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Multiresolution quantum chemistry in multiwavelet bases:
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In a previous studyR. J. Harrisonet al,, J. Chem. Phys(in pres$] we reported an efficient,
accurate multiresolution solver for the Kohn—Sham self-consisitent €8 SCH method for
general polyatomic molecules. This study presents an efficient numerical algorithm to evalute
Hartree—FockHF) exchange in the multiresolution SCF method to solve the HF equations. The
algorithm employs fast integral convolution with the Poission kernel in the nonstandard form,
screening the sparse multiwavelet representation to compute results of the integral operator only
where required by the nonlocal exchange operator. Localized molecular obitals are used to attain
near linear scaling. Results for atoms and molecules demonstrate reliable precision and speed.
Calculations for small water clusters demonstrate a total cost to compute the HF exchange potential
for all ny.. occpuied MOs scaling a@(néf}). © 2004 American Institute of Physics.
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I. INTRODUCTION total energy that grows with the system size unless the trun-
cation threshold is reduced with the system size. This is not
practical for computing small chemical energy differences in
very large systems.

These previous methods have relied exclusively upon
spatially localized representations to achieve efficiency by
introducing sparsity into the density matrix and/or integrals.
However, this approach immediately precludes efficient

change using an algorithm that will scale asympotically lin-réatment of either the smoothly varying component of den-

early with the molecule size while maintaining a guaranteeSity' or dense blocks of the density matrix such as inevitably
of arbitrary finite precision. occur within atoms or between neighboring atoms. Forcing

The evaluation of HF exchange is necessary to deter@(ponential de_cay in metallic sygtems or systems W@th small
mine the electronic wave functions for HF metHbdnd the  highest occupied molecular orbital-lowest unoccupied mo-
KS method with hybrid exchange functionalsuch as lecular orbital (HOMO-LUMO) gaps, such as graphitic
B3LYP) (Refs. 7 and Bas well as post-HF methods. The HF sheets, will generate incorrect results since the density matrix
(or exac} exchange term is a nonlocal operator, and thisdoes not decay exponentially. The previdDgN) HF ex-
evaluation has been regarded as a major computationghange method reverts to &(N?) complexity in such sys-
bottleneck for electronic structure calculatiohShe widely ~— tems. No systematic analysis has been performed to date on
used Gaussian basis implementation with the direct selfthe errors introduced by these exchange approximations.
consistent field SCH method® demandsO(N3~4) scaling ~ This is an especial concern in multicomponent systems such
cost for small and moderate-size molecules, and possiblgs required in the study of catalytic processes involving con-
O(N?In N) for large system$! Several algorithms have been jugated hydrocarbons on the surface of nanoscale metal par-
proposed folO(N) Hartree—Fock exchange in the Gaussianticles absorbed on oxide surfaces. In contrast, a multiresolu-
bases? ** based upon assuming or forcing an exponentiation approach, by separating the behavior of functions
asymptotic behavior in the density matrixp(r,r’) between length scales is efficient and maintains a guarantee
~exp(|r—r'|/f) (Ref. 15, where ¢ is a system-specific of precision regardless of the physical composition of the
length-scale parameter. However, the demonstrations of lirsystem.
ear scaling behavior are limited to using relatively small and  Recent success with hybrid DFT exchange-correlation
nondiffuse basis sets for large systems. Diffuse functions arfunctional$® has motivated the development of efficient
often chemically essential even in HF or density functionaltechniques to include HF exchange in plane-wg@/) DFT
theory (DFT) calculations, and present a significant compu-molecular dynamics’ A straightforwardly optimized proce-
tational challenge in large systems, such as the DNA stackindure, which was reported by Chawla and Vit conjunc-
problem!® Furthermore, linear scaling algorithms basedtion with the all-electron “projector augmented wave”
upon forcing sparsity unavoidably introduce an error in themethod!® formally scales irO(nﬁCJ\lpWIn Npy) for both en-

In a previous work, we presented a practical multireso-
lution method® in multiwavelet bases to solve the all-
electron local density approximatioLDA) Kohn—Sham
(KS) (Ref. 4 equation for molecules. The approach de-
scribed in Ref. 5 was employed for the solution of the inte-
gral form of the density functional equations. In this paper,
we extend the approach to include Hartree—F@dk) ex-
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ergy and its gradienfwith respect to orbitajsof the HF n-1
exchange, whera,.. andNpy, are the numbers of occupied fo=P,f=fp+ 2 Q;f. (6)
MOs and plane waves, respectively. 1=0

A systematic approach to multiresolution constructionsThe application of the NS-form of the operafbto the func-
started with the development of wavelet bases, see Ref. 2 anidn f, i.e., T,f,,, [Eq. (3)] is also given as a telescopic series
references therein. For numerical applications, the results i
Ref. 3 pointed out a practical approach to reducing the comﬁl”f”:(T”f”_Tnflfnle'”+(T1f1_T°f°)+T°f°' (@)
putational cost. One of the results of Ref. 3 was the intro\We can rewrite Eq(7) taking the relationP;Q;=Q;P;=0
duction of the nonstandard forfiNS-form) for representing into account,

operators in multiresolution bases. However, the straightfor- n-1
ward generahzatlpn of _NS—fo.rrfDr for that matter, the stan- T f,=Tof o+ 2 [A(Qf)+B;(P;/)+Ci(Q;)]. (8
dard fornm) to multiple dimensions is too expensive for prac- j=0

tical applications. Our approach is based on using NS—forrrlln this paper, the elements f, are denotedin one dimen-
and the separated representations of operators that were firs%n) b ’

used in Ref. 20 and significantly extended in Ref. 21. The y

basic point of Ref. 21 is that many apparently nonseparable —_— n n

operators are, in fact, separable with a finite but arbitrary [rimlij= | dXi ([T djm(x)], 9
precision. Moreover, the number of terms necessary for such nyox . L 5
representations is remarkably small. where ¢ (x) is a basis for the projection operatey,.> The

