectly to all-electron systems and are inefficient when ap-
plied to isolated molecules and surfaces.

We chose to use multiwavelet bases, specifically those of
Alpert12–14 which are constructed from Legendre or interpo-

lating polynomials defined on disjoint intervals. This ap-
proach is closely related to discontinuous spectral element
methods.15 Our selection has been motivated by a number of
contradictory requirements for the basis~see Ref. 6!. In par-
ticular, we require orthonormality, the interpolating property,
and the ability to accommodate boundary conditions while
maintaining both accuracy and the order of convergence. It
turns out, that there are no smooth bases that satisfy all of
these conditions. Unexpected positive consequences of using
multiwavelets with disjoint supports include a family of de-
rivative operators with analogs of forward and backward dif-
ferences, and a useful connection to the so-called discontinu-
ous finite~or spectral! element methods.

The multiresolution constructions employed in this paper
are now fairly standard within the mathematical literature
~see, e.g. Refs. 2, 6, 13!, and a nonrigorous description for
chemists is given in an Appendix of Ref. 1. Many objectives
of the approach are accomplished, at least in one dimension,
are by a few central features of the multiresolution represen-
tations. However, additional features are necessary to
achieve efficient algorithms in higher dimensions.16,17

• Multiresolution wavelet and multiwavelet expansions
organize functions and operators efficiently in terms of
proximity on a given scale and between the length
scales.

• Simple and efficient algorithms exist to transform be-
tween representations at different scales@O~N! decom-
position and reconstruction#.

• There is a simple truncation and adaptive refinement
mechanism to maintain the desired accuracy.

• A large, physically significant class of differential and
integral operators is sparse in wavelet/multiwavelet
bases. High-order convergence is achieved for solving
partial differential and integral equations.
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• Multiwavelet bases with disjoint support allow us to
maintain high-order convergence in the presence of
boundary conditions or singularities.

A critical aspect for the efficiency of our approach is the
explicit trade-off between precision and speed. All computa-
tions are performed to a user-selected, finite but mathemati-
cally guaranteed precision. This guarantee is essential for
robust computation.

Maintaining precision in the functions near the nucleus
is important especially for the present study. The automatic
adaptive refinement mechanism can efficiently represent the
cusps in orbitals or nuclear potentials at nuclei located at
dyadic points on the adaptive mesh, so that the accuracy and
high-order convergence are maintained. If the nuclei are dis-
placed away from dyadic points, the higher-order conver-
gence for orbitals or potentials breaks down near the nucleus,
and many additional levels of adaptive refinement are carried
out to deliver the required precision. The previous study
demonstrated the translational invariance of the total energy
within a given precision.1 We should again pay attention to
the aspect regarding the nuclear potentials on dyadic/
nondyadic points for the gradient calculation.

The well-known Hellmann–Feynman or electrostatic
theorem is obeyed in our chosen basis, up to the finite pre-
cision of the computation. The expectation value of the first-
order perturbation term in the Hamiltonian is identical to the
first derivative of the energy with respect to the parameter
determining the strength of the perturbation, e.g., the coordi-
nate here,

]E

]q
5 K ]Vext

]q L 1O~e!, ~1!

whereVext is the external potential~usually the sum of the
electron-nuclear and nuclear-nuclear potentials! and q is a
parameter~e.g., a nuclear coordinate!. The energy for varia-
tional models is quadratic in the error in the wave function
due to approximate solution of the equations, and the gradi-
ent is linear in this error. However, both the energy and the
gradient are linear in the basis truncation error. That is, ne-
glect of small coefficients in the basis expansion of the or-
bitals introduces an error linearly proportional to the trunca-
tion threshold. One main point of this paper is to analyze this
numerical error.

As a consequence of the Hellmann–Feynman theorem,
the derivative of energies can be calculated as an inner prod-
uct between the multiwavelet representations for a density
function and a differentiated nuclear attraction potential. We
straightforwardly exploit the multiresolution, multiwavelet
representation to calculate this product very efficiently. The
derivative of the nuclear potential is more singular than the
potential itself. In our first paper,1 we introduced a smoothed
nuclear attraction potential. The goals of this were to avoid
the projection~via numerical quadrature! of a singular func-
tion into the multiwavelet basis, and to reduce the number of
fine-scale levels of refinement for computational efficiency.
The smoothed potential has a single parameter that controls
the smoothing and was directly related to the error in the
total energy. The second topic of this paper is to examine
how this parameter controls the error in the gradient.

Although Dickson and Becke also demonstrated the ana-
lytic gradient method of Kohn–Sham~KS! calculations us-
ing Hellmann–Feynman theorem based on their numerical
quadrature approach,NUMOL,18 their approach aimed only at
the benchmark calculation of the local spin-density approxi-
mation~LSDA! in the basis set limit. We are working toward
a routinely applicable approach that is able to provide basis-
set limit results on large systems.

In the following sections, we first present essential de-
tails of the numerical approach, discuss the smoothed nuclear
attraction potential, and then the formulation of the analytic
derivative. Subsequently, we present some numerical results
and conclusions.

II. BACKGROUND

First we start with a brief review on our multiresolution
approach, which closely follows that of Ref. 6. For simplic-
ity, all formulations are discussed in the one-dimensional
~1D! representation. The solution domain is chosen as@0,1#,
which is repeatedly subdivided by factors of 2 so that at level
n there are 2n boxes with each of size 22n. Within the lth
subdomain (l 50,...,2n21) at level n(n50,1,...), the firstk
Legendre ~or, equivalently, interpolating! polynomials
$Pi(x)u i 50,...,k21% are currently used for the scaling func-
tions as

f i l
n ~x!52n/2f i~2nx2 l !, ~2!

where the functionf i(x) is called the mother scaling func-
tion defined as

f i~x!5HA2i 11Pi~2x21!, xP~0,1!

