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In a previous study@R. J. Harrisonet al., J. Chem. Phys.~in press!# we reported an efficient,
accurate multiresolution solver for the Kohn–Sham self-consisitent field~KS-SCF! method for
general polyatomic molecules. This study presents an efficient numerical algorithm to evalute
Hartree–Fock~HF! exchange in the multiresolution SCF method to solve the HF equations. The
algorithm employs fast integral convolution with the Poission kernel in the nonstandard form,
screening the sparse multiwavelet representation to compute results of the integral operator only
where required by the nonlocal exchange operator. Localized molecular obitals are used to attain
near linear scaling. Results for atoms and molecules demonstrate reliable precision and speed.
Calculations for small water clusters demonstrate a total cost to compute the HF exchange potential
for all nocc occpuied MOs scaling asO(nocc

1.5). © 2004 American Institute of Physics.
@DOI: 10.1063/1.1790931#

I. INTRODUCTION

In a previous work,1 we presented a practical multireso-
lution method2,3 in multiwavelet bases to solve the all-
electron local density approximation~LDA ! Kohn–Sham
~KS! ~Ref. 4! equation for molecules. The approach de-
scribed in Ref. 5 was employed for the solution of the inte-
gral form of the density functional equations. In this paper,
we extend the approach to include Hartree–Fock~HF! ex-
change using an algorithm that will scale asympotically lin-
early with the molecule size while maintaining a guarantee
of arbitrary finite precision.

The evaluation of HF exchange is necessary to deter-
mine the electronic wave functions for HF method6 and the
KS method with hybrid exchange functionals~such as
B3LYP! ~Refs. 7 and 8! as well as post-HF methods. The HF
~or exact! exchange term is a nonlocal operator, and this
evaluation has been regarded as a major computational
bottleneck for electronic structure calculations.9 The widely
used Gaussian basis implementation with the direct self-
consistent field~SCF! method10 demandsO(N3 – 4) scaling
cost for small and moderate-size molecules, and possibly
O(N2 ln N) for large systems.11 Several algorithms have been
proposed forO(N) Hartree–Fock exchange in the Gaussian
bases,12–14 based upon assuming or forcing an exponential
asymptotic behavior in the density matrix,r(r ,r 8)
;exp(2ur2r8u/,) ~Ref. 15!, where , is a system-specific
length-scale parameter. However, the demonstrations of lin-
ear scaling behavior are limited to using relatively small and
nondiffuse basis sets for large systems. Diffuse functions are
often chemically essential even in HF or density functional
theory ~DFT! calculations, and present a significant compu-
tational challenge in large systems, such as the DNA stacking
problem.16 Furthermore, linear scaling algorithms based
upon forcing sparsity unavoidably introduce an error in the

total energy that grows with the system size unless the trun-
cation threshold is reduced with the system size. This is not
practical for computing small chemical energy differences in
very large systems.

These previous methods have relied exclusively upon
spatially localized representations to achieve efficiency by
introducing sparsity into the density matrix and/or integrals.
However, this approach immediately precludes efficient
treatment of either the smoothly varying component of den-
sity, or dense blocks of the density matrix such as inevitably
occur within atoms or between neighboring atoms. Forcing
exponential decay in metallic systems or systems with small
highest occupied molecular orbital-lowest unoccupied mo-
lecular orbital ~HOMO-LUMO! gaps, such as graphitic
sheets, will generate incorrect results since the density matrix
does not decay exponentially. The previousO(N) HF ex-
change method reverts to anO(N2) complexity in such sys-
tems. No systematic analysis has been performed to date on
the errors introduced by these exchange approximations.
This is an especial concern in multicomponent systems such
as required in the study of catalytic processes involving con-
jugated hydrocarbons on the surface of nanoscale metal par-
ticles absorbed on oxide surfaces. In contrast, a multiresolu-
tion approach, by separating the behavior of functions
between length scales is efficient and maintains a guarantee
of precision regardless of the physical composition of the
system.

Recent success with hybrid DFT exchange-correlation
functionals7,8 has motivated the development of efficient
techniques to include HF exchange in plane-wave~PW! DFT
molecular dynamics.17 A straightforwardly optimized proce-
dure, which was reported by Chawla and Voth18 in conjunc-
tion with the all-electron ‘‘projector augmented wave’’
method,19 formally scales inO(nocc

2 NPWln NPW) for both en-
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ergy and its gradient~with respect to orbitals! of the HF
exchange, wherenocc andNPW are the numbers of occupied
MOs and plane waves, respectively.

A systematic approach to multiresolution constructions
started with the development of wavelet bases, see Ref. 2 and
references therein. For numerical applications, the results in
Ref. 3 pointed out a practical approach to reducing the com-
putational cost. One of the results of Ref. 3 was the intro-
duction of the nonstandard form~NS-form! for representing
operators in multiresolution bases. However, the straightfor-
ward generalization of NS-form~or for that matter, the stan-
dard form! to multiple dimensions is too expensive for prac-
tical applications. Our approach is based on using NS-form
and the separated representations of operators that were first
used in Ref. 20 and significantly extended in Ref. 21. The
basic point of Ref. 21 is that many apparently nonseparable
operators are, in fact, separable with a finite but arbitrary
precision. Moreover, the number of terms necessary for such
representations is remarkably small.

In the following, we first present essential aspect of the
numerical approach, describe the algorithm for the HF ex-
change, then the combination with localized orbitals. Finally,
we provide some numerical results and conclusions.

II. MATHEMATICAL BACKGROUND

Multiresolution wavelet and multiwavelet expansions or-
ganize functions and operators efficiently in terms of prox-
imity on a given scale and between the length scales.2,3,5,20

Multiresolution decomposes the Hilbert spaceL2 (Rd), d
>1 into a chain of closed subspaces~refinement scales!,

V0,V1,V2,¯,Vn,¯ . ~1!