In the following, we first present essential aspect of the?_lef]f nts) dogn'g;édl,b Bnnfl'n agg q Cnnflres(egza(,agfntzle
numerical approach, describe the algorithm for the HF ex-" -1 Yirn» Bim Yim» €SP Y,

change, then the combination with localized orbitals. FinaIIy,ﬁgmi%ult\leSd_fZ?r:]n i;htor;et tﬁTS rl:;y :gsetnv:;t_iziatl)? a:ilitlc:;;o-rrzes'es
we provide some numerical results and conclusions. y P P

bases with supports on squares and has an advantage that it
acts scale by scale, without explicitly involving the interac-
tions between different length scales. Futhermore, the spar-
sity in the multiwavelet spacéXj;), which is guaranteed by

Multiresolution wavelet and multiwavelet expansions or-th€ vanishing moment property, eventually enables a linear
ganize functions and operators efficiently in terms of prox-Scaling operation a®[(—In e)N], wheree is the scheduled
imity on a given scale and between the length scafé€®  accuracy, andN is the number of boxes, or coefficients.

Il. MATHEMATICAL BACKGROUND

Multiresolution decomposes the Hilbert spacd(RY), d In. one Qimension the implementation. of the abpve for-
=1 into a chain of closed subspadesfinement scal@s mulation using thekth Legendre polynomial bases is very
straightforward for the application of an integral operator
VoCV CVoC- - CV,Chee (D) with O[(—In €k2N] operation cost. However, in three di-
The wavelet subspaced/; are defined as an orthogonal Mensions the cost is nominal@[(—In €k°N] operations,
complement oV in V;_;, thus which has a proh|b|t|ve_ly Iarge_overhead for a practical code.
N Separated representations of integral operat8@and use of
Vo=Vo & W;. 2) the low operator rank of the resulting one-dimensional op-
i=0 erators, reduce the computational cosoiq — In €)k°N] op-

erations, which enables practical computation with multi-

In a previous study,we presented a practical approach forwavelet bases in three and higher dimensions.

fast computation with integral operatofsotably Green
functions for the Poisson and bound-state Helmholtz equa-
tions) in the NS-form. LefT be an operator such as the inte-

gral convolution operator with the kernkl lll. ALGORITHM
_ _ Initially, most of the equations are written for simplicity
(T*f)(x)—J dy Kx=y)f(y). ©® as if in one dimension. The extension to three dimensions is

As was introduced in Ref. 3, by using orthogonal projectiondiscusseq at the end._ The app_licat_ion of the Hartree—Fock
operatorsP; :LZ(Rd)_>V]_ , and Q :LZ(Rd)_>WJ_ with Q, operator K) to a function[ f(x)] is given by
=P;,,1—P;, the NS-form of the operatdF is expressed as . p(X,x")

n—1 Kf(X):f dX,Wf(X/), (10)

Th=To+ A +B;+C)), 4 . o . L
n— oo ,Zo (A +B, i) @ where the density matrix in coordinate presentation is given

=P;TQ;. This Eq.(4) is derived from a “telescopic” series “ﬁc : 1
p(X,X")= 20 xu(X)x (X)), 11

Th=(Th=Tao) H(Tpo1 = Tpop) + -+ (T =To) +To (5 w

by using (Tj.1—T;)=A;+B;+C;. The functionf(x) is  where x,(x) is the uth occupied molecular orbitalMO),

represented by the projection operators as andn,. is the number of occupied MOs.
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We already have a fast algorithm in multiwavelet basesThe translationl labels a subvolume at level Due to the
to apply Coulomb operatdi.e., the Green’s function to the multiscale summation, and also to minimize the computa-
Poisson equatign(Ref. 1), which may be used to implement tion, we must screen each contribution separately. A norm-

exchange in a straightforward fashion, as follows: wise bound for contribution in bokfrom boxm is provided
R Noce ,XL(X')f(X') by the _Schwarz inequality, which for matrices becomes the
Kf(x)=2 x,.(x) | dx x| (12 Frobenius norm
"

This is evaluated by looping over MOx/(), and forming
the product of the MO with the target functidf); applying non n n
the Coulomb operator; and multiplying the resulting poten- Irimgmle<Irimlelgnle - (19
tial by the MO.
During each iteration of the solution of the Hartree—
Fock equations, this operator must be applied to each occt each level of the multiscale summation, the dominant

pied orbital. 1’2herefore, the nominal cost of this approach igontributions come from the box and its 26 nearest neigh-
roughly O(Vng.), whereV is the system volume. The de- phors so we can neglect contributions if

pendence oV will probably be weaker than this due to the
adaptive multiresolution representation and the potential be-
ing smooth at long range. Therefoxe might be neglected
from scaling expressions hereafter. If the occupied orbitals
are localized (or, equivalently, if the density matrix is
sparsg there will only beO(ny.) nonzero products of the
occupied orbitals, and the above algorithm reduces to