0, x¹~0,1!
. ~3!

The functions are orthonormal at a given leveln,

E
2`

`

f i l
n ~x!f i 8 l 8

n
~x!dx5d i i 8d l l 8 , ~4!

and span the space denotedVn . The sequence of subspaces
have the following important containment property:

V0,V1,V2,¯,Vn . ~5!

The basis becomes complete in the limits of either infinite
refinement (n→`) or infinite order polynomials (k→`).
The projection of a function ontoVn is straightforwardly
computed as

f n~x!5 (
l 50

2n21

(
i 50

k21

sil
nf i l

n ~x!, ~6!

where due to the orthonormality of the scaling functions,

sil
n 5E f i l

n ~x! f ~x!dx. ~7!

This is referred to as thereconstructedform.
The space spanned by the orthonormal multiwavelets

c i l
n (x)(PWn) is the complementary subspaceWn5Vn11

2Vn . By construction, the multiwavelets inWn are orthogo-
nal to the scaling functions~disjoint polynomials! of Vn , and
Wn is a subspace ofVn11 . In this work we use Alpert’s
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multiwavelets6,12–14in which he imposed the additional con-
strains that the higher-index multiwavelets have an increas-
ingly higher number of vanishing moments. The multiwave-
lets cn(x) can be explicitly constructed from the scaling
functions on the next finest scalefn11(x) using the two-
scale relations,6 and also have disjoint support.

The orthonormality of the multiwavelets is stronger than
that of the scaling functions as follows:

E c i l
n ~x!c i 8 l 8

n8 5d i i 8d l l 8dnn8 , ~8!

E c i l
n ~x!f i 8 l 8

n8 50 if n>n8. ~9!

The direct sum of subspacesVn5V0% W0% W1%¯

% Wn21 provides an equivalent representation of the function
of Eq. ~6! as

f n~x!5 (
i 50

k21

si0
0 f i0

0 ~x!1 (
m50

n21

(
l 50

2m2121

(
i 50

k21

dil
mc i l

m~x!, ~10!

which is called thecompressedform. The transformation be-
tween scaling function~reconstructed! and multiwavelet
~compressed! representations is an orthogonal transforma-
tion, is therefore numerically stable, and is also fast@O(N),
asymptotically faster than the fast Fourier transformation#.

Adaptive refinement6 is readily accomplished in 1D by
truncation of small wavelet coefficients. In higher dimen-
sions, there is a choice of wavelet basis corresponding to
applying the wavelet transformation separately in each di-
mension, or simultaneously, level by level in each dimen-
sion. The first approach results in a basis with rectangular
support ~in 2D! that inhibits true local refinement since it
includes basis functions that connect fine-scale behavior in
one dimension with coarse scale in others. The second ap-
proach, which we choose,1 results in square support at each
level, enabling true local refinement and does not couple
length scales between dimensions.

Due to the strong orthogonality of the multiwavelets
@Eqs.~4!, ~8!, and~9!#, the inner product between two com-
pressed functions can be calculated simply and efficiently as
a linear sum

~ f n, f 8n!5 (
i 50

k21

si0
0 si08

01 (
m50

n21

(
l 50

2n2121

(
i 50

k21

dil
mdil8

m . ~11!

III. SMOOTHED NUCLEAR ATTRACTION POTENTIAL

The one-electron, nuclear-attraction potential is the same
for both the Hartree–Fock~HF! and KS density functional
methods. In the HF and KS calculation using our multireso-
lution method, we obtain the reconstructed and compressed
forms of the nuclear potential function by projecting onto the
scaling functions. Projection of the singular point-charge
nuclear potential onto a finite nonsingular basis, whether dis-
joint Legendre polynomials or atom-centered Gaussians, un-
avoidably smooths the potential—the singularity of the po-
tential is represented only in some average sense. While,
with special purpose quadratures, we can project the singular
potential onto our basis directly, it is much more efficient to

smooth the potential before performing the projection. It is
also more straightforward since we may then use standard
Gauss–Legendre quadrature. As already noted, the smooth-
ing eliminates some fine scale components in the orbitals
which makes the overall calculation more efficient.

It is important for the smoothing method to make both
the potential and the resulting orbitals as smooth as possible
~i.e., to reduce the derivatives of the potential!, consistent
with the required precision in either the energy or the wave
function.

The electron-nuclear attraction potential at the electron
position r is given by

Ve-nuc~r !5(
m

2Zm

ur2Rmu
, ~12!

52(
m

Zm f ~ ur2Rmu!, ~13!

whereZm andRm are the nuclear charge and position of the
atomm, and the functionf (r ) is the Coulomb potential with
point charge nucleus given as

f ~r !5r 21. ~14!

We have adopted1 the following smoother form for the po-
tential:

f̄ ~r !5u~r /c!/c, ~15!

whereu(r ) is the smoothed function, andc is the smoothing
variable, which depends on the desired precision in the en-
ergye and the nuclear charge. The smoothed functionu(r ) is
defined as

u~r !5
erf~r !

r
1

1

3Ap
~e2r 2

116e24r 2
!. ~16!

For r>6, u(r ) differs from 1/r by less than machine preci-
sion.

The first three moments of the error are zero, i.e.,

E
0

`

dr r 21nS u~r !2
1

r D50, ~17!

for n50, 1, 2. These zero moments ensure that the expecta-
tion value of the potential is quite accurate, implying that the
error arising from use of the modified potential is second
order. Other forms may be preferable, but this has proved
satisfactory to date. The smoothed functionf̄ (r ) has the
asymptotic behavior for the smoothing parameterc as

lim
c→0

U f̄ ~r !2
1

r U50. ~18!