The wavelet subspacesW j are defined as an orthogonal
complement ofV j in V j 21 , thus

Vn5V0 %

j 50

n

W j . ~2!

In a previous study,1 we presented a practical approach for
fast computation with integral operators~notably Green
functions for the Poisson and bound-state Helmholtz equa-
tions! in the NS-form. LetT be an operator such as the inte-
gral convolution operator with the kernelK,

~T* f !~x!5E dy K~x2y! f ~y!. ~3!

As was introduced in Ref. 3, by using orthogonal projection
operatorsPj :L2(Rd)→V j , and Qj :L2(Rd)→W j with Qj

5Pj 112Pj , the NS-form of the operatorT is expressed as

Tn5T01 (
j 50

n21

~Aj1Bj1Cj !, ~4!

where Tj5PjTPj , Aj5QjTQj , Bj5QjTPj , and C
5PjTQj . This Eq.~4! is derived from a ‘‘telescopic’’ series

Tn5~Tn2Tn21!1~Tn212Tn22!1¯1~T12T0!1T0 ~5!

by using (Tj 112Tj )5Aj1Bj1Cj . The function f (x) is
represented by the projection operators as

f n5Pnf 5 f 01 (
j 50

n21

Qj f . ~6!

The application of the NS-form of the operatorT to the func-
tion f, i.e.,Tnf n , @Eq. ~3!# is also given as a telescopic series

Tnf n5~Tnf n2Tn21f n21!1¯1~T1f 12T0f 0!1T0f 0 . ~7!

We can rewrite Eq.~7! taking the relationPjQj5Qj Pj50
into account,

Tnf n5T0f 01 (
j 50

n21

@Aj~Qj f !1Bj~Pj f !1Cj~Qj f !#. ~8!

In this paper, the elements ofTn are denoted~in one dimen-
sion! by

@r lm
n # i j 5E dxf i l

n ~x!@Tf jm
n ~x!#, ~9!

wheref i l
n (x) is a basis for the projection operatorPn .5 The

elements of An21 , Bn21 , and Cn21 ~equivalently,
Tn2Tn21) denoted bya lm

n , b lm
n , andg lm

n , respectively, are
computed from those ofTn by the two-scale relations. The
key in NS-form is that this representation of an operator uses
bases with supports on squares and has an advantage that it
acts scale by scale, without explicitly involving the interac-
tions between different length scales. Futhermore, the spar-
sity in the multiwavelet space (Wj ), which is guaranteed by
the vanishing moment property, eventually enables a linear
scaling operation asO@(2 ln e)N#, wheree is the scheduled
accuracy, andN is the number of boxes, or coefficients.

In one dimension the implementation of the above for-
mulation using thekth Legendre polynomial bases is very
straightforward for the application of an integral operator
with O@(2 ln e)k2N# operation cost. However, in three di-
mensions the cost is nominallyO@(2 ln e)k6N# operations,
which has a prohibitively large overhead for a practical code.
Separated representations of integral operators1,20 and use of
the low operator rank of the resulting one-dimensional op-
erators, reduce the computational cost toO@(2 ln e)k3N# op-
erations, which enables practical computation with multi-
wavelet bases in three and higher dimensions.

III. ALGORITHM

Initially, most of the equations are written for simplicity
as if in one dimension. The extension to three dimensions is
discussed at the end. The application of the Hartree–Fock
operator (K̂) to a function@ f (x)# is given by

K̂ f ~x!5E dx8
r~x,x8!

ux2x8u
f ~x8!, ~10!

where the density matrix in coordinate presentation is given
by

r~x,x8!5(
m

nocc

xm~x!xm
† ~x8!, ~11!

where xm(x) is the mth occupied molecular orbital~MO!,
andnocc is the number of occupied MOs.
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We already have a fast algorithm in multiwavelet bases
to apply Coulomb operator~i.e., the Green’s function to the
Poisson equation! ~Ref. 1!, which may be used to implement
exchange in a straightforward fashion, as follows:

K̂ f ~x!5(
m

nocc

xm~x!E dx8
xm

† ~x8! f ~x8!

ux2x8u
. ~12!

This is evaluated by looping over MOs (xm), and forming
the product of the MO with the target function~f!; applying
the Coulomb operator; and multiplying the resulting poten-
tial by the MO.

During each iteration of the solution of the Hartree–
Fock equations, this operator must be applied to each occu-
pied orbital. Therefore, the nominal cost of this approach is
roughly O(Vnocc

2 ), whereV is the system volume. The de-
pendence onV will probably be weaker than this due to the
adaptive multiresolution representation and the potential be-
ing smooth at long range. ThereforeV might be neglected
from scaling expressions hereafter. If the occupied orbitals
are localized ~or, equivalently, if the density matrix is
sparse!, there will only beO(nocc) nonzero products of the
occupied orbitals, and the above algorithm reduces to
O(Vnocc). The factor proportional to the system volume
arises from computing in all space the electrostatic potential
due to the productx(x8) f (x8). However, the very next step
in the algorithm is multiplication by the localized MO. If the
algorithm that applies the Coulomb operator is modified to
compute the potential only in the volume where the MO is
significant, the overall cost can be reduced toO(nocc), or
O(1) for each localized target function.

Our goal is to modify the Coulomb operator so that it
computes the potential to the required precision in the vol-
ume where the localized MO is significant, and outside this
volume does as little work as possible. Since the NS-form3 of
the Coulomb operator computes contributions at all length
scales, it is inevitable that there will be nonzero values out-
side of the desired minimum volume. However, the finer-
scale contributions need to be computed only where neces-
sary, and only to a precision controlled, in part, by the
magnitude of the orbital.