O(Vny). The factor proportional to the system volume h ltiscal i i f t levels i
arises from computing in all space the electrostatic potentiaT e multiscale summation over thg,,, refinement levels is

due to the produck(x')f(x'). However, the very next step af:complished through the nonstanglard f({lIEq (5)]. Th_e
in the algorithm is multiplication by the localized MO. If the differenceT,—T,_, decays very rapidly with distance since
algorithm that applies the Coulomb operator is modified tothe long rangei.e., smootherparts of the operator are ac-
compute the potential only in the volume where the MO iscurately represented at the coarser levels. Thus, the screening
significant, the overall cost can be reducedGén,.), or is in practice performed using
O(1) for each localized target function.

Our goal is to modify the Coulomb operator so that it
computes the potential to the required precision in the vol-
ume where the localized MO is significant, and outside this ||n|[r — ¢, g7 ,<
volume does as little work as possible. Since the NS-farmn 2Mmax
the Coulomb operator computes contributions at all length
scales, it is inevitable that there will be nonzero values out-

side of the. de;ired minimum volume. However, the finer-the norm of the target functiofg(x) = x ,(x)f(x)] in each
scale contributions need to _be computed only where necegjyy can be precomputed and stored. Since the Coulomb op-
rsnaa:y’niztil;]:e (;r;l%/héoorzki)igemsmn controlled, i part, by theerator is an integral convolution, the matrik, actually only

g ) depends upoh—m. Furthermore, the operator is homoge-

We denote the product of a MDy(x)] and the target i )
function[ f(x)] by g(x) = x(x)f(x), and the electrostatic po- N€OUS and, therefore, the matrix at lemedan be obtained by

tential due to the charge densiggx) by u(x). Then in some rescaling the matrix at level 0. These properties permit the
subvolume) we wish to determine if the exchange potential OPerator matrices to be computed as needed with little com-
may be neglected. A norm-wise bound on the contributiorputational overhead. Finally, the norm of the molecular or-

IsllElr il ellgmlle=< (16)

2Mmax

(17)

may be obtained from the Schwarz inequality bital in each box in which it is significant can also be pre-
172 172 computed and stored. During the application of the operator,

‘ J x(X)u(x)dx s( J f(x)dx) ( f uz(x)dx) . the norm of the MO may be required in a box which has not
@ @ @ 13 been precomputed. This can happen during the computation

o _ _ ~ of contributions at a locally finer or coarser level than that
The 2-norm of a function in the scaling function basis isrequired to resolve the MO. In this instance, the two-scale
simply the 2-norm of the coefficients, since the basis func'relationshiﬁ” can be used to compute the missing coeffi-
tlonﬁ_ﬁre ortth()tn()lrma;l. df h duct of th i cients. This additional computational cost is minimized by
€ potential Is formed trom Ine product of e matrix appropriate ordering of the screening tests and loops, and by
representation at level of the Coulomb operatorT(" with euse in the application of the exchande operator to multiole
elementgr{;,];;) and the function coefficientsg(}) reusel > applicati X geop uitip
target functions.
The algorithm that applies the screened Coulomb opera-
UHZE_ [rlnm]ijgnmj- (14 g PP i P
mj tor to g(x) is then as follows:
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loop over levels n
loop over translations (1-m) sorted by magnitude and shell
Compute T[0][1-m] at level O or rescale to get T[n][1-m]
Recur T[n-1][(21—-m)/2] down to level n
Form the non-standard form operator NS=(T[n]-T[n-1])
loop over non-zero translations m in g[n]
1=(1-m)+m
if |NS*|g[n][m] [>eps/(27 *nmax)
it [NS*|gin][m] [*|s[][1]  |>eps/(27 *nmax)
u[n][1]=u[n][1]+NS *g[n][m]
end if
end if
end loop
if no contributions were significant
go to next n
end if
end loop
end loop

Since the multiwavelets have at ledsvanishing mo- andT];, %, and then to subtract the results. However, this is
ments(or multipoles, the numerical significance of the co- both inefficient and can result in loss of significant digits. A
efficient blockaj},, which is one of NS-form elementsle-  better approach is subtract the separated representations of
noted by “NS” in the above algorithm of the interaction the two operators and then perform a rank reduction as de-
with the kernel of Poisson equatiofr & r’| 1) in full mul-  scribed in Ref. 21. The NS operator is expected to be low
tiwavelet representation, will be asymptotically proportionalrank?! and, it is possible to avoid some of the loss of preci-
to || —m| ~2¢"1. Also, the most slowly decaying elements in sion. The most accurate, and potentially most efficient, ap-
the other two blocks of NS-form elements;,,, and v/, proach is to use the two-scale relationship to form individu-
decays a$l —m| ¥~ 1. Furthermore, the multiscale represen- ally the 63 blocks of the nonstandard fofm,each in a
tation of the function will introduce additional sparsity. Since separated representation. This avoids the loss of precision
we usually use Legendre polynomials of relatively high or-arising from taking the differenca@],,—Tf.-* and permits
der (k=5,7,9) for reliable calculations, each submatrix of exploitation of the differing sparsity in each block of the
the operator in NS-form is expected to be significant just in enonstandard form. However, in the separated representation
narrow band around the diagonal. This aspect leads to thiae necessary code is much more complicated and we have
linear-scaling computation cost in the application of the op-not yet pursued this approach.

erator to the function. . o . IV. LOCALIZATION OF ORBITALS
The extension to three dimension is accomplished by . i
Our formulation for the HF method is based on the

replacing the translation$ andm) and the multiwavelet in- i ' :
dices (i andj) with three vectors. However, as previously canonical molecular orbitals(CMOs) [i.e., x,=—2G
described in Ref. 1, an efficient algorithm requires the use of (V- x,)]1, which are spatially delocalized. In our implemen-
a separated form for the operator to reduce the effective scal@tion of the integral operators, the Coulomb potential can be

ing to quartic in order of the multiwavelet. The separatedcomputed inO(Vn,.g) due to the locality of the density func-
form is given by tion p(x), which is invariant to the unitary transformation

among the occupied MOs, whereas the computational cost to
[ ZE X NV apply the HF exchange operator to all of the occupied MOs
| leylzl;l;l;]““g““’ ~ | Ly lssl Iyl;]“’[ 1 Juwr depends on the spatiality of the MOs. The nominal cost of
(18)  the HF exchange operator with all of the delocalized CMOs
) ) ) ) is estimated to be roughl@(Vngcc). The quadratic depen-
and the number of terms included in the summation @& gence om,,. can be reduced by using the localized molecu-
referred to as the separation rank of the operator in analogy, grpjtals (LMOs) via the cutoff mechanism implemented
to the two-dimensional singular-value decomposition. A subi, NS-form of the HF exchange operator. The LMOs are

optimal separation is currently obtained by fitting Ithe  ,ptained via the unitary transformation among the CMOs as
kernel of the Coulomb operafoio a sum of Gaussian over a N
occ

large range of. The matrix elements of the one-dimensional LMO _ 2 cMO
i i i i =2 Uixy
operators(Gaussian convolutionsare readily generated as ]
described in Refs. 1, 3, and 5.

Application of the separated nonstandard forfi,
—T,"m’l) of the operator can be accomplished in severa
ways. The most straightforward is to apply separafgly

(19

whereU is an unitary matrix giving a rotation between the
CMOs and LMOs. The HF exchange operator to all of
bMOs is calculated via the unitary transformation of HF
exchange for all of the LMOs as
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RCMO)(-CMO(X) TABLE |. Total and HOMO energyin hartreg for atomic Hartree—Fock
! calculations L =80 bohrs ande,,,=10"°.

n CMOt,/, 7\ ., CMO/,/
:EOSC XCMO(X)f dx’ Xu (X )Xi (X ) Accuracy Total energy HOMO energy
M VY ’
I |x=x| He
Noce  Moce LMOT /11 LMO, s k=7,r(MO)<10"° —2.861 680 14 -0.917 955
=S urS Moy | dxe Xp  (XDxi (X)) (20 k=9, r(MO)<10"° —2.861 680 23 -0.917 955
i Xu Ix—x'] ' Thakkar —2.861 680 00 -0.917 956
Noce Be
= U_*_[kuvlo LMO ()1 k=7, r(M0O)<105 ~14.573 022 —0.309 267
~ i Xj : k=9, r(MO)<10"° -14.573023 —0.309 269
Thakkar —14.573023 —0.309 270
The algorithm to compute HF exchange via LMOs is sum- c
. . a
marized as follows: k=7, 1(MO)<105 676758 093 ~0.195529
(1) Obtain the wunitary matrix for Foster-Boys k=9, r(MO)Sl(J’G6 —676.758 189 —0.195529
localization?® The matrix is simply obtained from the,.. 'kr: 1k1k'f('\"0)<10 —g;g-;gg igg ‘8-132 ggg
XNee Matrix of one-electron dipole integrals axkar o e
x"rxSM), which are efficiently computed as inner Ne
k=7,r(MO)<107° —128.547 079 —0.850 406
products.
— — 6
2) Applv the rotation an re the LMOs/MO i k=9, r(M0O)<10 —128.547 098 —0.850 409
(2) Apply the rotation and store the LMOs;™, | Thakkar —128.547 098 ~0.850410
=1,..N0cc [EQ. (19)]
— 4,...4lpcc . .
(3) Apply the HF exchange operator to all of the LMOs, Mg
[ LMO  LMO i1 k=7,r(M0O)<10"5 —199.614 589 —0.253 051
Af(jT (X)'f 1= 6‘"’}2’“' he CMOs basis by th . k=9, r(MO)<10"© —~199.614 637 —0.253052
(_) ransform back to the s basis by the unitary 1. .ar _199.614 636 0.253 052
matrix [Eq. (20)].
Sr
k=7,r(M0O)<107° —3131.545 280 -0.178 455
k=9, r(MO)<10° —3131.545 704 —0.178 456
V. RESULTS k=11,r(MO)<10"° —3131.545 684 —0.178 456
Thakkar —3131.545 683 —0.178 453

A. Hartree—Fock calculation on atoms

An initial test of the implementation was performed
upon the neutral atoms He, Be, Ne, Mg, Ca, and Sr. Table é Hartree—Fock calculation on diatomic molecules
lists the total and the HOMO energies along with the results™
of Thakkar and co-workeré.In the multiresolution calcula- Hartree—Fock calculations were performed upon several
tions, the nuclear potential smoothing parameter was chosdromonuclear/heteronuclear diatomic molecules near their
so as to yield an energy accurate to at least®tartree  equilibrium geometries. The molecules and their bond
(denoted by e,,=10%), the box size was set ak lengths are from a previous study by Pahl and Ha&idyor
=80 bohrs andD,,, symmetry was used. We could not use the mononuclear diatomic molecules, we computed &,
LMOs because the symmetry usage forced the MOs to bbl,, and F, with the bond lengths 1.400, 2.358, 2.068, and
delocalized. We used the seventh and ninth order multiwave2.668 bohrs, respectively. For the heteronuclear systems BH,
let bases and solved to a residual in the M@snoted by HF, BF, CO, and NO with the bond lengths 2.3289, 1.7328,
r(MO)] of 10™° and 108, respectively. For the Ca and Sr 2.386, 2.132, and 2.0092 bohrs. The box size was set as the
atoms, a more precise calculation wik+ 11 andr(MO) bond length times 32 bohrs in order to locate the nuclei at
=10 % was additionally carried out. The results agree withdyadic points.
the atomic data from Thakkar, which was calculated with  Tables Il and Il list the total and HOMO energies for the
Slater-type functions to predict total energies within arounddiatomic molecules, and the dipole moments for the hetero-
10 % hartree, which is the accuracy delivered in the previousiuclear molecules. The results for the homonuclear diatomic
testing LSDA calculation$.Systematic convergence to the molecules were obtained with tH2,;, symmetry and with
correct atomic limit is observed in the multiresolution calcu-the nuclear potentials smoothed within the accuracy®10
lations. For all the test atoms except Sr, the ninth order muland 10 ” hartree(denoted bye,,=10 ° and 107, respec-
tiwavelet bases reproduce Thakkar’s results for the total ertively). For the heteronuclear diatomic molecules, we used
ergies with the five decimals. For Sr, the 11th multiwaveletC,, symmetry ande,,=10 °. The tables include the ex-
bases give an excellent agreement with Thakkar’s total ertrapolated results reported by Pahl and Hafidje numeri-
ergy within 1x 10" ® hartree. The accuracies of the total en-cal Refs. 26 and 27, and the Gaussian calculations with aug-
ergies obtained by the seventh multiwavelet bases arec-pVXZ, (X=T,Q,5) (Ref. 28 using theN\wCHEM program
9x10°8 2x10°% 2x107% 5x107° 9x10°° and package®
4x 10 “*hartree for He, Be, Ne, Mg, Ca, and Sr, respec-  As to the homonuclear diatomic molecules, the most ac-
tively. For Ca and Sr, the ninth multiwavelet bases yield thecurate multiresolution results obtained were with 11th multi-
accuracy as 10 © and 2<10 % hartree for the total en- wavelet bases, residuals of MOs(MO)<10 6, and
ergy, respectively. e=10"7. Our calculations show systematic convergence
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TABLE Il. Total and HOMO energy(in hartre¢ for Hartree—Fock calcula- TABLE Ill. Total and HOMO energy(in hartreg¢ and dipole momentin

tions for homonuclear diatomic molecules. debye for Hartree—Fock calculations for heteronuclear diatomic molecules,
e=106.
HOMO
Accuracy Total energy energy HOMO
Hy (L— 1.4x 32 bohn) Accuracy Total energy energy Dipole
k=7,r(MO)<10"5, €,,=107° —1.13362977 —0.594 658 BH (L =2.3289< 32 bohrs)
k=7,r(MO)<10 %, €, =10~ —1.13362944 —0.594 658 k=7,r(MO)<10° —25.131636 —0.348325 1.741010
k=9, r(M0O)<10"%, €,,=10"° —1.13362981 —0.594 657 k=9, r(MO)<107° —25.131639 —0.348324 1.741010
k=9, r(MO)<10°, €,,=10" —1.13362959 —0.594 658 PH result(extrapolatef —25.131639 —0.348290
k=11,r(MO)<105, €y, =107 —1.13362959 —0.594 658 Numericaf —25.131 639
PH result(extrapolateyf —1.13362955 —0.594673 aug-cc-pVTZ —25.130201 -0.348138  1.744913
Numerica? —1.133626 57 aug-cc-pvQz —25.131371 —0.348289 1.740 969
aug-cc-pVTZ —1.13302685 —0.594 401 aug-cc-pV5z2 —25.131597 -—0.348320 1.741026
aug-cc-pvVQzZ —1.13347302 —0.594 616
aug-cc-gvgz ~1.13361066 —0.594 653 HF (L =1.7328¢32 bohrs)
k=7,r(MO)<10"° —100.070776 —0.650392  1.921760
C, (L=2.358<32 bohr) k=9, r(MO)le‘6 —100.070803 —0.650 394 1.921 760
k=7,r(MO)<10%, €,,,=10° —75.406 550 —0.456 802 PH result(extrapolatef —100.070795 —0.650 380
k=7,r(MO)<10"%, €, =107 —75.406 550 —0.456 803 Numerica? —100.070 82
k=9, r(MO)<10"°, €,,=10"° —75.406 565 —0.456 802 aug-cc-pvVTZ —100.061 071 —0.650547  1.925343
k=9, r(MO)< 1075, €= 1077 —75.406 565 —0.456 803 aug-cc-pvQz —100.068 561 —0.650454 1.922 380
k=11, r(MO)< 1078, €nuc= 107 —75.406 565 —0.456 803 aug-cc-pV5Z —100.070575 —0.650 398 1.921 949
PH res_ult(extrapolateid’ —75.406 562 —0.456 777 BF (L =2.386x 32 bohrs)
Numericat ~75.406 565 k=7, r(MO)=<10"5 ~124.168761 -0.405110 0.871343
aug-cc-pVTZ —75401722  —0456741 4\ (MO)<10 ~124.168780 —0.405112  0.871334
aug-cc-pvVQzZ —75.405 727 —0.456 802
PH result(extrapolategf —124.168 77 —0.405 087
aug-cc-pV5Z —75.406 438 —0.456 802 Numerica? _124.168 85
N, (L = 2.068x 32 bohr) aug-cc-pvTZ —124.157207 —0.405220 0.872941
k=7, r(MO) < 1075’ P 1076 —108.993 801 —0.615624 aug-cc-pvQz —124.166 299 —0.405 127 0.870991
k=7, r(MO)SlOiS, €nuc= 1077 —108.993 802 —0.615624 aug—cc—pVSZ —124.168516 —0.405 110 0.871 333
k=9, r(MO)le:Z, €nuc= 10:‘73 —108.993 826 —0.615 624 CO (L=2.132¢32 bohrs)
k=9,1(MO)<10 "%, €n,=10 ~108.993825  ~0615624  _7 ;(vO)<10°® ~112.790878 —0.554926  0.264 969
k=11,r(MO)<10"°, €,,=10"7 ~ ~108.993825  —0615624  y_g [(MO)<10"® ~112.790907 -0.554924  0.264 975
PH res.ult(extrapolateﬁf —108.993 814 —0.615 595 PH result(extrapolatehf —112.790902 —0.554 880
Numericat —108.99381 Numerica? ~112.790 95
aug-cc-pvVTZ —108.985317  —0615972  gyg.cc-pvTZ ~112.781447 —0.554932  0.266 883
aug-cc-pvQZz —108.992205  ~0.615688  4,4.cc-pvQz ~112.789052 —0.554919  0.265 204
aug-cc-pVsZ —108.993602  -0615634  4yg.ccpvsZ ~112.790674 —0.554915  0.264 908
F2 (L=2.668x 32 bohr) NO™ (L=2.0092x 32 bohrs)
k=7,r(MO)=<10"°, €,=10"° —198.773423 —0666931  _7 r(MO)<10°5 ~128.977710 -1.139074  0.475307
k=7,r(MO)<10"°, €, =10’ —198.773 424 —0.666931  1_g r(MO)<10® —-128.977740 —1.139079  0.475362
k=9,r(MO)=<10°, €,,,=10 ° —198.773 445 —0.666931  py result(extrapolatelf ~ —128.977727 —1.139034
k=9, r(M0O)<10"°, €,,=10"7 —198.773 445 —0.666 931 Numerica? _128.97778
k=11,r(MO)<10"°, e, =107 —198.773 445 —0.666 930 aug-cc-pVTZ —128.966 245 —1.139008  0.473 470
PH result(extrapolateyf —198.773 446 —0.666 921 aug-cc-pvQz —128.975514 —1.139006 0.475197
Numericat —198.773 323 aug-cc-pV5Z —128.977459 -—1.139075 0.475445
aug-cc-pVvVTZ —198.754 789 —0.667 496
aug-cc-pvQz —198.769 003 —0.667 094 “Reference 25.
aug-cc-pV5Z —198.773 009 -0.666937  PReference 27.

aReference 25.
PReference 26.

‘Reference 27 —1.133629593K=11), is satisfactorily accurate with com-

parison to the most accurate value in the literature,

—1.1136295717Ref. 26. For the i molecule we found an

apparent error of 1:210™ % hartree in the previous numerical
with an accuracy of at least I8 hartree for the total ener- result?’ The deviations of aug-cc-pV5Z from the multireso-
gies. We observed that the total energies are already comdtion calculations with the 11th multiwavelet bases are 1.9
verged with ninth multiwavelet bases amgMO)<10°  x10°° 1.2x10 % 2.2x10° 4, and 4.4 10 *hartree for
within the accuracy 10° hartree. There is no significant er- the total energies of 5 C,, N,, and B, respectively.
ror within an expected accuracy between two smoothing pa- Since we observed that the ninth order multiwavelet
rameterse, =10 ° and ¢,,,=10 7, as expected. The re- basesr(MO)<10 ¢ and e,,.=10 ¢ gave sufficient accu-
sulting total energies agree with the previous numericatacy, we did not use either the 11th multiwavelet bases or
calculation$®?’ (to at least three decimal plageand with  €,,=10"" for the hetronuclear diatomic molecules. For
those of Pahl and Handat least four decimal placksThe these molecules, the dipole moments were also computed,
best total energy of the H molecule we computed, the implementation of which is discussed elsewl&r€he
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TABLE IV. Total and HOMO energy(in hartre¢ and CPU timings(in sed for Hartree—Fock calculations for benzene molecujg,= 10 .

Timing: Timing: Timing: No. of blocks
Total energy HOMO energy Coulomb HF exchange Localization each MOs
Accuracy (in hartree (in hartree (seq (seq (seq (CMO/LMO)
k=7,r(MO)<3x10 *
D,y —230.798 692 —0.337 991 8.7 69933 61/—
C; with CMOs for HF exch. —230.798 479 —0.338012 80 6155293 457/—
C; with LMOs for HF exch. —230.798 612 —0.337 994 ditto 3060146 152 495/376
k=9, r(MO)<3x10*
D,y —230.798 768 —0.338 058 110 9770465 259/—
C; with CMOs for HF exch. —230.798 768 —0.338 040 860 8120870 2125/—-
C, with LMOs for HF exch. —230.798 768 —0.338 068 ditto 304001450 1110 2170/1064
PH result(extraploated —230.7987 —0.338025
aug-cc-pVTZ —230.782 244 —0.337 984
aug-cc-pvQz —230.795 403 —0.338 044
aug-cc-pV5Z —230.798 272 —0.338 050

results for the total energy again agree to three decimdiresolution calculation within the available digits. The aug-
places with the previous numerical calculatitsnd to four  cc-pV5Z basis has an error oP&L0~* hartree in the total
places with those of Pahl and HarfdyThe differences in the energy.

energy between the multiresolution calculations with the 9th  The times for applying the HF exchange operator with
multiwavelet bases and aug-cc-pV5Z are ¥ID °, 2.3  the D,, symmetry is around eight times faster than that for
X104, 2.6x10 4 2.3x10°4, and 2.% 10 “hartree for the CMO-based HF exchange operator with @esymme-

the total energies of BH, HF, BF, CO, and NQrespec- try. The eightfold speed up is an expected computational
tively. The maximum difference in dipole moments is 1.9 reduction by the spatial symmetry usage in our implementa-
X 10 *debye for HF molecule. tion. The same scale is also observed in reduction of the
number of coefficient blocks betweddy,, and C, calcula-
tions. By using LMOs, the timing are improved by factors of
1.9 and 2.6 for the seventh and ninth multiwavelet bases,
respectively. The times for the localization were negligibly
small, around 3% of total times for applying the HF ex-
HF calculations were performed upon the benzene molchange operator. The localization reduces the numbers of

ecule. We took the same geometiRc.c=1.3862A and plocks to 76% and 49% for the seventh and ninth order mul-
Rc.xp=1.0756 A, as used by Pahl and Har’raﬁlThe nuclear tiwavelet bases, respective|y_

potentials were smoothed with, .= 10"°, and the box size
was set td_ =45 bohrs. We used the seventh and ninth order _ .

multiwavelet bases with(MO)<3x 10 4. The calculations E COﬁp(u)tatlorlalls;aléng of Hartree—Fock exchange

were performed using both,,, andC; symmetry. In theC, or n[H,0], n=1,2,

symmetry, we employed both the CMOs and also the LMOs  We examined the computational scaling of the Hartree—
to verify the accuracy and efficiency of the LMOs-based HFFock exchange calculation using the water monomer, dimer,
exchange method. In summary, three calculations were peand trimer, whose geometries are listed in Table V. Table VI
formed: with D5, symmetry, without symmetry in CMOs, shows the total and HOMO energies, the timings to compute
and without symmetry in LMOs. Table IV shows the total HF exchange and localize MOs, the numbers of coefficient
and HOMO energies, the timings for applying HF exchange

operators and the localization to all of the MOs, and the

number of coefficient blocks for the multiwavelet bases™BLE V. The geometriein bohy for n[H,0], n=1, 2, 3.

(their Frobenius norm»5x 10 ¥) for each CMO/LMO. The

C. Hartree—Fock calculation for the benzene
molecule

. - . X y z
parentheses in the timing columns mean the average times
for each MO. The central processing uf@PU) time was o 0.0 Water 1 0.0 00
measured on a single 1.3 GHz Power4 processor on IBM +1.4375 00 115

p690 system.

The ninth order multiwavelet bases witMO)=<3 40 Water 2 00 6o
X 10 * yielded consistent results for the three calculations. 4.0-1.4375 0.0 50115
For the seventh order multivavelet bases, the differences in o ' o
the total energies are withinx110 # hartree. The deviation Water 3
of the total energies with the seventh order multiwavelet —40 0.0 —50

) : ) —4.0+1.4375 0.0 -5.0+1.15

bases from the ninth order multiwavelet bases is21
X 10~ *hartree. Pahl and Handy’s result agrees with the mul# (0-0)=6.4 boh=3.4 A.

IO0
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TABLE VI. Total and HOMO energyin hartre¢ and CPU timingg(in seg for Hartree—Fock calculations fa H,0], n=1, 2, 3, €,,=105.

Timing: Timing: Timing: No. of blocks
Total energy  HOMO energy  Coulomb HF exchange Localization each MOs
Accuracy (hartree (hartree (seq Ratio (seq (seq Ratio (CMO/LMO)

k=7,r(MO)<3x10*
Monomer fi=1)

CMOs for HF exchange  —76.065 573 —0.509 731 22 1.0 24848) 1.00(1.00 222/—
LMOs for HF exchange —76.065575 —0.509 743 ditto 19840) 9 0.81(0.8) 202/199
Dimer (n=2)

CMOs for HF exchange —152.134 176 —0.493 340 43 2.0 88889 3.66(1.83 274/
LMOs for HF exchange  —152.134 218 —0.493 038 ditto 51652) 27 2.12(1.06 248/228
Trimer (n=3)

CMOs for HF exchange —228.203 507 —0.488 169 70 3.2 162QL07) 6.67(2.22 313/-
LMOs for HF exchange  —228.203 526 —0.487 890 ditto 109073 55 4.49(1.50 291/237

k=9, r(MO)<3x10*
Monomer fi=1)

CMOs for HF exchange —76.065 596 —0.509 721 235 1.0 222(144) 1.00(1.00 817/-
LMOs for HF exchange —76.065 595 —0.509 748 ditto 193Q386) 60 0.87(0.87) 848/719
Dimer (n=2)

CMOs for HF exchange —152.134 260 —0.493 355 445 2.0 839(839 3.78(1.89 964/—
LMOs for HF exchange  —152.134 261 —0.493178 ditto 5320532 166 2.40(1.20 955/766
Trimer (n=3)

CMOs for HF exchange —228.203 614 —0.488 041 690 3.1 18 10@200 8.15(2.72 1297/-
LMOs for HF exchange  —228.203 614 —0.487 975 ditto 9815%654) 346 4.42(1.47 1123/832
aug-cc-pvQZz Fock building and diagonalization

Monomer f=1) —76.064 329 —0.509 631 75 1.0

Dimer (n=2) —152.131 759 —0.493 169 940 125

Trimer (n=3) —228.199 857 —0.487 951 3000 40.0

blocks (their Frobenius norn>5Xx 10"‘). The parentheses VI. CONCLUSION

in the timing columns mean the averages for each MO. The o .

table also includes the CPU times for computing Coulomb ~ An accurate, efficient algorithm has been presented to
potential. The calculations were performed with esym- ~ compute the HF exchange operator using multiresolution
metry, en,= 10~ %, and the box sizé =60 bohr. The seventh analysis in multiwavelet bases. The present implementation
and ninth order multiwavelet bases were used withto) ~ ©f the HF exchange iMADNESS (Ref. 32 is a straightfor-
<3x10“. The results were obtained in two approaches tgvard extension of the fast algorithm in multiwavelet bases to

compute the HF exchange using CMOs and LMOs, so tha@PPly Coulomb operatofi.e., the Green's function to the
we can directly compare the computational scaling betweef 01SSON equatigrin three dimensions. We use the NS-form

the two approaches. Table VI includes the ratios of timingsfor application of the operator to the function, which allows

against the CMO-based HF exchange calculation for the!> to do the application in a linear scaling fashion and effi-

: . ._ciently within a guaranteed finite accuracy. Specifically for
monomer. The same calculations were carried out usin . :
. . e HF exchange operator, we have implemented screening
NWCHEM with the default screening threshold.

As to the accuracy, the calculations with the CMO- and]:\/roitgg (Vr\:ze 3:2;?:100? érr];ii;a:;fre;]cr:r:zr "é't: I\/Ieécgftr(l)%zllto
LMO-based HF exchange in the ninth order multiwvavelet o¢ gop 9 y

) . . e o(n3.) scaling for all the occupied MOs. The asymptotic
bases yield total energies consistent within 4Bartree, and (Noco ¢ P ymp

h i th h ord ki et b q _scaling is formally reduced to a total operation cost to
those in the seventh order multiwavelet bases agree Wltb(nocc)i or O(1) for each target localized MO.

those in ninth order multiwavelet bases at the first six digits. ~ \y\ia demonstrated the HE SCF calculations for the many-
Overall, the LMOs reduce the computational demandingjectron closed-shell systems including a number of atoms,
for applying the HF exchange operator. Even for the monogjiatomic molecules, polyatomic molecules such as benzene
mer, the CPU time for LMOs was 10%—15% faster than thainglecule and water monomer, dimer and trimer. The perfor-
for CMOs. The timing ratios for the total operation for all mance was satisfactory in that the results yielded the re-
MOs are estimated as X"’ (k=7, CMO3, 0.79<n"**  quired precision, and the computational cost was observed to
(k=7, LMOs), 1.0X nl-91 (k=9, CMOs9, and 0.8% n148 scale as expected.
(k=9, LMOs). The best scaling for the HF exchange calcu- We used Foster-Boys’s LMOs for the HF exchange cal-
lation for this system is obtained as 1.5 on the number otulations to enhance the sparsity. The illustrative calculations
waters, which is successfully smaller than quadratic scalingusing benzene and water trimer demonstrated that the LMOs
We note the Coulomb potential is computeddfn) scaling.  worked efficiently to reduce the computational cost and scal-
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