This form is similar to the finite-nucleus model that has been
exploited in the relativistic calculations using Gaussian-type
basis function to decrease the number of basis functions de-
scribing the nuclear cusp for heavy atoms.21 In this model, a
Gaussian nuclear charge distribution is defined by

r~r !5S h

p D 3/2

e2hr 2
, ~19!
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with corresponding potential

uFN~r !5
erf~r !

r
. ~20!

The corresponding smoothing parameter is thus relatedc
51/Ah to the nuclear size~width of the Gaussian!. However,
since this form does not have any vanishing moments, only
very small radii produce physically reasonable results~since
the error is first order!. The form with vanishing moments
permits the potential to be modified at much larger radii
since the errors are primarily second order. For example, a
smoothing parameter ofc50.26 atomic units for hydrogen
introduces only 0.1 millihartree error in the Hartree–Fock
energy of the hydrogen molecule with a bond length of 1.4
bohrs.

IV. ANALYTIC DERIVATIVES

A. Expression for derivatives

Using Hellmann–Feynman theorem, the derivative of
the total energyE with respect to the nuclear coordinateXA

is expressed as

]E

]XA
5 K ]V

]XA
L ~21!

5E dr r~r !
]V~r !

]XA
. ~22!

Our multiresolution approach will satisfy this theorem within
the precision to which the equation is solved with the trun-
cation threshold. The derivative of the potential is divided
into electron-nuclear interaction (e-nuc) and nuclear-nuclear
~nuc-nuc! contributions

]V~r !

]XA
5

]Ve-nuc~r !

]XA
1

]Vnuc-nuc

]XA
. ~23!

The last term is given by

]

]XA
Vnuc-nuc~r !52 (

BÞA
ZAZB

XA2XB

uRA2RBu3
. ~24!

The integral in Eq.~22! can be regarded as an inner product
between the functionsr~r ! and ]Ve-nuc(r )/]XA . Our multi-
resolution approach allows us to do the fast inner product
between the compressed functions as reviewed in Sec. II.
Since the compressed density functionr~r ! has been ob-
tained after HF/KS-SCF calculations, all we have to do is to
obtain the compressed form of the derivative of the electron-
nuclear potential ]Ve-nuc(r )/]XA . The derivative of
Ve-nuc(r ),

]

]XA
Ve-nuc~r !52(

m
Zm

]

]XA
u~ ur2Rmu/cm!/cm

52ZA

XA2x

ur2RAu
u8~ ur2RAu/cA!/cA

2, ~25!

requires the derivative ofu(r ), which is given to the ma-
chine precision by

d

dr
u~r !55

2r 22 ~r>6!

2e2r 2

Apr
2

erf~r !

r 2
2

1

3Ap
~2re2r 2

1128re24r 2
! ~6.r>0.1!

2
4

3
r 1

4

5
r 32

2

7
r 51

2

27
r 72

1

66
r 92

1

3Ap
~2re2r 2

1128re24r 2
! ~0.1.r>0!

. ~26!

The expression for (6.r>0.1) in Eq.~26! is a direct deriva-
tive form of u(r ) in Eq. ~16!. The last case in Eq.~26! is
expanded as a series to avoid numerical error in the region
limr→0du/dr50. The first three moments of the error are
zero even for the derivative as

E
0

`

dr r 31nS d

dr
u~r !1

1

r 2D 50, ~27!

for n50, 1, 2 from integration by parts. Alternatively, since
the first three moments of the error in the potential are zero
independent of the geometry, the corresponding moments in
the derivative will also be zero.

In this approach, we smooth the nuclear attraction poten-
tial, and differentiate the smoothed potential directly. The
potential and its derivative are displayed in Fig. 1. Notice
that the differentiated smoothed potential goes to zero asr

→0 instead of diverging as21/r 2 to 2`. This leads to the
desirable elimination of high-frequency components. It is
also most suitable for geometry optimization and dynamics
since the energy and gradient are consistent. Furthermore,
the error can be controlled by just one smoothing parameter
c. It is also possible to apply smoothing after differentiation,
though this has the potential of making the gradient and en-
ergy inconsistent and might require two smoothing param-
eters. We have explored this option to a limited extent but
were unable to formulate an approach competitive with the
precision readily obtained by differentiation of the smoothed
potential.

As previously noted, the form of the smoothed potential
was chosen in part so that the resulting molecular orbitals
would be smooth, i.e., possess no cusp. This behavior is
desirable to make the orbitals compactly represented, even if
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the nuclei are not located at dyadic points, and to make the
potential differentiable. These conditions imply that the odd
derivatives of both the potential and the orbitals are zero at
the nuclei~for isolated spherical atoms!.

This pursuit of smoothness is in the spirit of effective
core potentials19 and, in particular, the pseudopotentials20

used in plane-wave calculations that yield smooth valence
pseudo-orbitals. If we are interested in the detailed electronic
structure near the nuclei, the structure of the cusp should be
retained in solving for the orbitals, but it is not necessary for
the gradient. Since the core orbitals are, in general, very
nearly spherically symmetric, they are expected to contribute
very little to the gradients.

B. Implementation

Our multiresolution solver@MADNESS ~Ref. 22!# is
implemented using@PYTHON ~Ref. 23!# for high-level control
and C/C11/FORTRAN for computationally intensive opera-
tions. The new gradient code we have added into the existing
HF/KS-SCF program is composed of the following three
parts.

~1! A C function to return a value of Eq.~25! at a given
3D coordinate.

~2! A single PYTHON statement to obtain a compressed
Function instance projecting the differentiated nuclear poten-
tial, Eq. ~25!, onto the multiwavelets.