We denote the product of a MO@x(x)# and the target
function@ f (x)# by g(x)5x(x) f (x), and the electrostatic po-
tential due to the charge densityg(x) by u(x). Then in some
subvolumeV we wish to determine if the exchange potential
may be neglected. A norm-wise bound on the contribution
may be obtained from the Schwarz inequality

U E
V

x~x!u~x!dxU<S E
V

x2~x!dxD 1/2S E
V

u2~x!dxD 1/2

.

~13!

The 2-norm of a function in the scaling function basis is
simply the 2-norm of the coefficients, since the basis func-
tions are orthonormal.

The potential is formed from the product of the matrix
representation at leveln of the Coulomb operator (Tn with
elements@r lm

n # i j ) and the function coefficients (gli
n )

uli
n 5(

m j
@r lm

n # i j gm j
n . ~14!

The translationl labels a subvolume at leveln. Due to the
multiscale summation, and also to minimize the computa-
tion, we must screen each contribution separately. A norm-
wise bound for contribution in boxl from boxm is provided
by the Schwarz inequality, which for matrices becomes the
Frobenius norm

ir lm
n gm

n iF<ir lm
n iFigm

n iF . ~15!

At each level of the multiscale summation, the dominant
contributions come from the box and its 26 nearest neigh-
bors, so we can neglect contributions if

isl
niFir lm

n iFigm
n iF<

e

27nmax
. ~16!

The multiscale summation over thenmax refinement levels is
accomplished through the nonstandard form@Eq. ~5!#. The
differenceTn2Tn21 decays very rapidly with distance since
the long range~i.e., smoother! parts of the operator are ac-
curately represented at the coarser levels. Thus, the screening
is in practice performed using

isl
ni2ir lm

n 2r lm
n21i2igm

n i2<
e

27nmax
. ~17!

The norm of the target function@g(x)5xm(x) f (x)# in each
box can be precomputed and stored. Since the Coulomb op-
erator is an integral convolution, the matrixr lm

n actually only
depends uponl 2m. Furthermore, the operator is homoge-
neous and, therefore, the matrix at leveln can be obtained by
rescaling the matrix at level 0. These properties permit the
operator matrices to be computed as needed with little com-
putational overhead. Finally, the norm of the molecular or-
bital in each box in which it is significant can also be pre-
computed and stored. During the application of the operator,
the norm of the MO may be required in a box which has not
been precomputed. This can happen during the computation
of contributions at a locally finer or coarser level than that
required to resolve the MO. In this instance, the two-scale
relationship5,22 can be used to compute the missing coeffi-
cients. This additional computational cost is minimized by
appropriate ordering of the screening tests and loops, and by
reuse in the application of the exchange operator to multiple
target functions.

The algorithm that applies the screened Coulomb opera-
tor to g(x) is then as follows:
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loop over levels n
loop over translations (1−m) sorted by magnitude and shell

Compute T[0][1−m] at level 0 or rescale to get T[n][1−m]
Recur T[n−1][(1−m)/2] down to level n
Form the non-standard form operator NS=(T[n]−T[n−1])
loop over non-zero translations m in g[n]

1=(1−m)+m
if uNSu* ug[n][m] u>eps/(27 *n max)

if uNSu* ug[n][m] u* us[n][1] u>eps/(27 *n max)
u[n][1]=u[n][1]+NS *g[n][m]

end if
end if

end loop
if no contributions were significant

go to next n
end if

end loop
end loop

Since the multiwavelets have at leastk vanishing mo-
ments~or multipoles!, the numerical significance of the co-
efficient blocka lm

n , which is one of NS-form elements~de-
noted by ‘‘uNSu’’ in the above algorithm! of the interaction
with the kernel of Poisson equation (ur 2r 8u21) in full mul-
tiwavelet representation, will be asymptotically proportional
to u l 2mu22k21. Also, the most slowly decaying elements in
the other two blocks of NS-form elements,b lm

n , and g lm
n ,

decays asu l 2mu2k21. Furthermore, the multiscale represen-
tation of the function will introduce additional sparsity. Since
we usually use Legendre polynomials of relatively high or-
der (k55,7,9) for reliable calculations, each submatrix of
the operator in NS-form is expected to be significant just in a
narrow band around the diagonal. This aspect leads to the
linear-scaling computation cost in the application of the op-
erator to the function.

The extension to three dimension is accomplished by
replacing the translations~l andm! and the multiwavelet in-
dices ~i and j! with three vectors. However, as previously
described in Ref. 1, an efficient algorithm requires the use of
a separated form for the operator to reduce the effective scal-
ing to quartic in order of the multiwavelet. The separated
form is given by

@r l xl yl zl x8 l
y8 l

z8
n

#stus8t8u85(
n

@Xl xl
x8

n~n!
#ss8@Yl yl

y8
n~n!

# tt8@Zl zl z8
n~n!

#uu8 ,

~18!

and the number of terms included in the summation overm is
referred to as the separation rank of the operator in analogy
to the two-dimensional singular-value decomposition. A sub-
optimal separation is currently obtained by fitting 1/r ~the
kernel of the Coulomb operator! to a sum of Gaussian over a
large range ofr. The matrix elements of the one-dimensional
operators~Gaussian convolutions! are readily generated as
described in Refs. 1, 3, and 5.

Application of the separated nonstandard form (Tlm
n

2Tlm
n21) of the operator can be accomplished in several

ways. The most straightforward is to apply separatelyTlm
n

andTlm
n21, and then to subtract the results. However, this is

both inefficient and can result in loss of significant digits. A
better approach is subtract the separated representations of
the two operators and then perform a rank reduction as de-
scribed in Ref. 21. The NS operator is expected to be low
rank,21 and, it is possible to avoid some of the loss of preci-
sion. The most accurate, and potentially most efficient, ap-
proach is to use the two-scale relationship to form individu-
ally the 63 blocks of the nonstandard form,3,5 each in a
separated representation. This avoids the loss of precision
arising from taking the differenceTlm

n 2Tlm
n21 and permits

exploitation of the differing sparsity in each block of the
nonstandard form. However, in the separated representation
the necessary code is much more complicated and we have
not yet pursued this approach.

IV. LOCALIZATION OF ORBITALS

Our formulation for the HF method is based on the
canonical molecular orbitals~CMOs! @i.e., xm522Ĝ
* (V•xm)], which are spatially delocalized. In our implemen-
tation of the integral operators, the Coulomb potential can be
computed inO(Vnocc) due to the locality of the density func-
tion r(x), which is invariant to the unitary transformation
among the occupied MOs, whereas the computational cost to
apply the HF exchange operator to all of the occupied MOs
depends on the spatiality of the MOs. The nominal cost of
the HF exchange operator with all of the delocalized CMOs
is estimated to be roughlyO(Vnocc

2 ). The quadratic depen-
dence onnocc can be reduced by using the localized molecu-
lar orbitals ~LMOs! via the cutoff mechanism implemented
in NS-form of the HF exchange operator. The LMOs are
obtained via the unitary transformation among the CMOs as

x i
LMO5(

j

nocc

Ui j x j
CMO, ~19!

whereU is an unitary matrix giving a rotation between the
CMOs and LMOs. The HF exchange operator to all of
CMOs is calculated via the unitary transformation of HF
exchange for all of the LMOs as
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K̂CMOx i
CMO~x!

5(
m

nocc

xm
CMO~x!E dx8

xm
CMO†~x8!x i

CMO~x8!

ux2x8u
,

5(
j

nocc

U ji* (
m

nocc

xm
LMO~x!E dx8

xm
LMO†~x8!x j

LMO~x8!

ux2x8u
, ~20!

5(
j

nocc

U ji* @K̂LMOx j
LMO~x!#.

The algorithm to compute HF exchange via LMOs is sum-
marized as follows:

~1! Obtain the unitary matrix for Foster-Boys
localization.23 The matrix is simply obtained from thenocc

3nocc matrix of one-electron dipole integrals
^xm

CMOur uxn
CMO&, which are efficiently computed as inner

products.
~2! Apply the rotation and store the LMOs,x j

LMO , j
51,...,nocc @Eq. ~19!#.

~3! Apply the HF exchange operator to all of the LMOs,
K̂LMOx j

LMO(x), j 51,...,nocc.
~4! Transform back to the CMOs basis by the unitary

matrix @Eq. ~20!#.

V. RESULTS

A. Hartree–Fock calculation on atoms

An initial test of the implementation was performed
upon the neutral atoms He, Be, Ne, Mg, Ca, and Sr. Table I
lists the total and the HOMO energies along with the results
of Thakkar and co-workers.24 In the multiresolution calcula-
tions, the nuclear potential smoothing parameter was chosen
so as to yield an energy accurate to at least 1026 hartree
~denoted by enuc51026), the box size was set asL
580 bohrs andD2h symmetry was used. We could not use
LMOs because the symmetry usage forced the MOs to be
delocalized. We used the seventh and ninth order multiwave-
let bases and solved to a residual in the MOs@denoted by
r (MO)] of 1025 and 1026, respectively. For the Ca and Sr
atoms, a more precise calculation withk511 and r (MO)
51026 was additionally carried out. The results agree with
the atomic data from Thakkar, which was calculated with
Slater-type functions to predict total energies within around
1026 hartree, which is the accuracy delivered in the previous
testing LSDA calculations.1 Systematic convergence to the
correct atomic limit is observed in the multiresolution calcu-
lations. For all the test atoms except Sr, the ninth order mul-
tiwavelet bases reproduce Thakkar’s results for the total en-
ergies with the five decimals. For Sr, the 11th multiwavelet
bases give an excellent agreement with Thakkar’s total en-
ergy within 131026 hartree. The accuracies of the total en-
ergies obtained by the seventh multiwavelet bases are
931028, 231026, 231025, 531025, 931025, and
431024 hartree for He, Be, Ne, Mg, Ca, and Sr, respec-
tively. For Ca and Sr, the ninth multiwavelet bases yield the
accuracy as 331026 and 231025 hartree for the total en-
ergy, respectively.

B. Hartree–Fock calculation on diatomic molecules

Hartree–Fock calculations were performed upon several
homonuclear/heteronuclear diatomic molecules near their
equilibrium geometries. The molecules and their bond
lengths are from a previous study by Pahl and Handy.25 For
the mononuclear diatomic molecules, we computed H2, C2 ,
N2 , and F2 with the bond lengths 1.400, 2.358, 2.068, and
2.668 bohrs, respectively. For the heteronuclear systems BH,
HF, BF, CO, and NO1 with the bond lengths 2.3289, 1.7328,
2.386, 2.132, and 2.0092 bohrs. The box size was set as the
bond length times 32 bohrs in order to locate the nuclei at
dyadic points.