~3! A single PYTHON statement to compute an inner
product, Eq.~22!,

grad=rho·inner(gradvnuc(i,p))#i:

atom index, p: dx,dy,dz

In comparison with conventional Gaussian gradient codes
including atomic orbital integral routines,7,8,11 this imple-
mentation is much simpler and smaller—in total only a few
dozen extra lines of code. Symmetry can be exploited in our
gradient code, and its implementation will be reported in
detail in another paper regarding overall use of symmetry in
MADNESS.

V. RESULTS

A. Dependence of accuracy
on the smoothing parameter

The error in the derivatives arises from two sources, the
smoothing of the nuclear potential and numerical noise aris-
ing from truncation of small coefficients in the numerical
representations of the derivative potential and the orbitals
~and hence the density!,

]E

]XA
5^Cexact1du

]Vexact

]XA
1DuCexact1d& ~28!

5
]Eexact

]XA
12^du

]Vexact

]XA
uCexact&

1^CexactuDuCexact&1¯, ~29!

The dependence of the gradient on the smoothing param-
eter is expected to be systematic, as it is for the energy. The
numerical noise, however, is only controlled in a norm-wise
sense by the truncation threshold, and point-wise errors can
be much larger. Moreover, reduction of the numerical noise
in the orbitals requires either increased end-to-end precision
in the solution of the DFT equations, which is expensive, or
introduction of a postprocessing filter which is unsatisfac-
tory, though might still be of utility.

We examined the LSDA energy and gradients of six
homonuclear diatomic molecules, H2 , Li2 , B2 , N2 , O2 , and
F2 , near their equilibrium geometries. In computation of the
derivative, highly accurate KS orbitals were used with 11th
order multiwavelets, a truncation threshold of 1029, and
solving the KS equations to a residual of less than 1027 in
any orbital. Use of accurate solutions of the KS equations
eliminates solution error as a source of error in the gradient.
The box size was 40 bohrs. Two sets of computations were
performed. In the first, the nuclei were placed at dyadic
points—i.e., at below some level of refinement~between 5
and 7! the nuclei were placed at grid nodes. In the second,
the nuclei were placed at nondyadic points—i.e., at no level
of refinement would the nuclei be resolved to a grid node.
The geometries are listed in Table I together with the reso-
lution levelsn for dyadic points in a 40-bohr cube.

Figures 2 and 3 show the absolute errors of the deriva-
tives against the smoothing parameterc for the dyadic and
nondyadic geometries. The absolute error is defined relative
to the derivative computed with the smallest value of the

FIG. 1. Plots of the function 1/r , the smoothed functionu(r ) of Eq. ~16!,
and their derivatives 1/r 2 anddu/dr of Eq. ~26!.

TABLE I. The z coordinates of molecular geometries~in bohr! for the
homonuclear diatomic molecules, H2 , Li2 , B2 , N2 , O2 , and F2 given in the
derivative calculations with the box size 40 bohrs.

Molecule Dyadica Nondyadic

H2 60.625 000 00 (n56) 60.723 039 57
Li2 61.250 000 00 (n55) 61.445 312 50
B2 61.562 500 00 (n57) 61.537 486 44
N2 61.250 000 00 (n55) 61.034 345 97
O2 61.250 000 00 (n55) 61.132 812 50
F2 61.250 000 00 (n55) 61.307 434 97

aThe numbers in parentheses indicate the resolution levels of diadified ge-
ometries in the box.
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smoothing parameter c51024 as e(c)5udE/dX(c)
2dE/dX(c51024)u. Systematic reduction of the error as a
power function ofc was observed in the calculations at the
dyadic geometries~Fig. 2!. On the other hand, the deriva-
tives calculated at the nondyadic geometries were less accu-
rate than those at the dyadic geometries and systematic im-
provement was not observed—the errors were almost
constant for the molecules Li2 , B2 , O2 , F2 , and were higher
than the accuracy of the orbitals (1027) even for the small
smoothing parameters~Fig. 3!.

To explore the origin of this numerical noise, we note
that the electronic contribution to the derivative in some
sense measures the loss of spherical symmetry of an atom.
We examine loss of spherical symmetry in Fig. 4 for a single
magnesium atom at both dyadic and nondyadic points. To
measure this in both the density and numerical form of the
derivative potential we used these~anti-!symmetric relative
differences: ur(XMg2x)2r(XMg1x)u and udVe-nuc/
dXMg(XMg2x)1dVe-nuc/dXMg(XMg1x)u. A smoothing pa-
rameterc50.0005 was used, and the density and potential
were calculated withk59 wavelets with molecular orbitals
converged to a residual of 1025. The gradient values were
6310212hartree/bohr at the dyadic geometry and 4
31025 hartree/bohr at the nondyadic one.

Although the~anti-!symmetric difference of the density
and the differentiated potential of the atom should be zero
algebraically, the compressed density and potential for the
nondyadic geometry was much less accurate in relative error
than those for the dyadic geometry. The~anti-!symmetric
relative errors of the compressed density and the compressed
differentiated potential on the nondyadic geometry was less
than 1025, which is comparable to the gradient value on the
nondyadic geometry, 431025. Therefore we can explain the
source of the constant errors in Fig. 3 as coming from the

TABLE II. The fitted parametersa and b for the error functione(c)
5acb depending on the smoothing parameterc with respect to the gradient
on dyadic points and the total energy.

Molecule

Gradient Energya

a b a b

H2 0.010 2 2.95 0.008 70 3.0
Li2 0.001 77 2.55 2.11 3.0
B2 0.014 9 2.84 27.2 3.0
N2 0.402 2.72 146 3.0
O2 0.623 2.72 285 3.0
F2 0.558 2.68 514 3.0

aThe fitted parameters are referred to in Ref. 1.a50.00435 Z5Natoms

andb53.0.