Tables II and III list the total and HOMO energies for the
diatomic molecules, and the dipole moments for the hetero-
nuclear molecules. The results for the homonuclear diatomic
molecules were obtained with theD2h symmetry and with
the nuclear potentials smoothed within the accuracy 1026

and 1027 hartree~denoted byenuc51026 and 1027, respec-
tively!. For the heteronuclear diatomic molecules, we used
C2v symmetry andenuc51026. The tables include the ex-
trapolated results reported by Pahl and Handy,25 the numeri-
cal Refs. 26 and 27, and the Gaussian calculations with aug-
cc-pVXZ, (X5T,Q,5) ~Ref. 28! using theNWCHEM program
package.29

As to the homonuclear diatomic molecules, the most ac-
curate multiresolution results obtained were with 11th multi-
wavelet bases, residuals of MOsr (MO),1026, and
e51027. Our calculations show systematic convergence

TABLE I. Total and HOMO energy~in hartree! for atomic Hartree–Fock
calculations.L580 bohrs andenuc51026.

Accuracy Total energy HOMO energy

He
k57, r (MO)<1025 22.861 680 14 20.917 955
k59, r (MO)<1026 22.861 680 23 20.917 955
Thakkar 22.861 680 00 20.917 956

Be
k57, r (MO)<1025 214.573 022 20.309 267
k59, r (MO)<1026 214.573 023 20.309 269
Thakkar 214.573 023 20.309 270

Ca
k57, r (MO)<1025 2676.758 093 20.195 529
k59, r (MO)<1026 2676.758 189 20.195 529
k511, r (MO)<1026 2676.758 186 20.195 529
Thakkar 2676.758 182 20.195 530

Ne
k57, r (MO)<1025 2128.547 079 20.850 406
k59, r (MO)<1026 2128.547 098 20.850 409
Thakkar 2128.547 098 20.850 410

Mg
k57, r (MO)<1025 2199.614 589 20.253 051
k59, r (MO)<1026 2199.614 637 20.253 052
Thakkar 2199.614 636 20.253 052

Sr
k57, r (MO)<1025 23131.545 280 20.178 455
k59, r (MO)<1026 23131.545 704 20.178 456
k511, r (MO)<1026 23131.545 684 20.178 456
Thakkar 23131.545 683 20.178 453
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with an accuracy of at least 1026 hartree for the total ener-
gies. We observed that the total energies are already con-
verged with ninth multiwavelet bases andr (MO)<1026

within the accuracy 1026 hartree. There is no significant er-
ror within an expected accuracy between two smoothing pa-
rametersenuc51026 and enuc51027, as expected. The re-
sulting total energies agree with the previous numerical
calculations26,27 ~to at least three decimal places! and with
those of Pahl and Handy~at least four decimal places!. The
best total energy of the H2 molecule we computed,

21.133 629 593 (k511), is satisfactorily accurate with com-
parison to the most accurate value in the literature,
21.113 629 5717~Ref. 26!. For the F2 molecule we found an
apparent error of 1.231024 hartree in the previous numerical
result.27 The deviations of aug-cc-pV5Z from the multireso-
lution calculations with the 11th multiwavelet bases are 1.9
31025, 1.231024, 2.231024, and 4.431024 hartree for
the total energies of H2 , C2 , N2 , and F2 , respectively.

Since we observed that the ninth order multiwavelet
basesr (MO)<1026 and enuc51026 gave sufficient accu-
racy, we did not use either the 11th multiwavelet bases or
enuc51027 for the hetronuclear diatomic molecules. For
these molecules, the dipole moments were also computed,
the implementation of which is discussed elsewhere.30 The

TABLE II. Total and HOMO energy~in hartree! for Hartree–Fock calcula-
tions for homonuclear diatomic molecules.

Accuracy Total energy
HOMO
energy

H2 (L51.4332 bohr)
k57, r (MO)<1025, enuc51026 21.133 629 77 20.594 658
k57, r (MO)<1025, enuc51027 21.133 629 44 20.594 658
k59, r (MO)<1026, enuc51026 21.133 629 81 20.594 657
k59, r (MO)<1026, enuc51027 21.133 629 59 20.594 658
k511, r (MO)<1026, enuc51027 21.133 629 59 20.594 658
PH result~extrapolated!a 21.133 629 55 20.594 673
Numericalb 21.133 626 57
aug-cc-pVTZ 21.133 026 85 20.594 401
aug-cc-pVQZ 21.133 473 02 20.594 616
aug-cc-pV5Z 21.133 610 66 20.594 653

C2 (L52.358332 bohr)
k57, r (MO)<1025, enuc51026 275.406 550 20.456 802
k57, r (MO)<1025, enuc51027 275.406 550 20.456 803
k59, r (MO)<1026, enuc51026 275.406 565 20.456 802
k59, r (MO)<1025, enuc51027 275.406 565 20.456 803
k511, r (MO)<1026, enuc51027 275.406 565 20.456 803
PH result~extrapolated!a 275.406 562 20.456 777
Numericalc 275.406 565
aug-cc-pVTZ 275.401 722 20.456 741
aug-cc-pVQZ 275.405 727 20.456 802
aug-cc-pV5Z 275.406 438 20.456 802

N2 (L52.068332 bohr)
k57, r (MO)<1025, enuc51026 2108.993 801 20.615 624
k57, r (MO)<1025, enuc51027 2108.993 802 20.615 624
k59, r (MO)<1026, enuc51026 2108.993 826 20.615 624
k59, r (MO)<1026, enuc51027 2108.993 825 20.615 624
k511, r (MO)<1026, enuc51027 2108.993 825 20.615 624
PH result~extrapolated!a 2108.993 814 20.615 595
Numericalc 2108.993 81
aug-cc-pVTZ 2108.985 317 20.615 972
aug-cc-pVQZ 2108.992 205 20.615 688
aug-cc-pV5Z 2108.993 602 20.615 634

F2 (L52.668332 bohr)
k57, r (MO)<1025, enuc51026 2198.773 423 20.666 931
k57, r (MO)<1025, enuc51027 2198.773 424 20.666 931
k59, r (MO)<1026, enuc51026 2198.773 445 20.666 931
k59, r (MO)<1026, enuc51027 2198.773 445 20.666 931
k511, r (MO)<1026, enuc51027 2198.773 445 20.666 930
PH result~extrapolated!a 2198.773 446 20.666 921
Numericalc 2198.773 323
aug-cc-pVTZ 2198.754 789 20.667 496
aug-cc-pVQZ 2198.769 003 20.667 094
aug-cc-pV5Z 2198.773 009 20.666 937

aReference 25.
bReference 26.
cReference 27.

TABLE III. Total and HOMO energy~in hartree! and dipole moment~in
debye! for Hartree–Fock calculations for heteronuclear diatomic molecules,
e51026.

Accuracy Total energy
HOMO
energy Dipole

BH (L52.3289332 bohrs)
k57, r (MO)<1025 225.131 636 20.348 325 1.741 010
k59, r (MO)<1026 225.131 639 20.348 324 1.741 010
PH result~extrapolated!a 225.131 639 20.348 290
Numericalb 225.131 639
aug-cc-pVTZ 225.130 201 20.348 138 1.744 913
aug-cc-pVQZ 225.131 371 20.348 289 1.740 969
aug-cc-pV5Z 225.131 597 20.348 320 1.741 026

HF (L51.7328332 bohrs)
k57, r (MO)<1025 2100.070 776 20.650 392 1.921 760
k59, r (MO)<1026 2100.070 803 20.650 394 1.921 760
PH result~extrapolated!a 2100.070 795 20.650 380
Numericalb 2100.070 82
aug-cc-pVTZ 2100.061 071 20.650 547 1.925 343
aug-cc-pVQZ 2100.068 561 20.650 454 1.922 380
aug-cc-pV5Z 2100.070 575 20.650 398 1.921 949

BF (L52.386332 bohrs)
k57, r (MO)<1025 2124.168 761 20.405 110 0.871 343
k59, r (MO)<1026 2124.168 780 20.405 112 0.871 334
PH result~extrapolated!a 2124.168 77 20.405 087
Numericalb 2124.168 85
aug-cc-pVTZ 2124.157 207 20.405 220 0.872 941
aug-cc-pVQZ 2124.166 299 20.405 127 0.870 991
aug-cc-pV5Z 2124.168 516 20.405 110 0.871 333

CO (L52.132332 bohrs)
k57, r (MO)<1025 2112.790 878 20.554 926 0.264 969
k59, r (MO)<1026 2112.790 907 20.554 924 0.264 975
PH result~extrapolated!a 2112.790 902 20.554 880
Numericalb 2112.790 95
aug-cc-pVTZ 2112.781 447 20.554 932 0.266 883
aug-cc-pVQZ 2112.789 052 20.554 919 0.265 204
aug-cc-pV5Z 2112.790 674 20.554 915 0.264 908

NO1 (L52.0092332 bohrs)
k57, r (MO)<1025 2128.977 710 21.139 074 0.475 307
k59, r (MO)<1026 2128.977 740 21.139 079 0.475 362
PH result~extrapolated!a 2128.977 727 21.139 034
Numericalb 2128.977 78
aug-cc-pVTZ 2128.966 245 21.139 008 0.473 470
aug-cc-pVQZ 2128.975 514 21.139 006 0.475 197
aug-cc-pV5Z 2128.977 459 21.139 075 0.475 445

aReference 25.
bReference 27.
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results for the total energy again agree to three decimal
places with the previous numerical calculations27 and to four
places with those of Pahl and Handy.25 The differences in the
energy between the multiresolution calculations with the 9th
multiwavelet bases and aug-cc-pV5Z are 4.231025, 2.3
31024, 2.631024, 2.331024, and 2.731024 hartree for
the total energies of BH, HF, BF, CO, and NO1, respec-
tively. The maximum difference in dipole moments is 1.9
31024 debye for HF molecule.

C. Hartree–Fock calculation for the benzene
molecule

HF calculations were performed upon the benzene mol-
ecule. We took the same geometry,RC-C51.3862 Å and
RC-H51.0756 Å, as used by Pahl and Handy.25,31The nuclear
potentials were smoothed withenuc51026, and the box size
was set toL545 bohrs. We used the seventh and ninth order
multiwavelet bases withr (MO)<331024. The calculations
were performed using bothD2h andC1 symmetry. In theC1

symmetry, we employed both the CMOs and also the LMOs
to verify the accuracy and efficiency of the LMOs-based HF
exchange method. In summary, three calculations were per-
formed: with D2h symmetry, without symmetry in CMOs,
and without symmetry in LMOs. Table IV shows the total
and HOMO energies, the timings for applying HF exchange
operators and the localization to all of the MOs, and the
number of coefficient blocks for the multiwavelet bases
~their Frobenius norm.53102k) for each CMO/LMO. The
parentheses in the timing columns mean the average times
for each MO. The central processing unit~CPU! time was
measured on a single 1.3 GHz Power4 processor on IBM
p690 system.

The ninth order multiwavelet bases withr (MO)<3
31024 yielded consistent results for the three calculations.
For the seventh order multiwavelet bases, the differences in
the total energies are within 131024 hartree. The deviation
of the total energies with the seventh order multiwavelet
bases from the ninth order multiwavelet bases is 122
31024 hartree. Pahl and Handy’s result agrees with the mul-

tiresolution calculation within the available digits. The aug-
cc-pV5Z basis has an error of 531024 hartree in the total
energy.