FIG. 2. Absolute errors of derivatives for H2 , Li2 , B2 , N2 , O2 , and F2 put
on dyadic points. The error is defined as the difference from the derivative
calculated with the smoothing parameterc51024.

FIG. 3. Absolute errors of derivatives for H2 , Li2 , B2 , N2 , O2 , and F2 put
on nondyadic points. The error is defined as the difference from the deriva-
tive calculated with the smoothing parameterc51024.

FIG. 4. ~Anti-!symmetric differences~relative errors! of the compressed
density and the compressed derivative potential for Mg atom along an axis
through the atom. Essentially no asymmetry is seen at the dyadic geometry,
whereas both the density and compressed derivative potential have signifi-
cant errors at the nondyadic geometry.
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numerical errors in both the nonsymmetric density and dif-
ferentiated potential on the nondyadic geometry because the
rigorously symmetric expression of the density and deriva-
tive potential is important for cancellation in the integral of
Eq. ~22!.

We fitted the errors in diatomic gradients at dyadic to a
power of the smoothing parameterc as e(c)5acb using
least-squares fitting for two parametersa and b ~Table II!.
For the energy, perturbation theory suggests thatb53 and
the coefficient was previously determined1 by fitting to re-
sults for hydrogenic atoms—a50.004 35Z5Natoms. The ex-
ponentsb for the gradient, which were empirically obtained
separately for each atom, were also close to 3. Intuitively, it
is reasonable that the error in the gradient should have the
same exponent. The coefficientsa fitted for the gradient cal-
culation are, with the exception of the hydrogen atom, much
smaller than the corresponding coefficients for the energy.
This implies that a smoothing parameter which introduces a
fairly large total energy error, will result in a proportionately
much smaller error in the gradient, and therefore in the
geometry.

The above empirical tests have demonstrated that it is
sufficient for the gradient calculation to use the same
smoothing parameterc determined for the energy
calculation,1

c5S e

0.004 35Z5Natoms
D 1/3

, ~30!

wheree is a given accuracy. Hereafter the smoothing param-
eter defined by Eq.~30! is used for not only the nuclear
potential but also its derivative. Figure 5 describes the shapes
of the smoothed differentiated potentials of H2 for given ac-
curaciese5102n, n54,...,10. The smoothing parameters
corresponding to e are 1.199131021, 5.565831022,
2.583431022, 1.199131022, 5.565831023, 2.5834
31023, and 1.199131023 for n54,...,10. It might be more
efficient to use larger values of the smoothing parameter for
the purposes of geometry optimization and then compute the
final energy with a smaller parameter, but we have not ex-
plored this.

We also explored the dependence of the gradient on the
box size used for the simulation. Table III shows the gradient
of the H2 molecule atr (HH)51.40 bohrs using LDA KS
orbitals with four kinds of box size, 3231.43n bohrs, n
51, 2, 3, 4. The box size is chosen to put the atoms on the
dyadic points. Two types of orbitals were used: one is calcu-
lated with seventh multiwavelets,r (MO),1025 and e
51025 for nuclear potential; the other is with ninth multi-
wavelets,r (MO),1027 and e51027 for nuclear potential.
The errors of the gradient for the coarse MO were constant
within the desired accuracy, 1025, and those for the other
MO were almost constant within the desired accuracy, 1027.
The box size did not affect the gradient to within an accept-
able value.

B. Comparing gradients of N 2 molecule
with correlation-consistent basis sets

The energy derivative of the N2 molecule at a bond
length of 2.0 bohrs was calculated using several correlation-
consistent Gaussian-type basis sets, unaugmented and aug-
mented cc-pVXZ (X5D,T,Q,5),24–27 and the multiresolu-
tion approach with a box size of 32 bohrs. Table IV shows
the derivative values together with their errors in the paren-
theses. The errors are defined as the differences from the
derivative calculated with the most accurate multiresolution
approachk511, r (MOs),1027, ande51028.

The derivative in the multiresolution calculations was
numerically converged with the error up to 431027, and the
convergence behavior of the precision was systematic and
desirable. The error of the most accurate derivative the
correlation-consistent basis sets yielded was 2.131025,
which was comparable with only seventh order multiwave-
lets, which is the most inexpensive calculation that yields
reliable results. Table V lists the CPU times spent on the

FIG. 5. The shapes of 1/r 2 and the differentiated smoothed potentials of H2

for given accuraciese5102n, n54,...,10.

TABLE III. The gradient values~in hartree/bohr! of H2 molecule atr (HH)51.40 bohr with the box sizeL
53231.43n bohr,n51, 2, 3, 4.a

Box sizeL
Gradient

k57, r (MOs),1025, e51025
Gradient

k59, r (MOs),1027, e51027

3231.4 0.016 466 472 8 ¯ 0.016 467 319 1 ¯

6431.4 0.016 469 206 8 (2.7331026) 0.016 467 319 3 (1.39310210)
9631.4 0.016 465 233 5 (1.2431026) 0.016 467 319 4 (2.82310210)

12831.4 0.016 469 577 3 (3.1031026) 0.016 467 320 5 (1.3831029)

aThe numbers in parentheses are the differences from the gradient value withL53231.4.
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gradient calculations inNWCHEM version 4.1~Ref. 28! and
MADNESS. The CPU time was measured on a single 1.3 GHz
Power4 processor on IBM p690 system, andD2h symmetry
was used in both programs. The total CPU times for the
multiresolution calculations are composed of those to obtain
a density, compress the differentiated smoothed potential,
and compute the inner product between the density and the
differentiated smoothed potential, Eq.~22!. In the highly ac-
curate calculations, the multiresolution approach was even
faster than Gaussian calculations, even though our imple-
mentation was just a prototype. The precision obtained with

cc-pV5Z was reproduced with seventh multiwavelet bases
70–80 times faster. The scaling of CPU time against the
precision was much better with multiresolution calculations
than with Gaussian. This excellent lower scaling and the ca-
pability to produce very high precision up to 4.131027 im-
ply an extremely high adaptivity of our multiwavelet bases.
The CPU times for the inner products were shown to be
extremely minute. Comparing with two multiresolution cal-
culations to compress the differentiated nuclear potential
with e51025 and 1027 using seventh multiwavelets and
r (MOs),1025, the accuracies were similar. This result il-
lustrated that the smoothing of the nuclear potentials repro-
duced the sufficient accuracy.

C. Geometry optimization for several molecules
with comparison to NUMOL and aug-cc-pVTZ

Tables VI and VII present the molecular geometries op-
timized with LSDA and HF calculations, respectively, using
seventh and ninth order multiwavelets. The residuals of MOs
were less than 3.031025; the smoothing parametersc for
the smoothed nuclear potentials were chosen so as to yield a
total energy error ofe51026, and the box size was set as 40
bohrs. The tables include LSDA geometries reported by
Dickson and Becke usingNUMOL as LSDA limit,18 and
LSDA and HF geometries calculated with augmented cc-
pVTZ atom-centered Gaussian-type basis sets using
NWCHEM, along with experimental values. The tested mol-
ecules were selected from the compounds for which Dickson
and Becke optimized geometries in their paper, and include
both first- and second-row elements. The geometries deter-
mined by MADNESS were optimized with a quasi-Newton
Raphson algorithm using an approximated Hessian inverse
matrix updated with BFGS algorithm.29–32 During the opti-
mization, all geometries, except for the final one, were forced
to dyadic points within a millibohr displacement in any di-
rection for each atom.

Our LSDA geometries almost completely reproduced
NUMOL results with both the seventh and ninth order multi-
wavelets. The maximum discrepancies fromNUMOL with re-
spect to the bond length were 31 millibohrs for P2 in seventh
multiwavelet results~reduced to 1 millibohr for the ninth
order basis!, and 4 millibohrs for SiO in ninth multiwavelet
results. The averages were 2.0 millibohrs for seventh multi-
wavelets and 0.6 millibohrs for ninth multiwavelets. As to
the Gaussian LSDA results, the average discrepancy from
NUMOL was 3.4 millibohrs and the maximum error was 18
millibohrs for SiO. The ninth order multiwavelets yielded the
closest geometries toNUMOL, but the seventh order multi-
wavelets, which is much less computational demanding, still
gave better results than aug-cc-pVTZ.

In Table VII, we report corresponding HF geometry op-
timization results. For the linear CO, N2 , and HF molecules,
and the H2O molecule,MADNESS reproduced the past nu-
merical results33–38 within a millibohr.

The discrepancy between ninth order multiwavelets and
Gaussians was on average 4.0 millibohrs with the largest
error being 19 millibohrs for SiO. Noticeable errors were
found in the Gaussian results for second-row compounds in
both LSDA and HF calculations.

TABLE IV. The gradients and total energies~in hartree/bohr! of N2

molecule at r (NN)52.0 bohr with Gaussian basis sets and
multiresolution approach.

Calculation Gradienta Total energy

NWCHEM

cc-pVDZ 0.076 981 98 (5.031022) 2108.954 210
aug-cc-pVDZ 0.079 966 88 (5.331022) 2108.960 452

cc-pVTZ 0.033 701 06 (6.931023) 2108.986 281
aug-cc-pVTZ 0.033 036 33 (6.231023) 2108.987 529

cc-pVQZ 0.027 634 37 (7.931024) 2108.994 283
aug-cc-pVQZ 0.027 729 27 (8.931024) 2108.994 744

cc-pV5Z 0.026 961 89 (1.231024) 2108.996 009
aug-cc-pV5Z 0.026 818 90 (2.131025) 2108.996 191

MADNESS

k55,r (MOs),1023,e51024 0.028 193 27 (1.431023) 2108.984 529
k57,r (MOs),1024,e51024 0.026 947 19 (1.131024) 2108.996 439
k57,r (MOs),1025,e51025 0.026 709 51 (1.331024) 2108.996 398
k57,r (MOs),1025,e51027 0.026 723 75 (1.231024) 2108.996 400
k59,r (MOs),1025,e51025 0.026 842 40 (2.731026) 2108.996 426
k59,r (MOs),1026,e51026 0.026 840 17 (4.731027) 2108.996 423
k511,r (MOs),1026,e51026 0.026 840 11 (4.131027) 2108.996 423
k511,r (MOs),1027,e51028 0.026 839 70 ¯ 2108.996 423

aThe numbers in parentheses are the differences from the gradient value
calculated with the multiresolution approachk511, r (MOs),1027,
e51028.

TABLE V. CPU times~in sec! to calculate gradients of N2 molecule using
NWCHEM andMADNESS.

Calculation Total Density
Differentiated

potential
Inner

product

NWCHEM

cc-pVDZ 1.6
aug-cc-pVDZ 3.3

cc-pVTZ 6.9
aug-cc-pVTZ 23.3

cc-pVQZ 59.2
aug-cc-pVQZ 237.6

cc-pV5Z 358.4
aug-cc-pV5Z 2,261.5

MADNESS

k55, r (MOs),1023, e51024 1.6 0.3 1.3 0.004
k57, r (MOs),1024, e51024 4.9 0.6 4.3 0.015
k57, r (MOs),1025, e51025 4.4 0.5 3.9 0.013
k57, r (MOs),1025, e51027 4.7 0.6 4.1 0.014
k59, r (MOs),1025, e51025 16.9 2.4 14.5 0.046
k59, r (MOs),1026, e51026 18.2 4.0 14.2 0.041
k511, r (MOs),1026, e51026 99.1 64.1 34.8 0.240
k511, r (MOs),1027, e51028 108.5 75.0 33.3 0.200
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D. High-precision Hartree–Fock geometry of water

Recently, Pahl and Handy reported a novel mixed basis
of plane waves and polynomial basis functions strictly local-
ized within disjoint spheres around the nuclei.38 Table VIII
compares Pahl’s HF geometry optimization on a water mol-
ecule with our multiresolution calculation employing high
precision. The precision of the optimization Pahl and Handy
estimated was an error in the total energy of 3 microhartree
with the box sizeL518.0 bohrs and the 30 polynomials, and
the geometry was converged to femtometer accuracy
(1025 Å) using a picohartree energy threshold for the total
energy. Our optimized geometry was obtained withk511,
e51029, and converging the orbitals to a residual less than
1028, with a box size of 40 bohrs. The geometry optimiza-
tion was performed until the maximum derivative was 1.7
31027 hartree/bohr and RMS of the derivatives 2.7
31027 hartree/bohr. The water molecule was translated ev-
ery iteration to put the oxygen atom at the center of the box
~a dyadic point!, but we did not force the hydrogen atoms to

dyadic points. The accuracy of the gradient of hydrogen is
better than 1028 even at the nondyadic points, as Fig. 3
shows. The accuracy of the optimization is expected to be
substantially better than that of Pahl, and no extrapolation is
necessary since we are able to use a large box size. The
differences between Pahl’s and the present results are 7
31026 bohrs, 431026 Å for r (OH), 0.0012° for/HOH,
and 1.031025 hartree for the total energy.

VI. CONCLUSIONS

We have presented an efficient and accurate analytic gra-
dient method for HF and KS calculations using multiresolu-
tion analysis in multiwavelet bases. From the Hellman–
Feynman theorem, the derivative of the total energy with
respect to the nuclear coordinate is given as an inner product
between the density function and the differentiated nuclear
potential. The multiwavelets are exploited to compute the
inner product between the compressed functions efficiently.
Given the density from a converged HF or DFT calculation,

TABLE VI. Geometric parameters optimized with LSDA calculations.a

Molecule Parameter

LSDA geometry

Expt.b
MADNESS

k57
MADNESS

k59 NUMOLb
NWCHEM

aug-cc-pVTZ

H2 r (H-H) 1.446 1.446 1.446 1.448 1.401
Li2 r (Li-Li) 5.120 5.120 5.120 5.120 5.051
LiH r (Li-H) 3.030 3.030 3.029 3.032 3.015
CO r (C-O) 2.129 2.129 2.129 2.133 2.132
N2 r (N-N) 2.070 2.068 2.068 2.071 2.074
Be2 r (Be-Be) 4.507 4.521 4.521 4.524 4.63
HF r (H-F) 1.760 1.761 1.761 1.765 1.733
BH r (B-H) 2.373 2.373 2.373 2.375 2.329
F2 r (F-F) 2.617 2.614 2.615 2.617 2.668
P2 r (P-P) 3.559 3.571 3.572 3.585 3.578
BH3 r (B-H) 2.268 2.268 2.269 2.270 2.329
CH2 r (C-H) 2.123 2.124 2.124 2.126 2.099

/HCH 100.9 101.1 101.1 101.1 102.4
CH4 r (C-H) 2.072 2.072 2.072 2.073 2.052
C2H2 r (C-C) 2.269 2.269 2.269 2.271 2.274

r (C-H) 2.030 2.030 2.030 2.029 2.005
C2H4 r (C-C) 2.498 2.499 2.500 2.501 2.530

r (C-H) 2.067 2.067 2.066 2.067 2.050
/CCH 121.7 121.6 121.6 121.6 121.1

C2H6 r (C-C) 2.854 2.851 2.849 2.852 2.876
r (C-H) 2.079 2.079 2.079 2.081 2.058
/CCH 111.7 111.7 111.7 111.7 111.8

NH3 r (N-H) 1.930 1.930 1.930 1.932 1.912
/HNH 107.5 107.3 107.3 107.2 106.7

H2O r (O-H) 1.833 1.833 1.833 1.836 1.809
/HOH 105.0 105.0 105.0 104.9 104.5

CO2 r (C-O) 2.191 2.195 2.195 2.198 2.192
H2CO r (C-O) 2.265 2.263 2.263 2.267 2.279

r (C-H) 2.118 2.119 2.119 2.120 2.094
/OCH 121.9 121.9 121.9 121.9 121.7

SiH4 r (Si-H) 2.818 2.818 2.821 2.825 2.795
SiO r (Si-O) 2.856 2.855 2.859 2.877 2.853
PH3 r (P-H) 2.703 2.702 2.704 2.709 2.671

/HPH 91.8 91.9 91.8 91.9 93.45
HCP r (P-C) 2.898 2.900 2.902 2.912 2.910

r (C-H) 2.047 2.046 2.047 2.048 2.020

aUnits are bohr for bond lengths.
bCalculated values and experimental references in Ref. 18.
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the additional effort to compute the analytic derivatives is
expected to grow with system size and precision according to
O„Natomln V ln(1/e)…, whereNatom is the number of atoms,V
is the system volume, ande is the required, finite precision.
The linear dependence on the number of atoms arises simply
from the need to compute the derivative of the potential for
each atom. Each of these derivatives is smooth both at long
range and very close to the nuclei, which, in the multireso-

lution representation and multiwavelet basis, results in the
logarithmic dependence upon both the volume and precision.

We directly differentiated our previous form of
smoothed nuclear potential, and values of the smoothing pa-
rameter that yield acceptable errors in total energy, were
shown to yield proportionately smaller errors in the gradient
based upon study of six homonuclear diatomic molecules.
This approach does not require additional smoothing param-

TABLE VIII. Highly precise Hartree–Fock geometry optimization for H2O.a

r (O-H) ~bohr! r (O-H! ~Å) /HOH Total energy~hartree!

MADNESS k511 1.775 575 0.939 594b 106.3375 276.068 180 09
Pahl and Handyc 1.775 582 0.939 598b 106.3387 276.068 170d

aug-cc-pVQZ Gaussian 1.775 972 0.939 804b 106.3286 276.066 676

aUnits are bohr for bond lengths and hartree for total energies.
bUnits are converted by a factor 0.529 177 249 from bohr to Å.
cReference 38.
dThe multiresolution approach produced the total energy276.068 180 hartree at Pahl’s geometry.

TABLE VII. Geometric parameters optimized with Hartree–Fock calculations.a

Molecule Parameter

Hartree–Fock geometry

Expt.b
MADNESS

k57
MADNESS

k59
NWCHEM

aug-cc-pVTZ
Nearly

HF-limit

H2 r (H-H) 1.386 1.386 1.388 ¯ 1.401
Li2 r (Li-Li) 5.264 5.259 5.260 ¯ 5.051
LiH r (Li-H) 3.035 3.035 3.038 ¯ 3.015
CO r (C-O) 2.081 2.082 2.086 2.081c 2.132
N2 r (N-N) 2.012 2.013 2.016 2.013c 2.074
Be2 r (Be-Be) ¯ ¯ ¯ ¯ 4.63
HF r (H-F) 1.695 1.695 1.699 1.696c 1.733
BH r (B-H) 2.305 2.305 2.308 ¯ 2.329
F2 r (F-F) 2.502 2.506 2.510 ¯ 2.668
P2 r (P-P) 3.495 3.493 3.510 ¯ 3.578
BH3 r (B-H) 2.243 2.243 2.244 ¯ 2.329
CH2 r (C-H) 2.068 2.068 2.069 ¯ 2.099

/HCH 103.8 103.8 103.8 ¯ 102.4
CH4 r (C-H) 2.043 2.044 2.045 2.048c 2.052
C2H2 r (C-C) 2.228 2.228 2.230 ¯ 2.274

r (C-H) 1.992 1.992 1.992 ¯ 2.005
C2H4 r (C-C) 2.484 2.484 2.484 ¯ 2.530

r (C-H) 2.029 2.029 2.030 ¯ 2.050
/CCH 121.8 121.8 121.6 ¯ 121.1

C2H6 r (C-C) 2.878 2.879 2.882 ¯ 2.876
r (C-H) 2.046 2.046 2.048 ¯ 2.058
/CCH 111.3 111.2 111.2 ¯ 111.8

NH3 r (N-H) 1.886 1.885 1.887 1.890c 1.912
/HNH 107.8 108.2 108.1 107.2c 106.7

H2O r (O-H) 1.776 1.776 1.778 1.776c 1.809
/HOH 106.3 106.4 106.3 106.3c 104.5

CO2 r (C-O) 2.146 2.144 2.147 ¯ 2.192
H2CO r (C-O) 2.226 2.223 2.227 ¯ 2.279

r (C-H) 2.064 2.064 2.065 ¯ 2.094
/OCH 122.0 122.0 121.9 ¯ 121.7

SiH4 r (Si-H) 2.785 2.785 2.793 ¯ 2.795
SiO r (Si-O) 2.788 2.788 2.807 ¯ 2.853
PH3 r (P-H) 2.653 2.653 2.660 ¯ 2.671

/HPH 95.7 95.7 95.6 ¯ 93.45
HCP r (P-C) 2.849 2.849 2.860 ¯ 2.910

r (C-H) 2.005 2.006 2.006 ¯ 2.020

aUnits are bohr for bond lengths.
bExperimental references in Ref. 18.
cCO for Ref. 33, N2 for Ref. 34, HF for Ref. 35, CH4 for Ref. 36, NH3 for Ref. 37, and H2O for Ref. 38.
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eters. It has been implemented into the existing prototype
multiresolution HF/KS-SCF solverMADNESS, and demon-
strated as practical by reproduction within available digits of
the LSDA basis set limit results of Dickson and Becke
NUMOL. The discrepancy of LSDA and HF geometries be-
tween ninth multiwavelets and aug-cc-pVTZ bases was on
an average 3–4 millibohrs for bond lengths, and was greater
in second-row compounds by a few dozen millibohrs.

Also reported was a high-precision HF geometry for the
water molecule. Our calculation improved upon the previous
best result of Pahl and Handy by 731026 bohrs, 4
31026 Å for r (OH), 0.0012° for /HOH, and 1.0
31025 hartree for the total energy. The accuracy of our ge-
ometry is estimated from the gradients and Hessian at the
optimized geometry to be within 231027 bohr, 131027 Å
for r (OH), and within 331025 deg for/HOH. The LSDA
energy derivatives in Gaussian and multiresolution bases
were compared for the N2 molecule. While the best aug-cc-
pV5Z basis were in error by only 1025 hartree/bohr, the
most inexpensive multiresolution calculation that we recom-
mend~seventh order wavelets! is already more accurate and
substantially faster.

In the current approach, the derivatives for nuclei at dy-
adic points show high precision, but those at nondyadic
points are not accurate enough for reliable geometry optimi-
zation. An unsatisfactory approach that we have temporarily
adopted is to displace nuclei by small amounts~under user
control! to nearby dyadic points. This enables functional ge-
ometry optimization, but does not enable dynamics. It is
known to be possible to subdivide boxes by factors of other
than 2 while still preserving the speed and precision guaran-
tees of the multiresolution framework. This enables nuclei to
always be placed at dyadic points. We have not yet imple-
mented this approach, but have begun work in this direction
since it is clearly the preferred approach.
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