The times for applying the HF exchange operator with
the D2h symmetry is around eight times faster than that for
the CMO-based HF exchange operator with theC1 symme-
try. The eightfold speed up is an expected computational
reduction by the spatial symmetry usage in our implementa-
tion. The same scale is also observed in reduction of the
number of coefficient blocks betweenD2h and C1 calcula-
tions. By using LMOs, the timing are improved by factors of
1.9 and 2.6 for the seventh and ninth multiwavelet bases,
respectively. The times for the localization were negligibly
small, around 3% of total times for applying the HF ex-
change operator. The localization reduces the numbers of
blocks to 76% and 49% for the seventh and ninth order mul-
tiwavelet bases, respectively.

D. Computational scaling of Hartree–Fock exchange
for n †H2O‡, nÄ1, 2, 3

We examined the computational scaling of the Hartree–
Fock exchange calculation using the water monomer, dimer,
and trimer, whose geometries are listed in Table V. Table VI
shows the total and HOMO energies, the timings to compute
HF exchange and localize MOs, the numbers of coefficient

TABLE IV. Total and HOMO energy~in hartree! and CPU timings~in sec! for Hartree–Fock calculations for benzene molecule,enuc51026.

Accuracy
Total energy
~in hartree!

HOMO energy
~in hartree!

Timing:
Coulomb

~sec!

Timing:
HF exchange

~sec!

Timing:
Localization

~sec!

No. of blocks
each MOs

~CMO/LMO!

k57, r (MO)<331024

D2h 2230.798 692 20.337 991 8.7 699~33! 61/–
C1 with CMOs for HF exch. 2230.798 479 20.338 012 80 6155~293! 457/–
C1 with LMOs for HF exch. 2230.798 612 20.337 994 ditto 3060~146! 152 495/376

k59, r (MO)<331024

D2h 2230.798 768 20.338 058 110 9770~465! 259/–
C1 with CMOs for HF exch. 2230.798 768 20.338 040 860 81 200~3870! 2125/–
C1 with LMOs for HF exch. 2230.798 768 20.338 068 ditto 30 400~1450! 1110 2170/1064
PH result~extraploated! 2230.798 7 20.338 025
aug-cc-pVTZ 2230.782 244 20.337 984
aug-cc-pVQZ 2230.795 403 20.338 044
aug-cc-pV5Z 2230.798 272 20.338 050

TABLE V. The geometries~in bohr! for n@H2O#, n51, 2, 3.

x y z

Water 1
O 0.0 0.0 0.0
H 61.4375 0.0 1.15

Water 2
O 4.0 0.0 5.0
H 4.061.4375 0.0 5.011.15

Water 3
O 24.0 0.0 25.0
H 24.061.4375 0.0 25.011.15

ar (O-O)56.4 bohr53.4 Å.
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blocks ~their Frobenius norm.53102k). The parentheses
in the timing columns mean the averages for each MO. The
table also includes the CPU times for computing Coulomb
potential. The calculations were performed with theC1 sym-
metry,enuc51026, and the box sizeL560 bohr. The seventh
and ninth order multiwavelet bases were used withr (MO)
<331024. The results were obtained in two approaches to
compute the HF exchange using CMOs and LMOs, so that
we can directly compare the computational scaling between
the two approaches. Table VI includes the ratios of timings
against the CMO-based HF exchange calculation for the
monomer. The same calculations were carried out using
NWCHEM with the default screening threshold.

As to the accuracy, the calculations with the CMO- and
LMO-based HF exchange in the ninth order multiwavelet
bases yield total energies consistent within 1026 hartree, and
those in the seventh order multiwavelet bases agreed with
those in ninth order multiwavelet bases at the first six digits.

Overall, the LMOs reduce the computational demanding
for applying the HF exchange operator. Even for the mono-
mer, the CPU time for LMOs was 10%–15% faster than that
for CMOs. The timing ratios for the total operation for all
MOs are estimated as 1.03n1.74 (k57, CMOs!, 0.793n1.53

(k57, LMOs!, 1.03n1.91 (k59, CMOs!, and 0.873n1.48

(k59, LMOs!. The best scaling for the HF exchange calcu-
lation for this system is obtained as 1.5 on the number of
waters, which is successfully smaller than quadratic scaling.
We note the Coulomb potential is computed inO(n) scaling.

VI. CONCLUSION

An accurate, efficient algorithm has been presented to
compute the HF exchange operator using multiresolution
analysis in multiwavelet bases. The present implementation
of the HF exchange inMADNESS ~Ref. 32! is a straightfor-
ward extension of the fast algorithm in multiwavelet bases to
apply Coulomb operator~i.e., the Green’s function to the
Poisson equation! in three dimensions. We use the NS-form
for application of the operator to the function, which allows
us to do the application in a linear scaling fashion and effi-
ciently within a guaranteed finite accuracy. Specifically for
the HF exchange operator, we have implemented screening
for the weak nonlocal interaction in the HF exchange to
avoidO(nocc

2 ) scaling operation for each target MO or totally
O(nocc

3 ) scaling for all the occupied MOs. The asymptotic
scaling is formally reduced to a total operation cost to
O(nocc), or O(1) for each target localized MO.

We demonstrated the HF SCF calculations for the many-
electron closed-shell systems including a number of atoms,
diatomic molecules, polyatomic molecules such as benzene
molecule and water monomer, dimer and trimer. The perfor-
mance was satisfactory in that the results yielded the re-
quired precision, and the computational cost was observed to
scale as expected.

We used Foster-Boys’s LMOs for the HF exchange cal-
culations to enhance the sparsity. The illustrative calculations
using benzene and water trimer demonstrated that the LMOs
worked efficiently to reduce the computational cost and scal-

TABLE VI. Total and HOMO energy~in hartree! and CPU timings~in sec! for Hartree–Fock calculations forn@H2O#, n51, 2, 3,enuc51026.

Accuracy
Total energy

~hartree!
HOMO energy

~hartree!

Timing:
Coulomb

~sec! Ratio

Timing:
HF exchange

~sec!

Timing:
Localization

~sec! Ratio

No. of blocks
each MOs

~CMO/LMO!

k57, r (MO)<331024

Monomer (n51)
CMOs for HF exchange 276.065 573 20.509 731 22 1.0 243~48! 1.00~1.00! 222/–
LMOs for HF exchange 276.065 575 20.509 743 ditto 198~40! 9 0.81~0.81! 202/199
Dimer (n52)
CMOs for HF exchange 2152.134 176 20.493 340 43 2.0 889~89! 3.66~1.83! 274/–
LMOs for HF exchange 2152.134 218 20.493 038 ditto 516~52! 27 2.12~1.06! 248/228
Trimer (n53)
CMOs for HF exchange 2228.203 507 20.488 169 70 3.2 1620~107! 6.67~2.22! 313/–
LMOs for HF exchange 2228.203 526 20.487 890 ditto 1090~73! 55 4.49~1.50! 291/237

k59, r (MO)<331024

Monomer (n51)
CMOs for HF exchange 276.065 596 20.509 721 235 1.0 2220~444! 1.00~1.00! 817/–
LMOs for HF exchange 276.065 595 20.509 748 ditto 1930~386! 60 0.87~0.87! 848/719
Dimer (n52)
CMOs for HF exchange 2152.134 260 20.493 355 445 2.0 8390~839! 3.78~1.89! 964/–
LMOs for HF exchange 2152.134 261 20.493 178 ditto 5320~532! 166 2.40~1.20! 955/766
Trimer (n53)
CMOs for HF exchange 2228.203 614 20.488 041 690 3.1 18 100~1200! 8.15~2.72! 1297/–
LMOs for HF exchange 2228.203 614 20.487 975 ditto 9815~654! 346 4.42~1.47! 1123/832

aug-cc-pVQZ Fock building and diagonalization
Monomer (n51) 276.064 329 20.509 631 75 1.0
Dimer (n52) 2152.131 759 20.493 169 940 12.5
Trimer (n53) 2228.199 857 20.487 951 3000 40.0
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ing in theC1 symmetry without losing accuracy. In the water
cluster, we observed a computational scaling for LMO-based
HF exchange ofO(nocc

0.5) for each target MO, andO(nocc
1.5) for

all the occupied MOs.
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10J. Almlöf, K. Faegri, Jr., and K. Korsell, J. Comput. Chem.3, 385~1982!.
11R. Ahlrichs, Theor. Chim. Acta33, 157 ~1974!.
12E. Schwegler and M. Challacombe, J. Chem. Phys.105, 2726~1996!; 111,

6223~1999!; E. Schwegler, M. Challacombe, and M. Head-Gordon,ibid.
106, 9708~1997!.

13J. C. Burant, G. E. Scuseria, and M. J. Frisch, J. Chem. Phys.105, 8969
~1996!.

14C. Ochsenfeld, C. A. White, and M. Head-Gordon, J. Chem. Phys.109,
1663 ~1998!.

15W. Kohn, Int. J. Quantum Chem.98, 5648~1995!.
16N. Kurita, H. Inoue, and H. Sekino, Chem. Phys. Lett.370, 161 ~2003!.
17R. Car and M. Parrinello, Phys. Rev. Lett.55, 2471~1985!.
18S. Chawla and G. A. Voth, J. Chem. Phys.108, 4697~1998!.
19P. E. Bolochl, Phys. Rev. B50, 17953~1994!.
20G. Beylkin and R. Cramer, SIAM J. Sci. Comput.~USA! 24, 81 ~2002!;

University of Colorado, APPM preprint #442, Sept. 2000.
21G. Beylkin and M. J. Mohlenkamp, Proc. Natl. Acad. Sci. U.S.A.99,

10246~2002!; University of Colorado, APPM preprint #476, Aug. 2001.
22B. Alpert, SIAM J. Math. Anal.24, 246 ~1993!.
23S. F. Boys, Rev. Mod. Phys.32, 296 ~1960!; J. M. Foster and S. F. Boys,

ibid. 32, 300 ~1960!.
24T. Koga, S. Watanabe, K. Kanayama, R. Yasuda, and A. J. Thakkar, J.

Chem. Phys.103, 3000~1995!.
25F. A. Pahl and N. C. Handy, Mol. Phys.100, 3199~2002!.
26A. V. Mitin, Phys. Rev. A62, 010501~2000!.
27Numerical references in Tables II and III are taken from Ref. 25.
28R. A. Kendall, J. T. H. Dunning, and R. J. Harrison, J. Chem. Phys.96,

6796~1992!; J. T. H. Dunning,ibid. 90, 1007~1989!; A. K. Wilson, T. V.
Mourik, and J. T. H. Dunning, J. Mol. Struct.: THEOCHEM388, 339
~1997!; D. E. Woon and J. T. H. Dunning,ibid. 98, 1358 ~1993!; D. E.
Woon and J. T. H. Dunning,ibid. 100, 2975~1994!.

29High Performance Computational Chemistry Group,NWCHEM, A Compu-
tational Chemistry Package for Parallel Computers, Version 4.5~2003!,
Pacific National Laboratory, Richland, Washington 99352, USA.

30T. Yanai and R. J. Harrison~unpublished!.
31L. Goodman, A. G. Ozkabak, and K. B. Wigerg, J. Chem. Phys.91, 2069

~1989!.
32Multiresolution Adaptive Numerical Scientific Simulation, Oak Ridge Na-

tional Laboratory, 2004.

6688 J. Chem. Phys., Vol. 121, No. 14, 8 October 2004 Yanai et al.

Downloaded 03 Oct 2004 to 128.138.249.84. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp


