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Abstract

The thesis consists of three major parts. First, we develop an algorithm for solving
the wave equation in two dimensions with spatially varying coefficients. In what is a new
approach, we use the basis of approximate prolate spheroidal wavefunctions and construct
derivative operators that incorporate boundary and interface conditions. Writing the wave
equation as a first-order system, we evolve the equation in time using the matrix exponen-
tial. Computation of the matrix exponential requires efficient representation of operators
in two dimensions and for this purpose we use short sums of one-dimensional operators.
We also use a partitioned low-rank representation in one dimension to further speed up the
algorithm. We demonstrate that the method significantly reduces numerical dispersion and
the computational time in comparison with a fourth-order finite difference scheme in space
with the explicit fourth-order Runge-Kutta solver in time.

Second, using efficient representations of spectral projectors, we develop a stable solver
for initial value problems on space-like surfaces. By writing the Helmholtz equation in two
dimensions as an initial value problem in space and using spectral projectors, we construct
a numerically stable scheme for propagating the solution. This solver is a first step toward
a fast algorithm for solving inverse scattering problems in two and higher dimensions.

Finally, we implement a fast Fourier summation algorithm for tomographic reconstruction
of biological data sets obtained via transmission electron microscopy. For two-dimensional
images, the new algorithm scales as O(NθM logM)+O(MN logN) operations, compared to
O(NθMN) for the standard filtered back projection, where Nθ is the number of projection
angles and M × N is the size of the reconstructed image. For typical data sets, the new
algorithm is 1.5-2.5 times faster than computing the filtered backprojection using the direct
summation. The speed advantage is greater as the size of the data sets grow. The new
algorithm also allows us to use higher order spline interpolation of the data without additional
computational cost.
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Chapter 1

Introduction

This thesis covers two main topics: numerical algorithms for wave propagation and a fast
tomographic reconstruction algorithm for transmission electron microscopy. The main con-
tributions of this thesis are:

• using bases for bandlimited functions as a numerical tool in algorithms of wave prop-
agation,

• developing and using efficient representations of operators in two dimensions for pur-
poses of wave propagation,

and

• constructing a fast algorithm for tomographic reconstruction of thick biological speci-
mens for the transmission electron microscopy.

Using bases for bandlimited functions allows us to achieve a low oversampling rate while
significantly reducing numerical dispersion. By using the operator representations introduced
in this thesis for wave propagation, application of the matrix exponential for large time steps
becomes feasible as a numerical propagation scheme.

1.1 Wave propagation

There are numerous applications of wave propagation in acoustics, elasticity and electro
magnetics, including medical imaging, sonar, seismology, radar, and noise modeling in civil
engineering. Few problems can be solved analytically, and almost all wave propagation
problems in engineering and geophysics involve numerical solutions of equations of acoustics,
elasticity, and other hyperbolic systems. Current methods have difficulties in applications
involving varying material properties or complex geometries.
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We develop fast and accurate numerical algorithms to solve (as an example) the equation
of acoustics

κ(x)utt = (σ(x)ux)x (1.1)

with spatially varying material parameters κ(x) and σ(x). The coefficients κ(x) and σ(x)
represent the compressibility and the specific volume of the medium, respectively. The goal
is to construct schemes where we control the bandwidth and accuracy. Our approach is
based on the following ideas:

• We choose a basis that works well for problems with variable medium parameters,
non-periodic boundary conditions, and material interfaces.

• By constructing derivative operators with nearly uniform error distribution for fre-
quencies within a given bandwidth we reduce numerical dispersion.

• We use integration by parts to incorporate boundary and interface conditions into the
derivative operator.

• By formulating the acoustic equation as a first order system we use the operator expo-
nential for time evolution. This requires an efficient operator representation in higher
dimensions.

In this thesis, we choose so-called bandlimited functions (to be introduced in Chapter 2
below) as the function basis. We construct derivative operators and time evolution schemes
for this basis. (Our construction, however, is applicable to any piecewise smooth basis.) The
operator representations that we will use to efficiently compute the matrix exponential are
useful also in other applications, such as computational quantum mechanics. Also, although
in this thesis we consider problems in two dimensions, our approach can be generalized to
three dimensions.

There is a wide literature devoted to the topic of wave propagation, see e.g. Durran [20]
and references therein, and we refer only to a few sources that are related to our approach.
For a general treatment of wave phenomena, see Whitham [55]. Acoustic waves are treated in
Brekhovskiskh and Godin [13] which also contains an extensive bibliography on the subject.
Iserles [33] gives an overview of finite difference methods for solving hyperbolic problems,
and Fornberg [25] discusses the use of pseudo-spectral methods. Reformulation of a broad
class of wave propagation problems as first order systems is considered in Bazer and Burridge
[3]. Alpert et al. [2] use an integral evolution formula to solve the wave equation.

1.1.1 Bandlimited functions

The first step in our approach is to select a basis for representing the solution and operators.
Traditionally, the trigonometric functions {ekπx}N

k=0 have been used for periodic problems,
and Legendre and Chebyshev polynomials have been used for non-periodic problems.
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In this thesis, we consider bandlimited functions restricted to an interval (see Section 2.5
for a precise definition). There are several bases available for computations using bandlimited
functions (see Xiao et al. [56], and Beylkin and Monzon [9]). In this thesis we review the
construction of three bases based on functions of the type {ecθkx}N

k=1 where |θk| < 1. Since we
do not impose that θk = kπ, these functions are not necessarily periodic. The basis spanned
by {ecθkx}N

k=1 is usually not suitable for numerical computations since these functions are
in general not orthogonal. Instead, we form linear combinations of these basis functions to
construct approximations to the prolate spheroidal wave functions which were introduced as
a basis for bandlimited functions by Slepian et al. in a series of papers [54], [38], [39], [51],
and [52]. The resulting basis can be shown to be almost orthonormal and, therefore, suitable
for numerical computations. In [9] it is shown that this choice of basis gives low sampling
rates also for non-periodic functions and functions that are ”almost” bandlimited.

1.1.2 Derivative operators with respect to bandlimited functions

The next step to solve the acoustic equation (1.1) is to discretize the equation in space.
Since our basis functions are linear combinations of the exponentials {ecθkx}N

k=1, we can
differentiate these basis functions exactly. This is similar to what is done in pseudo-spectral
methods [25] which are commonly based on periodic trigonometric functions or Chebyshev
polynomials. One advantage of using bandlimited functions instead of polynomials as the
basis is that the norm of the derivative matrix based on bandlimited functions is smaller
than the norm of the derivative matrix based on polynomials.

We incorporate boundary conditions into the derivative matrices using integration by
parts. In the case of discontinuous interface conditions, interface conditions are also incor-
porated into the derivative matrix using integration by parts. This technique has previously
been used by Alpert et al. in [1].

1.1.3 Time evolution and operator representations

To evolve the solution of the acoustic equation (1.1) in time, we first write the equation
as a first order system in time. After discretizing the spatial operator of the equation, the
equation takes the form of the system of linear first order ordinary differential equations

ut = Lu + F(t)
u(0) = u0.

In the case of time independent material coefficients, the solution is given by

u(t) = etLu0 + etL

∫ t

0

e−τLF(τ) dτ.
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If there is no time-dependent force, the solution can be computed by a sequence of matrix-
vector multiplications,

u(tk) = e∆tLu(tk−1), (1.2)

where the time step ∆t can be chosen arbitrary large without causing instabilities.
The computation of e∆tL and the matrix-vector multiplications in (1.2) are computa-

tionally costly in dimensions two and higher and, therefore, this approach is rarely used for
numerical computations. We use the separated representation introduced by Beylkin and
Mohlenkamp [7] to represent the operator L for problems in two or higher dimensions. This
representation significantly reduces the computational cost for computing the matrix expo-
nential and matrix-vector multiplications. The separated representation of an operator in
two or higher dimensions is given by a sum of operators in one dimension. We refer to the
number of terms in the separated representation as the separation rank. The separation rank
for the matrix exponential e∆tL grows with the size of the time step ∆t, and we will see that
a time step between 1-2 temporal periods is appropriate to control both the separation rank
and the number of time steps. We reduce the computational cost further by representing
the operators in one dimension by introducing the so-called Partitioned Low Rank (PLR)
representation which is similar to the partitioned singular value decomposition considered by
Jones et al. [34], and by Beylkin et al. [10]. We note that both the separated representation
and the PLR representation are interesting on their own, with applications in other areas,
e.g., computational quantum mechanics (see Beylkin and Mohlenkamp [7] and [8]).

1.1.4 Wave propagation on space-like surfaces

As an application of the tools for wave propagation, we consider wave propagation on space-
like surfaces. This problem appears in some approaches for solving the inverse problem where
sound waves are propagated through a domain with an unknown scatterer. By measuring the
scattered wave field at a surface outside the scatterer, the goal is to determine the structure
of the scatterer. In particular, we consider ultrasound tomography and an approach by
Natterer and Wübbeling [44] which involves repeated solution of equations on the form

uyy = −uxx − κ(x, y)ω2(1 + f)u ≡ Au, (x, y)∈ [−1, 1] × [−1, 1]

u(x,−1) = g(x)

uy(x,−1) = h(x)

u(−1, y) = r(y)

u(1, y) = s(y)

. (1.3)

This equation is an initial value problem for the Helmholtz equation and we refer to it as wave
propagation on space-like surfaces. As posed in (1.3), this equation is unstable. In many
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applications, for example underwater acoustics, seismics, and Synthetic Aperture Radar
(SAR), this problem is stabilized by replacing the operator in (1.3) by one-way operators.
Such approach excludes waves going in the opposite direction, e.g. multiple reflections. An
alternative approach has been proposed in [44], where this problem is solved for constant
coefficient κ by using Fourier-techniques to filter out the high frequencies of the solution.
In this paper, we consider the case of x-dependent coefficient κ. We show that by forcing
the spatial operator A to be negative definite, we obtain an equation which can be solved
in a stable manner by computing the matrix exponential. In order to obtain a negative
definite operator, we review the work by Beylkin et al. [10] who present fast algorithms
for computing spectral projectors for self-adjoint operators. We extend this algorithm to
diagonalizable matrices with pure real or imaginary spectrum and apply the technique to
solve (1.3) for constant and x-dependent coefficients.

1.2 Biological imaging

There is a significant interest in studying the fine structure of cells and tissues. By using high
voltage Transmission Electron Microscopy, biologists reconstruct three-dimensional images
of cell structures. A large amount of information is collected in the form of three-dimensional
images, and an important task is to use this information to build three-dimensional models
of cell structures. Image analysis is an important tool for gaining a deeper understanding of
biological structures of cells and tissues (Ladinsky et al. [37]).

The modeling process includes specimen preparation followed by imaging of the specimen
using electron microscopy. The three-dimensional density of the specimen is computed by
tomographic reconstruction. The resulting data set is segmented (boundaries of certain
objects are labeled) and rendered into surfaces that can be visualized in three dimensions
(Kremer et al. [36]). The modeling process is time consuming and it is desirable to make
some of the steps automatic. This requires careful understanding of the decisions that are
currently being made by biologists.

The reconstruction process and the image segmentation stages involve a number of chal-
lenging mathematical problems. Tomographic reconstruction is of great importance in many
fields, including seismic imaging, Magnetic Resonance Imaging (MRI), x-ray tomography,
and in electron microscopy. We consider the study of thick biological specimen using trans-
mission electron microscopy. This application involves some difficulties that has to be ad-
dressed by a successful reconstruction algorithm. The range of angles that can be used for
illuminating the specimen is limited to a range of angles, typically between ±700, and the
measurement usually contain a significant amount of noise. Also, the specimen is signifi-
cantly deformed during the experiment, which means that the angles usually are not equally
spaced.

In this thesis we develop a fast algorithm for tomographic reconstructions of transmission
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electron microscopy data. The goal is to construct a fast reconstruction algorithm that
produces the same results as the direct summation technique [28] traditionally used for
electron microscopy tomography of thick specimen. The goal is to construct an algorithm
that scales as O(N 2 logN) compared to O(N 3) for the direct summation technique.

Our approach is based on the reconstruction technique known as filtered backprojection
or direct summation (see, e.g., Deans [18] and Gilbert [28]), where the reconstruction for-
mula takes the form of a sum. Instead of summing in the space domain, we express the sum
in Fourier space where we can use the Unequally Spaced Fast Fourier Transform (USFFT)
introduced by Dutt and Rokhlin [21], and by Beylkin [4], for efficient summation. The re-
sulting algorithm has been incorporated into the software package IMOD [32],[36] developed
by The Boulder Laboratory for 3-D Electron Microscopy of Cells at University of Colorado
at Boulder.

1.3 New results

Although this thesis combines tools from a number of papers, in particular [9], [1], [7], [10],
and [4], there are some results and applications that are new:

• The use of bandlimited functions for numerical solutions of partial differential equa-
tions.

• The construction of an algorithm for solving the acoustic equation in two dimensions
with variable coefficients with a significant reduction of numerical dispersion compared
to a fourth order finite difference scheme. The time evolution method allows large time
steps and is significantly faster than using the explicit Runge-Kutta 4 solver.

• The use of spectral projectors for numerical solutions of wave propagation problems
on space-like surfaces.

• The construction of fast operator calculus algorithms for matrices represented in the
PLR form. The PLR form is demonstrated to be an efficient representation for many
matrices that are not compressible with wavelet-techniques and the singular value
decomposition.

• The construction of spectral derivative matrices incorporating boundary and inter-
face conditions. The thesis generalizes existing methods to non-orthogonal bases and
demonstrates how the use of spectral projectors improves the conditioning of the deriva-
tive matrices.

• Miscellaneous results for the approximate prolate spheroidal wave functions introduced
in [9].
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• The construction of a fast algorithm for tomographic reconstruction of thick biological
specimen using transmission electron microscopy. The new algorithm is shown to be
faster and to provide more flexibility than the commonly used technique filtered back
projection (a.k.a. direct summation).

1.4 Speed comparisons

For the speed comparisons in this thesis, we used a Dell computer running Red Hat Linux
8.0 with a Pentium 4 2.56GHz processor and a memory of 1GB RAM with 512kB cache. The
programs were written in Fortran 77 using (non-optimized) BLAS and LAPACK routines
for linear algebra operations. We used the the g77 compiler with the compiler flags -O3

-march=pentium3 -mmmx -msse -malign-double -funroll-loops.

1.5 Outline of the thesis

We begin with a review of the bandlimited functions in Chapter 2 where we also include a few
new results. In the third chapter, we construct derivative matrices incorporating boundary
and interface conditions with respect to an arbitrary set of (smooth) basis functions. We
apply the tools from Chapter 3 to bandlimited functions in Chapter 4 where we provide
several numerical examples demonstrating the accuracy of the derivative matrices based on
bandlimited functions. The chapter also includes a section on the construction of integration
matrices with respect to bandlimited functions. In Chapter 5 we review the separated
representation representation used for representing operators in two or higher dimensions.
We provide algorithms for linear algebra operations for operators in this representation. We
also introduce the PLR representation, provide algorithms for linear algebra operations for
operators in this representation, and also demonstrate the efficiency of this representation
for computing matrix products.

The tools from Chapter 2-5 are applied to solving the acoustic equation in two dimensions
in Chapter 6 where we give a number of numerical examples and comparisons with a fourth
order finite difference scheme. We consider inverse problems and computations of spectral
projectors in Chapter 7.

Finally, we construct a fast algorithm for tomographic reconstruction of thick biological
specimen using transmission electron microscopy in Chapter 8. The paper ”A fast algorithm
for electron microscopy tomography” by Beylkin, Mastronarde, and Sandberg is included in
Appendix E.
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Chapter 2

Bandlimited functions

In this chapter we study bandlimited functions and present numerical tools for using them.
Our main motivation for using bandlimited functions for numerical analysis is that solutions
of PDEs behave more like exponentials than polynomials which comprise the main tool used
today in computations. Using bandlimited functions allows us to significantly reduce the
computational cost and achieve any desired accuracy. In this thesis we use bandlimited
functions for studying wave propagation.

Waves are often decomposed into frequency components, with the frequency content of
the wave given by its Fourier transform. In physical phenomena there is a bound for the
frequency range we can expect from the solution. It is therefore natural to describe such
phenomena by functions with compactly supported Fourier transforms. We refer to such
functions as bandlimited functions; a precise definition will be given later. If the Fourier
transform of a function is supported on [−c, c], we refer to c as the bandwidth of the function.

For applications in this thesis, we will study bandlimited functions restricted to a finite
interval, e.g., [−1, 1]. Since a function cannot have compact support in both the space and
the frequency domains, it is important to fully understand how functions on an interval can
be extended onto the real line. Slepian et al. in a series of papers [54], [38], [39], [51], and
[52], introduced the prolate spheroidal wave functions as an eigensystem which can be shown
to be bandlimited and maximally concentrated within the interval [−1, 1]. Although these
functions were introduced for signal processing, their use has been limited, perhaps due to
lack of fast or reliable algorithms. In this chapter, we will see how these functions can be
approximated with a finite number of exponentials of the type {eicθkx}k where |θk| < 1.

Exponentials also provide a natural basis for wave phenomena. Bandlimited periodic
waves are typically expanded into the Fourier basis eikπx for k = 0, 1, . . . , N or, equiva-
lently, {cos kπx, sin kπx}, for k = 0, 1, . . . , N . If we consider bandlimited waves with zero

boundary conditions, it is natural to expand such waves into the functions sin kπ(x+1)
2

for
k = 1, 2, . . . , N . In this thesis we will study wave phenomena on domains where we expect
piecewise smooth solutions. We divide the domain into subdomains, and on each subdomain
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we expect the solution to be bandlimited. The global solution may not be differentiable and
thus cannot be truly bandlimited, but can be described as bandlimited on subdomains. In
such cases, we need to allow arbitrary boundary conditions on the subdomains, and neither
the Fourier nor the sin basis will be efficient. This motivates the introduction of a basis
that can represent functions of the type eibx for an arbitrary (real) value of b such that
|b| < c, where c is a maximum allowable bandwidth. These functions are not generally peri-
odic. Bandlimited functions with arbitrary boundary conditions also appear when studying
problems on a finite domain with absorbing boundary conditions.

The chapter is organized as follows. In the first section we give some preliminary defi-
nitions and results, and in the following section we introduce bandlimited functions defined
on the real line. In Section 2.3 we review the prolate spheroidal wave functions and state
some of their properties, and then in Section 2.4 we introduce bandlimited functions on an
interval. In Section 2.5 we review quadratures for bandlimited functions on an interval and
show how a finite number of exponentials can approximate any bandlimited function of a
fixed bandwidth within a fixed but arbitrary precision. The following section considers three
bases for approximating bandlimited functions on an interval. We show that one such basis
approximates the prolate spheroidal wave functions. We conclude this chapter by approxi-
mating trigonometric functions, Chebyshev polynomials, and Gaussian bell functions using
a finite number of exponentials.

2.1 Preliminaries

Throughout this thesis, the Fourier transform of u∈L1(
�
) is defined as

û(ω) =

∫ ∞

−∞
u(x)e−ixω dx.

The inverse Fourier transform of û∈L1(
�
) is defined by 1

2π

∫∞
−∞ û(ω)eiωx dω. For functions

such that u, û∈L1(
�
) we have that

u(x) =
1

2π

∫ ∞

−∞
û(ω)eiωx dω (2.1)

almost everywhere. If u∈L2(
�
) then there exists a sequence of functions {un}n ⊆L2(

�
) ∩

L1(
�
) such that limn→∞ un = u in the L2-norm. We define the Fourier transform of such

functions as û = limn→∞ ûn in the L2-norm.
For functions defined on the interval [−1, 1] we will usually use the norms

‖u‖2 =

√

∫ 1

−1

|u(x)|2 dx

9



and

‖u‖∞ = max
x∈[−1,1]

|u(x)|.

Occasionally, we extend these functions to functions on
�

and use the norms

‖u‖L2(� ) =

√

∫ ∞

−∞
|u(x)|2 dx

and

‖u‖L∞(� ) = max
x∈ �

|u(x)|

for the extended functions.

2.2 The space of bandlimited functions

In this section we introduce bandlimited functions on the real line. We review properties of
such functions and state a bound for the derivative. Following Landau and Pollak [38], the
bandlimited functions are defined as

Definition 1 (Bandlimited functions) Let c > 0 and define the space

Bc = {f ∈L2(
�
) | f̂(ω) = 0 for |ω| > c}.

We refer to Bc as the space of bandlimited functions of bandwidth c.

We note that the space of bandlimited functions equipped with the standard inner product
is a closed linear subspace of L2(

�
) and, therefore, a Hilbert space. As an example, consider

the function

u(x) =
c

π
sinc(cx) =

sin cx

πx
. (2.2)

This function is square integrable on the real line and its Fourier transform is given by

û(ω) =

{

1, ω∈ [−c, c]
0, ω 6∈ [−c, c] .

In some situations, we will use the following space which is dense in Bc.

Definition 2 Let c > 0 and define the space

Fc = Bc ∩ L1(
�
).
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As an example, consider the function

v(x) =
c

2π
sinc2(

cx

2
).

This function is absolutely and square integrable on the real line. The Fourier transform is
given by

v̂(ω) =

{

1 − |ω|
c
, ω∈ [−c, c]

0, ω 6∈ [−c, c] .

Hence, v ∈Fc. Note that the function u in (2.2) is not absolutely integrable, and hence u
does not belong to Fc.

The space Bc has the following properties.

Proposition 3 The space of bandlimited functions Bc has the following properties:

1. Every function u∈Bc can be written as

u(x) =
1

2π

∫ c

−c

û(ω)eiωx dω

almost everywhere.

2. Let u∈Bc and define α > 0 by

α =
‖u‖L2([−1,1])

‖u‖L2( � )

.

Then
∥

∥

∥

∥

du

dx

∥

∥

∥

∥

L2([−1,1])

≤ c ‖u‖L2( � ) =
c

α
‖u‖L2([−1,1]).

3. For every u∈Bc, there exists a ũ∈C∞(
�
) such that u = ũ almost everywhere.

Proof. (1) Let {un}n⊆Fc be a sequence converging to u∈Bc. Since û is defined as a limit
in the L2-norm of functions ûn∈L2(

�
) and is supported on [−c, c], Hölder’s inequality gives

that û∈L1(
�
). Hence,

ũ(x) =
1

2π

∫ c

−c

û(ω)eiωx dω

is well-defined. We have that

‖u− ũ‖L2( � ) = ‖u− un + un − ũ‖L2(� ) ≤ ‖u− un‖L2(� ) + ‖un − ũ‖L2(� )

≤ ‖u− un‖L2(� ) +
1

2π
‖ûn − û‖L2( � )
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and since un → u and ûn → û in the L2-norm, u = ũ almost everywhere.
(2) This follows from Bernstein’s inequality. (See, e.g., Meyer [43, Ch. 2.5] and references

therein.)
(3) This follows from the second part of the proposition.

�

2.3 The Prolate Spheroidal Wave Functions

In this section we review the prolate spheroidal wave functions and consider some of their
properties. These functions have been studied by, e.g., Flammer [24] and Slepian et al.
[54],[38]. Properties of the functions are reviewed by Slepian [53]. Numerical tools for these
functions are given by Bouwkamp [11], Xiao et al. [56], and by Beylkin and Monzon [9].

The prolate spheroidal wave functions are defined as

Definition 4 (Prolate spheroidal wave functions) Consider the bandwidth
c > 0 and define the operator Fc : L2([−1, 1]) → L2([−1, 1]) by

Fc(ψ)(ω) =

∫ 1

−1

eicxωψ(x) dx, (2.3)

and the operator Qc : L2([−1, 1])] → L2([−1, 1])] by

Qc(ψ)(ω) =
1

π

∫ 1

−1

sin(c(ω − x))

ω − x
ψ(x) dx =

c

2π
F ∗

c Fcψ.

The eigenfunctions ψ of Qc and Fc are called prolate spheroidal wave functions .

Each eigenvalue λ of Fc corresponds to an eigenvalue µ of Qc by

µ =
c|λ|2
2π

. (2.4)

The prolate spheroidal wave functions depend on the bandwidth c for which they are con-
structed, but we will suppress this dependence in our notation.

Let us state some properties of the prolate spheroidal wave functions.

Theorem 5 The prolate spheroidal wave functions are complete in L2([−1, 1]) and Bc.

For a proof, see [54]. The eigenfunctions ψj(x) are real and orthogonal on both [−1, 1] and
�
,

∫ 1

−1

ψi(x)ψj(x)dx = δij, (2.5)
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and
∫ ∞

−∞
ψi(x)ψj(x)dx =

1

µi

δij (2.6)

where µi is the eigenvalue of the operator Qc. This normalization is more convenient for our
purposes, although in the original paper by Slepian and Pollak [54], the prolate spheroidal
wave functions are normalized on

�
instead. The prolate spheroidal wave functions are

uniformly bounded on [−1, 1]. More precisely, there exists a bandwidth dependent constant
Kc such that

‖ψj‖∞ ≤ Kc (2.7)

for all j = 0, 1, . . . . As discussed in [9], the existence of Kc can be proved by using that the
prolate spheroidal wave functions approach the Legendre polynomials for j � c.

The eigenvalues of Qc are real and the spectrum is naturally divided into three parts.
For large bandlimits c, the first 2π/c eigenvalues µi of Qc are close to 1. The next log c
eigenvalues decay exponentially fast to zero and the remaining eigenvalues are very close to
zero. By construction, we have

eictx =

∞
∑

j=0

λjψj(t)ψj(x) (2.8)

for all t, x∈ [−1, 1]. This is the optimal separated representation for eictx. For a given c, once
j > 2c/π, the series can be truncated due to the exponential decay of λj.

For the prolate spheroidal wave functions we establish a bound for their derivatives on
the interval [−1, 1]. It is a simple property, although we have not seen it stated explicitly
elsewhere.

Theorem 6 Let ψj be the j:th prolate spheroidal wave function with bandwidth c and let µj

be the corresponding eigenvalue to Qc defined in Definition 4. Then
∥

∥

∥

∥

dψj

dx

∥

∥

∥

∥

2

≤ c‖ψj‖L2( � ) = c
1√
µj

.

Proof. The proof follows from Bernstein’s inequality in Proposition 3 and
from ‖ψj‖L2( � ) = 1√

µj
.

�

It is interesting to compare this bound to another version of Bernstein’s inequality (see, e.g.,
Rivlin [47, Ch. 2.4]), which states that if p(x) is an n:th degree polynomial and |p(x)| ≤ 1
for x∈ [−1, 1], then

|p′(x)| ≤ n2, x∈ [−1, 1].
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2.4 Bandlimited functions on an interval

In many applications we are interested in bandlimited functions restricted to a finite interval.
We study a representation of such functions using exponentials in this section and show how
such representations provide local approximations of bandlimited functions in Bc. Following
[9] we define

Definition 7 (Bandlimited functions on an interval) Define the space Ec of bandlim-
ited functions of bandwidth c on an interval as

Ec =

{

u∈L∞([−1, 1]) | u(x) =
∑

k∈ �

ake
ibkx : {ak}k∈ l1, bk∈ [−c, c]

}

.

We characterize the space Ec in the following theorem.

Theorem 8 The space Ec of bandlimited functions on an interval satisfies the following
properties:

1. Ec⊆C∞([−1, 1])

2. For every ε > 0 and u∈Fc there exists a function ũ∈ Ec such that |u(x) − ũ(x)| < ε
almost everywhere on [−1, 1].

3. For every ε > 0 and u∈Ec there exists a function ũ∈Bc such that ‖u− ũ‖2 < ε.

4. For every ε > 0 and u∈Bc there exists a function ũ∈Ec such that ‖u− ũ‖2 < ε.

In the proof of (2) below, we discretize an integral using the Riemann sum. This is usually
not an efficient way for computing an integral, but we use it for the simplicity of the proof.

Proof. (1) Let u ∈ Ec. Then the sequence {bk} is bounded, and it is easily shown that
the family of functions {eibkx}k is equicontinuous on [−1, 1]. Since {ak}k∈ l1 it follows that

u(x) =
∑

k∈ �

ake
ibkx

is continuous on [−1, 1] and hence Ec⊆C([−1, 1]). By the definition of Ec we have that the
n:th derivative of u is given by

u(n)(x) =
∑

k∈ �

(ibk)
nake

ibkx.

Since {ak}k ∈ l1 and |(ibk)n| ≤ cn it follows that {(ibk)nak}k ∈ l1 and hence u(n)(x)∈ Ec for
each n = 0, 1, . . . . Since every function in Ec is continuous, it follows that Ec⊆C∞([−1, 1]).
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(2) By Proposition 3 it follows that any function u∈Fc can be written on the form

u(x) =

∫ c

−c

σ(ω)eiωx dω

almost everywhere and since u∈L1(
�
), σ is continuous and bounded. Define bk = −c+ 2kc

N

for k = 1, . . . , N . Then |bk| ≤ c and since the integrand is continuous and bounded, we can
approximate u with the Riemann sum

u(x) =
2c

N

N
∑

k=1

σ(bk)e
ibkx + EN(x)

where limN→∞EN (x) = 0 for all x ∈ [−1, 1]. We choose N sufficiently large such that
‖EN‖∞ < ε. Define ak = 2cσ(bk)/N for k = 1, . . . , N and

ũ(x) =

N
∑

k=1

ake
ibkx

for x∈ [−1, 1]. Then |u(x)−ũ(x)| < ε almost everywhere on∈ [−1, 1]. Furthermore, {ak}k∈ l1
and therefore ũ is bounded on [−1, 1].

(3) Any function u∈Ec can be written as

u(x) =
∑

k∈ �

ake
ibkx.

For x∈ �
, define

ũ(x) =

∞
∑

j=0

ujψj(x)

where ψj is the j:th prolate spheroidal wave function, and

uj = λj

(

∑

k∈ �

akψj(bk/c)

)

where λj is the eigenvalue corresponding to ψj according to Definition 4. Introduce

ũN(x) =

N
∑

j=0

ujψj(x).
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By using (2.8) it follows that u(x) = ũ(x) for all x∈ [−1, 1]. Since ũ∈L2([−1, 1]) and {ψj}j

forms a complete basis in this space according to Theorem 5, we can choose N sufficiently
large so that ‖u− ũN‖2 < ε. Furthermore, ψj ∈Bc for j = 0, 1, . . . , N and hence ũN ∈Bc.

(4) Let u∈Bc. Then, since Fc is dense in Bc, there exists a function v∈Fc such that

‖u− v‖2 < ε/2. (2.9)

From the second part of the theorem we know that there exists ũ∈Ec such that |v(x)−ũ(x)| <
ε

2
√

2
almost everywhere on [−1, 1]. Then

‖v − ũ‖2
2 =

∫ 1

−1

|v(x) − ũ(x)|2 dx ≤
∫ 1

−1

ε2

8
dx < ε2/4

which combined with (2.9) gives us that

‖u− ũ‖2 ≤ ‖u− v‖2 + ‖v − ũ‖2 < ε.
�

2.5 Approximation of bandlimited functions on an in-

terval

The goal of this section is to show that any bandlimited function on an interval of bandlimit
c can be approximated by a linear combination of a finite number of exponentials in the form
eicθkx where |θk| ≤ 1. The phases θk are chosen as nodes for quadratures for bandlimited
functions. We establish the existence of such quadratures for bandlimited functions in the
following theorem.

Theorem 9 Let σ be a real, non-negative, integrable weight function supported in [−ν, ν],
0 ≤ ν ≤ 1/2, and let ε and γ be positive numbers with γ < 1. Then, for N sufficiently large,
there exist real constants {v1, . . . , vN} and {t1, . . . , tN}, with wj > 0 and |tj| < ν, such that

∣

∣

∣

∣

∣

∫ 1

−1

σ(t)eiπty dt−
N
∑

j=1

vje
iπtjy

∣

∣

∣

∣

∣

< ε, for |y| ≤ γN + 1.

Furthermore, there exists a positive integer m and positive constants αm and dm (independent
of N), such that the error ε is bounded by

ε < 2‖σ‖1

(

3ν2m +
2

2 + (2 +
√

3)N + (2 −
√

3)N
+

2dme
−αm(1−γ)N

1 − e−αm

)

.
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For a proof, see [9, Theorem 6.1].
The constants αm and dm in the error estimate, are related to properties of the exponential

Euler splines, see [9, Theorem 6.1] and [50, pp. 29,30, and 35]. This theorem establishes the
existence of a quadrature and provides an error estimate. Actual computations, however, are
based on a slightly different algorithm where a large number of the weights are sufficiently
close to zero to be disregarded (see [9] for more details). Therefore, the number of nodes and
weights actually used is typically significantly less than the number of nodes and weights
required by the error estimate.

The theorem above is more general than our needs. We next state a special case of this
theorem which will be the foundation for our applications.

Corollary 10 Let c and ε be positive numbers. Then, for N sufficiently large, there exist
constants {w1, . . . , wN} and {θ1, . . . , θn}, such that for any x∈ [−1, 1]

∣

∣

∣

∣

∣

∫ 1

−1

eictx dt−
N
∑

k=1

wke
icθkx

∣

∣

∣

∣

∣

< ε (2.10)

where wk are real and non-negative, and |θk| < 1.
Let γ ∈ (0, 1) and let m and N be positive integers such that N ≥ 2γc

π
. The error ε is

bounded by

ε ≤ 4

(

3

(

c

γNπ

)2m

+
2

2 + (2 +
√

3)N + (2 −
√

3)N
+

2dme
−αm(1−γ)N

1 − e−αm

)

where αm and dm are positive constants independent of N .

Proof. See Appendix 1.
�

We note that error is of the form O(N−2m) + O(c−N
m ), where cm is a constant, for any

integer m. Hence, the error decays faster than any polynomial decay. However, due to the
third term in the estimate, the constant cm depends on m and therefore this estimate is
mostly of theoretical interest.

Definition 11 (Quadrature for bandlimited functions) For c > 0 and
ε > 0, suppose N quadrature nodes θ1, θ2, . . . , θN and weights w1, w2, . . . , wN are such that
(2.10) is satisfied. Let E denote the matrix with elements given by Ekl = eicθkθl.

If det(E) 6= 0 then we say the nodes and weights are a quadrature for bandlimited func-
tions of bandwidth c and accuracy ε.

The condition det(E) 6= 0 is not necessary if the nodes and weights are going to be used only
for integrating bandlimited functions. In Section 2.6.2 below, we construct an approximation
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to the prolate spheroidal wave functions using the functions eicθkx, and this construction
depends on the invertibility of the matrix E. Although we do not have a proof that our
construction guarantees that det(E) 6= 0, we have not encountered any counterexamples in
our experiments.

For the construction of the quadrature nodes in [9], we have the symmetry properties

θk = −θN−k+1 (2.11)

and

wk = wN−k+1. (2.12)

We use the quadrature nodes and weights to construct a basis for Ec according to the following
theorem.

Theorem 12 Consider the bandwidth c and a function u∈Ec represented by

u(x) =
∑

k∈ �

ake
ibkx.

Let ε > 0, and let {θl}N
l=1 and {wl}N

l=1 be a set of quadrature nodes and weights for bandwidth
2c and accuracy ε2. Then there exist constants {ul}N

l=1 and A such that

∥

∥

∥

∥

∥

u(x) −
N
∑

l=1

ule
icθlx

∥

∥

∥

∥

∥

∞

≤ A

(

∑

k∈ �

|ak|
)

ε

and
∥

∥

∥

∥

∥

u(x) −
N
∑

l=1

ule
icθlx

∥

∥

∥

∥

∥

2

≤
√

2A

(

∑

k∈ �

|ak|
)

ε.

Proof. By definition, u(x) =
∑

k∈ � ake
ibkx for some set of constants ak and bk where

{ak}k∈ l1 and |bk| ≤ c. We use [9, Theorem 8.1] which asserts that there exist constants αkl

for k∈ �
and l = 1, . . . , N , and a constant A such that

∥

∥

∥

∥

∥

eibkx −
N
∑

l=1

αkle
icθlx

∥

∥

∥

∥

∥

∞

≤ Aε.

According to the proof of Theorem 8.1 in [9], αkl = wl

∑N−1
j=0 ψj(bk/c)ψj(θl) where ψj denotes

the j:th prolate spheroidal wave function. According to (2.7) these functions satisfy ||ψj||∞ ≤
Kc for j = 0, 1, . . . . Since the quadrature weights wl are bounded, the sequence {αkl} is
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bounded. The sequence {ak}k ∈ l1 by assumption and, therefore, ul =
∑

k∈ � akαkl is well-
defined for l = 1, . . . , N . It follows that

∥

∥

∥

∥

∥

u(x) −
N
∑

l=1

ule
icθlx

∥

∥

∥

∥

∥

∞

=

∥

∥

∥

∥

∥

∑

k∈ �

ake
ibkx −

∑

k∈ �

ak

(

N
∑

l=1

αkle
icθlx

)∥

∥

∥

∥

∥

∞

=

∥

∥

∥

∥

∥

∑

k∈ �

ak

(

eibkx −
N
∑

l=1

αkle
icθlx

)∥

∥

∥

∥

∥

∞

≤ A

(

∑

k∈ �

|ak|
)

ε.

For the L2([−1, 1])-norm we have that

∥

∥

∥

∥

∥

u(x) −
N
∑

l=1

ule
icθlx

∥

∥

∥

∥

∥

2

2

=

∫ 1

−1

∣

∣

∣

∣

∣

u(x) −
N
∑

l=1

ule
icθlx

∣

∣

∣

∣

∣

2

dx

≤
∫ 1

−1

∥

∥

∥

∥

∥

u(x) −
N
∑

l=1

ule
icθlx

∥

∥

∥

∥

∥

2

∞

dx

≤ 2A2

(

∑

k∈ �

|ak|
)2

ε2

and hence
∥

∥

∥

∥

∥

u(x) −
N
∑

l=1

ule
icθlx

∥

∥

∥

∥

∥

2

≤
√

2A

(

∑

k∈ �

|ak|
)

ε.

�

The error estimate in the previous theorem depends on the sum
∑

k∈ � |ak| which is the
upper bound for both the function on [−1, 1] and on

�
. Nevertheless, numerical experi-

ments indicate strongly that this representation gives sufficient accuracy which we illustrate
in Section 2.7.

2.6 Bases for bandlimited functions on an interval

In the previous section we represented bandlimited functions on an interval using exponential
functions. We also discussed how we can construct quadratures for bandlimited functions on
an interval, and use the resulting nodes and weights to construct a finite dimensional subspace
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that approximates the space of bandlimited functions on an interval within a finite but
arbitrary precision. Even though the resulting basis of exponential functions is convenient
to study from an analytical view point, this basis is not well-conditioned and therefore not
always suitable for direct numerical computations.

In this section we illustrate the basis of exponential functions and introduce two additional
bases; an approximation of the prolate spheroidal wave functions and an interpolating basis.
All three bases are derived in [9].

2.6.1 Exponentials

We define the basis of exponentials for bandlimited functions on an interval as follows.

Definition 13 (Basis of exponentials) Given the bandwidth c > 0 and ε > 0 construct
N quadrature nodes {θk}k according to Definition 11. The sequence of functions given by
{eicθkx}N

k=1 is called a basis of exponentials for bandlimited functions on an interval of band-
width c and accuracy ε. We define an N-dimensional space Ec,ε of bandlimited functions on
the interval [−1, 1] as

Ec,ε = span
{

eicθlx
}N

l=1
.

In Figure 2.1 we display the real part of two basis functions constructed for the bandwidth
c = 8.5π and the accuracy ε = 10−7 which results in 32 nodes. Note that these trigonometric
functions are not periodic.
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Figure 2.1: In the first figure we display the real part of the basis function eicθ1x where
c = 8.5π and θ1 ' −0.9957. In the second figure we display the real part of the function
eicθ12x where c = 8.5π and θ12 ' −0.3626.

The basis of exponentials has the advantage of being easy to visualize and plot since the
basis functions have a closed form expression. Furthermore, differentiation and integration
can be represented by diagonal matrices with respect to this basis. However, these functions
have the disadvantage of forming an ill-conditioned basis which means that this basis is
usually not suitable for numerical computations. We explore this issue further in Section 2.7.
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2.6.2 Approximate prolate spheroidal wave functions

In the last section we pointed out that a disadvantage of the exponential basis was the ill-
conditioning of the basis. We saw in Section 2.3 that the prolate spheroidal wave functions are
bandlimited and form a complete orthogonal basis in Bc and in L2([−1, 1]). This motivates
us to seek an approximation to these functions. Such approximations were described in [56]
and [9]. In this thesis we use the approach in [9] which approximates prolate spheroidal
wave functions by a linear combination of the exponential basis functions defined in the
previous section. In this section, we first define a set of ”approximate” prolate spheroidal
wave functions . We then show how they can be constructed and that they form a set which
is ”almost” orthonormal. Finally, we show that these functions indeed form a basis of the
space Ec,ε introduced in the previous section.

By discretizing the integral operator (2.3) we define the approximate prolate spheroidal
wave functions as follows.

Definition 14 (Approximate prolate spheroidal wave functions)
Given the bandwidth c > 0 and ε > 0, construct N quadrature nodes {θl}N

l=1 and weights
{wl}N

l=1 according to Definition 11. Consider the algebraic eigenvalue problem

N
∑

l=1

wle
icθmθlΨj(θl) = ηjΨj(θm). (2.13)

Define the approximate prolate spheroidal wave functions on [−1, 1] by

Ψj(x) =
1

ηj

N
∑

l=1

wle
icxθlΨj(θl) (2.14)

where Ψj(θl) are the eigenvectors defined by (2.13).

By Definition 11 we assume that the matrix with elements given by eicθkθl is invertible. Since
all the quadrature weights wl are positive, it follows that the matrix with elements given by
wle

icθkθl is invertible and hence ηj 6= 0.
The algebraic eigenvalue problem defining the approximate prolate spheroidal wave func-

tions approximates the eigenvalue problem (2.3). The operator Fc defined in (2.3) has a
countable spectrum. Therefore, we expect that the eigenvalues {ηj}j to the algebraic eigen-
value problem approximate the eigenvalues {λj}j of Fc. Experimentally, we have found that
this is the case within high precision, with exceptions for the smallest eigenvalues, where
the relative error may be large. We have also found that the approximate prolate spheroidal
wave function do not necessarily match the ”true” prolate spheroidal wave function as in-
dividual functions due to the initial ∼ 2π/c eigenvalues in Definition 14 being so close to
each other that they are numerically indistinguishable. However, the subspace spanned by
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the initial approximate prolate spheroidal wave functions approximates well the correspond-
ing subspace spanned by the initial true prolate spheroidal wave functions. In Figure 2.2
we plot four approximate prolate spheroidal wave functions constructed for the bandwidth
c = 8.5π and the accuracy ε = 10−7 resulting in 32 quadrature nodes. Note that the first
approximate prolate spheroidal wave function (the upper left plot) happens to have one root
while the first true prolate spheroidal wave function has no root. The first approximate
prolate spheroidal wave function is in this case similar to the second true prolate spheroidal
wave function. As the eigenvalues decay, they become numerically distinguishable and corre-
sponding eigenfunctions match well until the eigenvalues become smaller than ∼ √

ε. In this
case the corresponding eigenfunctions appear similar, but numerically they are different.
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Figure 2.2: Four approximate prolate spheroidal wave functions constructed for the band-
width c = 8.5π with the accuracy ε = 10−7 resulting in 32 linearly independent functions.
In the upper left figure we display the first approximate prolate spheroidal wave function, in
the upper right the eighth, in the lower left the 16:th, and in the lower right the 32:nd.

Let us establish some properties for the eigenvectors and eigenvalues used to define the
approximate prolate spheroidal wave functions. In particular, we establish that the approx-
imate prolate spheroidal wave functions are either odd or even.

Proposition 15 Let Ψj denote an eigenvector and let ηj denote the corresponding eigenvalue
to the eigenvalue problem defined by (2.13). Define A as the matrix with elements given by

Akl =
√
wke

icθkθl
√
wl.
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Define qj as the vector with elements given by qj
m =

√
wmΨj(θm). Then the following

properties hold.

1. A is normal and A∗ = Ā.

2. There exists a real and orthonormal set of eigenvectors of A.

3. The vector qj is an eigenvector of A with the eigenvalue ηj.

4. The vector qj is a left eigenvector of A with the eigenvalue ηj.

5. The eigenvalue ηj is either pure real or pure imaginary.

6. The vectors qj and Ψj are either even or odd, that is, qj
l = ±qj

N−l+1 and Ψj(θl) =
±Ψj(θN−l+1).

Proof. (1) This property follows immediately from the expression for the elements of A.
(2) See [9, Proposition 8.2].
(3) From the definition of A and qj we have that

(Aqj)k =

N
∑

m=1

√
wke

icθkθm
√
wm

√
wmΨj(θm) =

√
wk

N
∑

m=1

wme
icθkθmΨj(θm)

=
√
wkηjΨj(θk) = ηjq

j
k

where we used that Ψj is an eigenvector to the eigenvalue problem (2.13).
(4) Using the first three properties of the proposition we have that

qj∗A = (A∗qj)∗ = (Aqj)∗ = (Aqj)∗ = ηjq
j∗.

(5) Let q be a real eigenvector to the N -by-N -matrix A. Since {θk}k are quadrature
nodes it follows from Definition 11 that rank(A) = N and that the eigenvalue η of A is
non-zero. Since q is real we have that q is an eigenvector to Ā with the eigenvalue η̄. Let
us write η as η = α + iβ where α and β are real. Then

{

Aq = (α + iβ)q
Āq = (α− iβ)q

⇒
{

Arq = αq
Aiq = βq

where Ar = Re(A) and Ai = Im(A). Denote the range and the null space of a matrix
as R and N , respectively. To prove property (5) of the theorem it suffices to show that
N (Ar) = R(Ai).

The elements of Ar are given by (Ar)kl =
√
wk cos(cθkθl)

√
wl. From the symmetry

properties (2.11) and (2.12), it follows that

(Ar)N−k+1,l =
√
wN−k+1 cos(cθN−k+1θl)

√
wl =

√
wk cos(−cθkθl)

√
wl = (Ar)kl.
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Hence, if N is even, we have that rank(Ar) ≤ N/2 and by the same argument rank(Ai) ≤
N/2.

Assume that there exists an eigenvector q such that q∈N (Ar) ∩N (Ai). Then α = β =
η = 0 which contradicts that η 6= 0. Hence, if q∈N (Ar), then q∈R(Ai). Therefore,

N (Ar)⊆R(Ai). (2.15)

Assume that rank(Ar) < N/2. Then dim(N (Ar)) ≥ N/2 + 1 which by (2.15) implies
that rank(Ai) ≥ N/2 + 1 which is a contradiction. Hence, rank(Ar) = N/2 and by the same
argument it follows that rank(Ai) = N/2. Since dim(N (Ar)) = rank(Ai) = N/2 it follows
from (2.15) that N (Ar) = R(Ai). (The case for odd N is analogous).

(6) Recall that the quadrature weights are real and even in the sense that wm = wN−m+1,
and that the quadrature nodes are real and odd such that θm = −θN−m+1. Using the
symmetry of the nodes θm it follows that

AN−m+1,l =
√
wN−m+1e

icθN−m+1θl
√
wl =

√
wme

−icθmθl
√
wl = Aml. (2.16)

Therefore, since qj is an eigenvector of A with eigenvalue η,

qj
N−m+1 =

1

ηj

N
∑

l=1

AN−m+1,lq
j
l =

1

ηj

N
∑

l=1

Amlq
j
l. (2.17)

Since Ā = A∗ by the first part of the theorem and qj can be chosen to be real by the second
part of the theorem, it follows that qj is an eigenvector to Ā with eigenvalue ηj. Since the
eigenvalues ηj are either pure real or pure imaginary by property (5), equation (2.17) implies
that

qj
N−m+1 =

ηj

ηj

qj
m = ±qj

m.

We now have that

Ψj(θN−m+1) =
1√

wN−m+1

qj
N−m+1 = ± 1√

wm

qj
m = ±Ψj(θm). (2.18)

�

Corollary 16 The eigenfunctions Ψj(x) defined in Definition 14 are even or odd.
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Proof. Using (2.14) and property (6) in Proposition 15 we have that

Ψj(−x) =
1

ηj

N
∑

l=1

wle
−icxθlΨj(θl) = ± 1

ηj

N
∑

l=1

wN−l+1e
icxθN−l+1Ψj(θN−l+1)

= ± 1

ηj

N
∑

l=1

wle
icxθlΨj(θl) = ±Ψj(x)

(2.19)

�

Let us study the conditioning of this basis by considering the matrix S with elements
defined by

Sij =

∫ 1

−1

Ψi(x)Ψj(x) dx (2.20)

for i, j = 1, . . . , N . Even though the prolate spheroidal wave functions are orthogonal, this
is not true for the approximate prolate spheroidal wave functions. Using Corollary 16, we
next show that the matrix S is close to the identity matrix.

Proposition 17 The functions Ψm and Ψn are nearly orthogonal and the elements of S
defined in (2.20) satisfy

|Smn − δmn| ≤
{

ε2 � N
k=1 wk

|ηm||ηn| if Ψm(x) and Ψn(x) are both even or both odd

0 otherwise
.

Proof. By definition, Smn =
∫ 1

−1
Ψm(x)Ψn(x) dx and by Corollary 16 we know that the

functions Ψi(x) are either even or odd. Therefore the integral vanishes when the functions
have different parity. The error estimate for the other case is shown in [9, Proposition 8.1].

�

The magnitude of ηj decreases monotonically and η1 ∼
√

2π/c. Since ηN is typically chosen
to be close to ε, the accuracy we seek, the matrix S deviates significantly from the identity
matrix only when both ηm and ηn are small and close to ε. We give a numerical example of
the condition number of S in Table 1.1.

Let us introduce the matrices Q, W , H, and S̃ with elements given by

Qij =
√
wiΨj(θi), (2.21)

Wij =

{ √
wi if i = j

0 if i 6= j
, (2.22)
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Hij =

{

1
ηi

if i = j

0 if i 6= j
, (2.23)

and

S̃ij =

{

2 if i = N − j + 1

2
sin(c(θi+θj))

c(θi+θj)
if i 6= N − j + 1

. (2.24)

Using these matrices it follows from (2.14) that

Ψj(x) = Hjj

N
∑

l=1

WllQlje
icxθl. (2.25)

The inner product matrix S defined in (2.20) is given by

Smn = (Ψn,Ψm) =

∫ 1

−1

Ψm(x)Ψn(x) dx

=

∫ 1

−1

Hmm

N
∑

k,l=1

WkkQkme
icxθkHnnWllQlne

icxθl dx

= Hmm

(

N
∑

k,l=1

QT
mkWkkS̃klWllQln

)

Hnn.

(2.26)

Hence, the matrix S can be computed by the matrix product

S = HQTWS̃WQH. (2.27)

The condition numbers of S̃ and H may be very large. Since ηN is typically chosen to
be of order ε, the accuracy we seek, this means that the condition number of H grows as
∼ 1

ε
. In particular, we see that to compute SNN , the summation in (2.26) is multiplied by a

factor of the order 1
ε2

. Since the matrix H is badly conditioned, the matrices S and K should
be computed using extended precision, and then truncated to the desired precision. This is
computationally expensive, but in most applications this matrix can be pre-computed and
tabulated and will not affect the speed of the applications. When constructing differentiation
matrices in Chapter 3 we will see that it is necessary to invert the inner product matrix
S. Although Proposition 17 shows that S is close to the identity matrix for all but the
lower right corner of the matrix, it does not guarantee a small condition number. However,
using Mathematica we have computed S using extended precision and found that it is well
conditioned (see Table 2.1).
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Table 2.1: Condition number for S using ε = 10−7

Bandwidth c Number of nodes N Condition number

4π 21 1.48
8π 31 2.11
12π 40 2.06
16π 49 2.34
20π 57 2.89

We now establish that the approximate prolate spheroidal wave functions can be used as
a basis for the space of bandlimited functions Ec,ε defined in Definition 13. By defining the
matrix B = HQTW we see that from (2.25) we have that

Ψj(x) =
N
∑

l=1

Bjle
icθlx.

From Proposition 15 it follows that Q is orthogonal, and therefore

det(B) = det(H) det(W ) =

N
∏

l=1

√
wl

ηl

.

Since ηl and wl are non-zero, it follows thatB is invertible (although it may be ill-conditioned),
and therefore the set of approximate prolate spheroidal wave functions spans the space Ec,ε

defined in Definition 13.

2.6.3 Interpolating functions

In many applications, it is convenient to work with function values of a function rather
than with expansion coefficients with respect to a set of basis functions. This motivates the
introduction of the interpolating basis. When a function is expanded into this basis, the
expansion coefficients are the function values at some set of nodes, in our case quadrature
nodes for bandlimited functions. Such bases are also useful in some multiwavelet applica-
tions when solving non-linear PDEs, see [1]. We define the interpolating basis functions for
bandlimited functions on an interval as follows.

Definition 18 (Basis of interpolating functions) Define the matrices Q, W , and H ac-
cording to (2.21)-(2.23), and the matrix R = WQHQTW . The sequence of functions

rk(x) =

N
∑

l=1

Rkle
icθlx (2.28)
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for k = 1, . . . , N is called a basis of interpolating functions for bandlimited functions on an
interval.

Note that we can express the elements of the matrix R as

Rkl =

N
∑

j=1

wkΨj(θk)
1

ηj

Ψj(θl)wl.

Using this expression, equation (2.13), and the fact that Q is orthogonal, we conclude that
the basis function rk(x) has the interpolating property rk(θl) = δkl. In Figure 2.3 we plot
two interpolating functions constructed for the bandwidth c = 8.5π and accuracy ε = 10−7

resulting in 32 quadrature nodes.
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Figure 2.3: Two interpolating basis functions constructed for the bandwidth c = 8.5π with
the accuracy ε = 10−7 resulting in 32 linearly independent functions. In left figure we display
the eighth interpolating function and in the right figure the 16:th.

Since Q is orthogonal we have that

det(R) = det(H) det(W 2) =
N
∏

l=1

wl

ηl

and since ηl and wl are non-zero it follows that R is invertible (although it may be ill-
conditioned). Therefore the basis of interpolating functions spans the space Ec,ε defined in
Definition 13.

2.6.4 Transformation matrices

In the previous three sections we presented three examples of bases for bandlimited func-
tions on an interval. All three of them are useful for different situations, and it is important
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to be able to transform between the different bases. In this section we list the transfor-
mation matrices between the different bases and give examples of the condition numbers
for the different transforms. We will see that some of the transforms are ill-conditioned,
but to transform between approximate prolate spheroidal wave functions and interpolating
functions is a well-conditioned operation.

From Section 2.6.2 we know that the transformation matrix between expansion coeffi-
cients with respect to the exponential basis to expansion coefficients with respect to the basis
of approximate prolate spheroidal wave functions is given by

Bc = (B−1)T = H−1QTW−1 (2.29)

where the matrices H, Q, and W are defined in (2.21)-(2.23). From Section 2.6.3 we know
that the transformation matrix between expansion coefficients with respect to the exponential
basis to expansion coefficients with respect to the basis of interpolating functions is given by

Rc = (R−1)T = W−1QH−1QTW−1. (2.30)

Using the fact that Q is orthogonal we see that the transformation matrix between the
approximate prolate spheroidal wave functions and interpolating functions is given by

Pc = RcB
−1
c = W−1Q. (2.31)

We summarize all transformation matrices in Figure 2.4 below. Note that by using (2.28)
we have that the elements of Rc are given by

(Rc)kl = eicθkθl.

In Tables 2.2 and 2.3 we have computed the condition numbers for the different transfor-
mation matrices for different bandwidths, using two different accuracies. We see that in all
cases the condition number for transforming between approximate prolate spheroidal wave
functions and interpolating functions is small while the other two cases yield large condition
numbers.

Let us compare the bases of bandlimited functions to bases of polynomials. The space
of polynomials of degree N is spanned by, e.g., the monomials {1, x, x2, . . . , xN} and the
Legendre polynomials of degree ≤ N . The basis of monomials is not close to being orthogonal
and ill-conditioned. The Legendre polynomials, on the other hand, are orthonormal on
[−1, 1] with the unit weight function, and well-conditioned. We can therefore compare the
basis of exponentials to the basis of monomials, while the basis of approximate prolate
spheroidal wave functions (which are nearly orthonormal) plays a similar role as the Legendre
polynomials.

29



Exponentials
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spheroidal wave

BcB−1
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c P−1
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B−1
c = WQH

Rc = W−1QH−1QT W−1

R−1
c = WQHQT W

Bc = H−1QT W−1

Interpolating
functions

P−1
c

Figure 2.4: Transformation matrices between three different bases for bandlimited functions
on an interval. The matrices H, Q, and W are defined in (2.21)-(2.23). Note that the
matrices H and W are diagonal.

Table 2.2: Condition number for transformation matrices for the bandwidth c = 8.5π. The
accuracy ε = 10−7 requires 32 nodes and the accuracy ε = 10−14 requires 41 nodes.

Transformation matrix ε = 10−7 ε = 10−14

Pc 2.7 3.5
Bc 1.1 × 108 2.5 × 1014

Rc 1.2 × 108 3.1 × 1014

Table 2.3: Condition number for transformation matrices for the bandwidth c = 17π. The
accuracy ε = 10−7 requires 51 nodes and the accuracy ε = 10−14 requires 62 nodes.

Transformation matrix ε = 10−7 ε = 10−14

Pc 2.8 3.8
Bc 1.2 × 108 3.4 × 1014

Rc 1.3 × 108 4.0 × 1014
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In some situations, it is useful to evaluate a function at an equally spaced grid (including
the endpoints) given the function values at the quadrature nodes. Let us introduce the
equally spaced grid

xk = −1 + 2
k − 1

N − 1

for k = 1, . . . , N , and the matrix V with elements defined by

Vkl = eicxkθl.

Then the matrix C = V R−1
c maps {f(θk)}N

k=1 to {f(xk)}N
k=1.

2.7 Numerical results

In this section we provide numerical examples. We approximate trigonometric functions,
Chebyshev polynomials, and Gaussian bell functions on an interval using bandlimited func-
tions. We saw in Section 2.5 that we can approximate bandlimited functions on an interval
using a finite number of exponentials with phases given by quadrature nodes for bandlimited
functions. Theorem 12 provides us with an error estimate for such approximations. However,
this error estimate is not useful in practice due to the factor

∑

k∈ � |ak| in the error estimate.
This factor is bounded, but depends on the function to be approximated. The factor is re-
lated to an upper bound of the norm of the bandlimited function to be approximated, but it
depends on its norm over

�
, and not on the norm over [−1, 1] which is the relevant norm for

many applications. Nevertheless, in this section we present strong numerical evidence that
the approximation indeed is accurate within the precision ε selected for the quadratures.

We saw in Section 2.6 how we can use different bases to represent bandlimited functions
on an interval. In this section we will illustrate the importance of choosing the right basis
for numerical computations. It turns out that the approximate prolate spheroidal wave
functions give superior accuracy compared to using exponentials as the basis. Later in this
section we provide a heuristic explanation for this behavior.

For our experiments, we sample the function to be approximated at quadrature nodes.
We then find the expansion coefficients αk with respect to the basis of exponentials, and the
expansion coefficients βk with respect to the basis of approximate prolate spheroidal wave
functions, using the inverse of the transformation matrices in (2.30) and (2.31), respectively.
We finally evaluate the functions at equally spaced points (including the endpoints) on the
interval [−1, 1] using the expansions

f(x) '
N
∑

k=1

αke
icθkx (2.32)
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and

f(x) '
N
∑

k=1

βkΨk(x) (2.33)

where Ψk(x) is defined in (2.14). Although both function approximations can be shown to be
identical, numerical ill-conditioning makes the first expansion considerable less accurate as
we will observe in the experiments. A heuristic explanation for this is given in Section 2.7.1.

2.7.1 Approximations of trigonometric functions by bandlimited
functions on an interval

For the first example, we construct 32 quadrature nodes and weights for the four band-
widths, c = 5.5π, 7π, 8.5π, and 10.5π. In order to obtain these bandwidths using 32 nodes,
we set the accuracy ε to 10−13, 10−10, 10−7, and 10−4, respectively. We approximate the
function eibx for |b| ≤ c by using the expansion (2.32) in Figure 2.5, and using the expansion
(2.33) in Figure 2.6. Note how the approximation in the first case (Figure 2.5) is better for
higher bandwidths than for lower bandwidths. In the second case (Figure 2.6) where we use
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Error, log10

Figure 2.5: Absolute error (log10) for approximating the function eibx in the interval [−1, 1]
with |b| ≤ 16π using exponentials as basis. The approximating functions are constructed
using 32 basis functions with maximum bandwidth c = 10.5π (thick solid curve), c = 8.5π
(thin solid curve), c = 7π (dotted curve), and c = 5.5π (dashed curve). The error of each
approximation is measured at 32 equally spaced points (including the end points) on the
interval [−1, 1].

transformation matrix P−1
c , the lower bandwidth gives the higher accuracy as expected.
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Figure 2.6: Absolute error (log10) for approximating the function eibx in the interval [−1, 1]
with |b| ≤ 16π using approximate prolate spheroidal wave function as basis. The approximat-
ing functions are constructed using 32 basis functions with maximum bandwidth c = 10.5π
(thick solid curve), c = 8.5π (thin solid curve), c = 7π (dotted curve), and c = 5.5π (dashed
curve). The error of each approximation is measured at 32 equally spaced points (including
the end points) on the interval [−1, 1].

We now give a heuristic argument why the expansion (2.33) is better suited for numerical
computations than (2.32). Let us first study the expansion (2.32). We have that

N
∑

k=1

αke
icθkx =

N
∑

k=1

(

N
∑

l=1

(R−1
c )klf(θl)

)

eicθkx (2.34)

where

(R−1
c )kl = (WQHQTW )kl =

√
wk

(

N
∑

m=1

Qkm

1

ηm

Qlm

)

√
wl. (2.35)

As pointed out in Section 2.6.2, η1 ∼
√

2π
c

and ηN ∼ ε. We see that the terms in the sum-

mation in (2.35) have strongly varying magnitudes due to the factor 1/ηm. This summation
is therefore ill-conditioned for small ε. Hence, the computation of expansion coefficients αk

is unstable, potentially introducing large errors in (2.34).
Let us now see what happens when using the expansion (2.33). We have that

f(x) =
N
∑

k=1

βkΨk(x) =
N
∑

k=1

(

N
∑

l=1

(P−1
c )klf(θl)

)(

N
∑

n=1

(HQTW )kne
icθnx

)
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where

(P−1
c )kl = (QTW )kl.

This transformation matrix does not contain the greatly varying factor 1
ηj

that caused prob-

lems when computing expansion coefficients with respect to exponentials. However, this
factor does appear in the expansion of Ψk(x) as a linear combination of exponentials, namely

Ψk(x) =

N
∑

n=1

(HQTW )kne
icθnx. (2.36)

Since

(HQTW )kn =
1

ηk

Qnk

√
wn

we see that the summation in (2.36) is multiplied by a factor 1
ηk

. For large k, the denominator
ηk ∼ ε, and hence the computation of Ψk for large k may contain large errors. On the other
hand, the computation of the expansion coefficients βk is stable and for functions of the type
eibx, equation (2.8) shows that the expansion coefficients βk ∼ ηk. Therefore the expansion
coefficients with respect to Ψk for large k are small. In other words, from (2.8) we have small
expansion coefficients with respect to the numerically unstable basis functions.

In Figure 2.7 we expand the function eibx for a range of bandwidths using 64 approximate
prolate spheroidal wave functions as basis functions. We construct the 64 nodes using the
four bandwidths c = 18.5π, 20.5π, 23π, and 26π. In order to obtain these bandwidths using
64 nodes, we set the accuracy ε to 10−13, 10−10, 10−7, and 10−4, respectively.
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Figure 2.7: Absolute error (log10) for approximating the function eibx in the interval [−1, 1]
with |b| ≤ 32π using approximate prolate spheroidal wave function as basis. The approximat-
ing functions are constructed using 64 basis functions with maximum bandwidth c = 26π
(thick solid curve), c = 23π (thin solid curve), c = 20.5π (dotted curve), and c = 18.5π
(dashed curve). The error of each approximation is measured at 64 equally spaced points
(including the end points) on the interval [−1, 1].

2.7.2 Approximations of polynomials by bandlimited functions on
an interval

In this section we study approximations of polynomials using bandlimited functions . We
consider the Chebyshev polynomials on the interval [−1, 1] and approximate them using 32
and 64 approximate prolate spheroidal wave functions as basis functions (Figure 2.8 and
Figure 2.9). The approximate prolate spheroidal wave functions are constructed using the
same bandwidths and accuracies as in the previous section.

We note that for a fixed number of nodes, the results improves when decreasing the
bandwidth c and increasing the accuracy ε used for constructing the quadrature nodes. For
the case with c = 8.5π and ε = 10−7 (32 nodes) we get approximately 6 digits of accuracy
for Chebyshev polynomials of degree 8 and lower. For the case with c = 5.5π and ε = 10−13

(32 nodes) we get approximately 6 digits of accuracy for Chebyshev polynomials of degree
15 and lower.
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Figure 2.8: Absolute error (log10) for approximating the Chebyshev polynomial Tk(x) in the
interval [−1, 1] with k = 0, . . . , 31 using approximate prolate spheroidal wave function as
basis. The approximating functions are constructed using 32 basis functions with maximum
bandwidth c = 10.5π (thick solid curve), c = 8.5π (thin solid curve), c = 7π (dotted curve),
and c = 5.5π (dashed curve). The error of each approximation is measured at 32 equally
spaced points (including the end points) on the interval [−1, 1].
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Figure 2.9: Absolute error (log10) for approximating the Chebyshev polynomial Tk(x) in the
interval [−1, 1] with k = 0, . . . , 63 using approximate prolate spheroidal wave function as
basis. The approximating functions are constructed using 64 basis functions with maximum
bandwidth c = 26π (thick solid curve), c = 23π (thin solid curve), c = 20.5π (dotted curve),
and c = 18.5π (dashed curve). The error of each approximation is measured at 64 equally
spaced points (including the end points) on the interval [−1, 1].
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2.7.3 Approximations of Gaussians by bandlimited functions on
an interval

We conclude this chapter by approximating Gaussian bell functions with bandlimited func-
tions on an interval. This is an example where the function is ”almost” bandlimited. The
support of the Fourier transform of these functions is not compact, but decays exponentially
fast to zero.

Let us consider functions of type

f(x) = e−
x2

σ2

on the interval [−1, 1] for variances σ2∈ [0.0001, 10] (see Figure 2.10). In Figure 2.11 and Fig-
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Figure 2.10: Plot of the Gaussian bell functions f(x) = e−
x2

σ2 for the variances σ2 = 0.0001
(thick solid line), σ2 = 0.01 (dotted line), σ2 = 0.1 (thin solid line), and σ2 = 10 (dashed
line).

ure 2.12 we show the error using 32 and 64 approximate prolate spheroidal wave functions as
basis functions, respectively, to represent the Gaussian bells. For each case, we demonstrate
the accuracy using four different bandwidths. The approximate prolate spheroidal wave
functions are constructed using the same bandwidths and accuracies as in Section 2.7.1.

We note that when using 32 nodes and using quadrature nodes constructed for c = 5.5π
and ε = 10−13, we get approximately 6 digits of accuracy for σ2 ≥ 0.05. For 64 nodes using
quadrature nodes constructed for c = 18.5π and ε = 10−13, we get approximately 6 digits of
accuracy for σ2 ≥ 0.01.
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Figure 2.11: Absolute error (log10) for approximating the function e−
x2

σ2 in the interval
[−1, 1] with variance σ2∈ [0.0001, 10] using approximate prolate spheroidal wave function as
basis. The approximating functions are constructed using 32 basis functions with maximum
bandwidth c = 10.5π (thick solid curve), c = 8.5π (thin solid curve), c = 7π (dotted curve),
and c = 5.5π (dashed curve). The error of each approximation is measured at 33 equally
spaced points (including the end points and x = 0) on the interval [−1, 1].
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Figure 2.12: Absolute error (log10) for approximating the function e−
x2

σ2 in the interval
[−1, 1] with variance σ2∈ [0.0001, 10] using approximate prolate spheroidal wave function as
basis. The approximating functions are constructed using 64 basis functions with maximum
bandwidth c = 26π (thick solid curve), c = 23π (thin solid curve), c = 20.5π (dotted curve),
and c = 18.5π (dashed curve). The error of each approximation is measured at 65 equally
spaced points (including the end points and x = 0) on the interval [−1, 1].
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Chapter 3

Derivative matrices with boundary
and interface conditions

When solving ordinary and partial differential equations using spectral methods, we expand
the solution into a set of basis functions which we can differentiate exactly. The trigonomet-
ric functions or Chebyshev polynomials are two common choices of such basis functions. In
this thesis, we use the interpolating basis for bandlimited functions which also can be dif-
ferentiated exactly. We solve time-dependent PDEs by discretizing the spatial operator and
then compute the exponential of the resulting matrix. This approach requires the boundary
conditions to be incorporated into the spatial operator.

This thesis will also study numerical solutions to wave propagation problems over domains
with piecewise smooth coefficients. We decompose the domain into a collection of subdomains
such that the coefficients are smooth on each subdomain. Differentiation will be well-defined
within such subdomains, but across the interfaces the solution is usually not differentiable.
The solution satisfies some interface condition, e.g., continuity. In using the exponential of
the spatial operator, we need a way to maintain the interface condition by enforcing the
condition in constructing the spatial operator.

In this chapter we show how to incorporate the boundary and interface conditions into
the spatial operator for a general set of (smooth) basis functions. In the next chapter we
provide an example of using this approach for a basis of bandlimited functions introduced
in Chapter 2. We incorporate the boundary and interface conditions by using integration by
parts as it was done in Alpert et al. [1].

We begin by outlining the general technique for deriving derivative matrices on an interval
with respect to a general (finite) set of smooth basis functions. We then extend the technique
to piecewise smooth functions defined on a collection of subintervals. Numerical examples
are provided in Chapter 4. Let us begin with the following

Definition 19 Let {φi(x)}N
i=1 ⊆ C∞([−1, 1]) be a set of N linearly independent functions.
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Define G as the linear span of {φi(x)}N
i=1 equipped with the inner product

(u, v) =

∫ 1

−1

u(x)v(x) dx.

Define S, K, E, F , and G as the N-by-N matrices with elements given by

Skl = (φl(x), φk(x)) ,

Kkl =

(

φl(x),
dφk(x)

dx

)

,

Ekl = φk(−1)φl(−1),

Fkl = φk(1)φl(1),

and

Gkl = φk(1)φl(−1).

We note that the matrices E, F , and G are of rank one. Furthermore,

Kkl =

∫ 1

−1

φl(x)
d

dx
φk(x) dx = φl(1)φk(1) − φl(−1)φk(−1) −

∫ 1

−1

φk(x)
d

dx
φl(x) dx

= Fkl − Ekl −Klk

and hence

K = F − E −K∗. (3.1)

We note that if F = E, then the matrix K is anti-symmetric.

3.1 Derivative matrices on an interval

In this section we derive derivative matrices defined on the interval [−1, 1]. In the following
section we generalize this technique to subdivided intervals. Let u(x) be a test function such
that u, ux∈G. Then

u(x) =

N
∑

l=1

slφl(x)
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for some set of coefficients sl. We seek coefficients s̃l such that

du

dx
=

N
∑

l=1

s̃lφl(x). (3.2)

Computing the inner product with φk of both sides of (3.2) yields

∫ 1

−1

du

dx
φk(x) dx =

N
∑

l=1

s̃l

(
∫ 1

−1

φl(x)φk(x) dx

)

=
N
∑

l=1

Skls̃l.

(3.3)

Integrating the left hand side of (3.3) by parts, we have

∫ 1

−1

du

dx
φk(x) dx =

[

u(x)φk(x)
]1

−1
−

N
∑

l=1

Kklsl. (3.4)

Combining (3.3) and (3.4), we obtain

N
∑

l=1

Skls̃l = u(1)φk(1) − u(−1)φk(−1) −
N
∑

l=1

Kklsl. (3.5)

Our next step is to express u(±1) via the coefficients sl. Let us consider the case where we
do not impose any boundary condition. Then using u(±1) =

∑N

l=1 slφl(±1), and inserting
it into (3.5) gives us

N
∑

l=1

Skls̃l =
N
∑

l=1

slφl(1)φk(1) −
N
∑

l=1

slφl(−1)φk(−1) −
N
∑

l=1

Kklsl

=

N
∑

l=1

Fklsl −
N
∑

l=1

Eklsl −
N
∑

l=1

Kklsl.

(3.6)

By introducing the notation s = [s1, s2, . . . , sN ]T and s̃ = [s̃1, s̃2, . . . , s̃N ]T , we can write the
equation for the derivative matrix as

Ss̃ = (F − E −K)s.

Since the basis functions form a linearly independent set, the matrix S is invertible and the
derivative matrix D is given by

D = S−1(F − E −K). (3.7)
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Using (3.1) we can write D as

D = S−1K∗. (3.8)

So far we have not made any assumption about the boundary values of the function u(x)
and the derivative matrix is applicable for arbitrary boundary values. Since the function u(x)
is assumed to be differentiable, results using (3.8) will coincide with the classical derivative
except for numerical errors introduced in computing the matrices S−1, F, E, and K.

We next consider the case where we construct the differentiation matrix for functions
satisfying boundary conditions. If u(−1) = 0 or u(1) = 0, then the matrices E or F in (3.7)
can be set to zero. Let us define the derivative matrices D+

0 , D−
0 , and D0 as

D+
0 = S−1(F −K), (3.9)

D−
0 = S−1(−E −K), (3.10)

and

D0 = −S−1K. (3.11)

These matrices correspond to the boundary condition u(−1) = 0, u(1) = 0, and u(±1) = 0,
respectively.

Finally, we consider the case with the periodic boundary conditions. If u(−1) = u(1), we
can get two possible derivative matrices from (3.5),

D1 = S−1(G− E −K)

and

D2 = S−1(F −G∗ −K).

Let us define Dp as

Dper =
D1 +D2

2
.

Using (3.1) we find that

Dp =
S−1(G−G∗ −K +K∗)

2
. (3.12)
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We note that the factor G − G∗ − K + K∗ is anti-symmetric and has a pure imaginary
spectrum. Therefore, the derivative matrix Dp is a better choice for a derivative matrix than
the matrices D1 and D2.

Using (3.8)-(3.12), we summarize our results as

Definition 20 Let E, F , G, S, and K be the matrices in Definition 19. We define the
derivative matrices D, D+

0 , D−
0 , D0, and Dper as

D = S−1K∗,

D+
0 = S−1(F −K),

D−
0 = S−1(−E −K),

D0 = −S−1K,

and

Dper =
S−1(G−G∗ −K +K∗)

2
,

respectively.

3.1.1 Example

Let B = span{ 1√
2
eiπ(k−1)x}N

k=1. Then

Skl = δkl,

Kkl = −iπk − 1

2
δkl,

Ekl =
e−iπ(k−1)e−iπ(l−1)

2
=
eiπ(k−l)

2
,

and

Fkl =
eiπ(k−1)eiπ(l−1)

2
=
eiπ(l−k)

2
= Ekl.

Therefore,

(F − E)kl = Ekl − Ekl =
e−iπ(k−l) − eiπ(k−l)

2
= −i sin π(k − l) = 0 .

In this special case it makes no difference if we restrict our operator to functions vanishing at
the endpoints due to the special structure of the basis functions. This is not true in general.
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3.1.2 Properties

Let us investigate the properties of the differentiation matrices derived above. Analytically,
we expect the eigenfunctions of d

dx
with no boundary conditions to be multiples of v(x) = eλx,

where λ is a complex number. The location of λ in the complex plane determines the
nature of our eigenfunctions. For example, by considering eigenfunctions with pure imaginary
eigenvalues we get oscillatory eigenfunctions (trigonometric functions). We also notice that
the eigenfunctions are smooth.

The case where the differentiation operator is restricted to functions vanishing at the
boundaries is more subtle. Clearly, there are no nontrivial solutions of the eigenvalue problem

dv

dx
= λv(x)

v(−1) = v(1) = 0,
(3.13)

and thus no eigenfunctions satisfying the boundary conditions. Nevertheless, the differen-
tiation matrix −S−1K derived above is well-defined (if S is invertible) and has a set of
eigenvectors. Yet it is impossible to relate its behavior to the eigenvalue problem (3.13) for
the first derivative. To connect the derivative matrix −S−1K to the analytic differentiation,
we need to consider the singular value problem.

Let us show that the singular vectors are well-defined for both the analytical and dis-
cretized differentiation operator with zero boundary conditions. Consider the set of equations







du
dx

= λv
d∗

dx
(v) = λu

v(−1) = v(1) = 0
, (3.14)

where due to the boundary conditions, the adjoint differentiation operator is given by d∗

dx
=

− d
dx

. Normalized solutions u and v of the first two equations in (3.14) are the left and right
singular vectors, of the differentiation operator d

dx
. The corresponding singular values σ are

given by σ = |λ|. It is easy to verify that the functions

v(x) = − sin(λ(x+ a))

and

u(x) = cos(λ(x+ a))

satisfy the first two equations in (3.14). The boundary conditions imply that

{

λ(a− 1) = kπ
λ(a+ 1) = lπ

, k, l∈ �
.
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If a = ±1, then we have that λk = kπ/2 for k ∈ �
. If a 6= ±1 and k, l 6= 0, then a

straightforward calculation shows that

a =
k + l

k − l

and

λ =
k(k − l)π

2l
.

If a 6= ±1 and k = 0 or l = 0 then a∈ � and λ = 0.

3.2 Derivative matrix over a subdivided interval

We extend our approach from the previous section to the construction of derivative matrices
defined over multiple intervals joined together. The construction is similar to the one used
for multiwavelets in [1]. We represent functions on such domains by using N smooth basis
functions on each interval. These subinterval representations are independent of each other
and in our construction the derivative operator couples them together.

We begin by introducing the following notation. Let M be a positive integer and let I
denote the interval [−1,−1 + 2M ]. Define the subintervals

Il = [x̄l, x̄l+1] = [−3 + 2l,−1 + 2l],

where l = 1, . . . ,M , and Io = I \ {xl}M
l=2. Let {φk(x)}N

k=1 be a basis of G defined in
Definition 19 and define {φkl(x)}k,l for k = 1, . . . , N and l = 1, . . . ,M by

φkl(x) =

{

φk(x− 2l + 2) x∈Il

0 x 6∈Il .

Let GM denote the linear span of {φkl(x)}k,l equipped with the inner product

(u, v) =

∫ −1+2M

−1

u(x)v(x) dx.

We will refer to {xl}M
l=2 as the interfaces. Note that φkl(x̄l) = φk(−1) and φkl(x̄l+1) = φk(1).

It follows that
∫ x̄l+1

x̄l

φjl(x)φil(x) dx = Sij
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and

∫ x̄l+1

x̄l

φjl(x)
dφil(x)

dx
dx = Kij

where Sij and Kij are given in Definition 19.
Let the function f(x)∈GM be written as

f(x) =

M
∑

l=1

N
∑

i=1

silφil(x) (3.15)

for some set of coefficients sil. We note that for each interior interface x̄l, there are two
possible expansions available, namely from the left

f(x̄l) =

N
∑

i=1

si,l−1φi(1) (3.16)

and from the right

f(x̄l) =
N
∑

i=1

silφi(−1) . (3.17)

These two expansions correspond to taking the limit from the respective direction. For the
first node, x̄1, only (3.17) applies and for the last node, x̄M+1, only (3.16) applies. Unless we
impose continuity of f on the entire interval I, the representation (3.15) does not by itself
uniquely define f at the interfaces.

Let f ∈GM and define the derivative df

dx
∈GM formally as a function on the form

df

dx
=

M
∑

l=1

N
∑

i=1

s̃ilφil(x) (3.18)

such that the coefficients s̃il are determined by

∫ x̄l+1

x̄l

df

dx
φil(x) dx = f(x̄l+1)φil(x̄l+1) − f(x̄l)φil(x̄l) −

∫ x̄l+1

x̄l

f(x)
dφil

dx
dx (3.19)

for each interval l = 1, . . . ,M . In view of (3.16) and (3.17), the function f is not uniquely
determined at the interfaces unless we impose continuity of f . Hence, the derivative defined
by (3.18) and (3.19) is not uniquely defined without imposing additional conditions.
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From (3.19) and (3.15) we get

∫ x̄l+1

x̄l

df

dx
φil(x) dx = f(x̄l+1)φi(1) − f(x̄l)φi(−1)

−
M
∑

l′=0

N
∑

j=1

sjl′

∫ x̄l+1

x̄l

φjl′
dφil

dx
dx

= f(x̄l+1)φi(1) − f(x̄l)φi(−1)

−
N
∑

j=1

sjl

∫ x̄l+1

x̄l

φjl

dφil

dx
dx

= f(x̄l+1)φi(1) − f(x̄l)φi(−1) −
N
∑

j=1

Kijsjl

(3.20)

for each interval l = 1, . . . ,M . Since df

dx
is of the form in (3.18) we have that

∫ x̄l+1

x̄l

df

dx
φil(x) dx =

N
∑

j=1

s̃jl

∫ x̄l+1

x̄l

φjl(x)φil(x) dx

=

N
∑

j=1

Sij s̃jl.

(3.21)

Combining (3.20) and (3.21) gives us

N
∑

j=1

Sij s̃jl = f(x̄l+1)φi(1) − f(x̄l)φi(−1) −
N
∑

j=1

Kijsjl. (3.22)

Since the basis functions are linearly independent, S is invertible. Therefore, if f is continu-
ous, the expression (3.22) uniquely determines the expansion coefficients s̃jl. There are two
possible expansions for each interface,

df(x̄l)

dx
=

N
∑

i=1

s̃i,l−1φi(1) (3.23)
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and

df(x̄l)

dx
=

N
∑

i=1

s̃ilφi(−1). (3.24)

Unless f is differentiable, the derivative df

dx
is not well-defined at the interface points. If we

impose that f ∈C1(I)∩GM , then df

dx
is well defined and coincides with the classical derivative.

In the next three sections we impose boundary and interface conditions. It is then conve-
nient to introduce the following notation. For each interval let us define sl = [s1l, s2l, . . . , sNl]

T

and s̃l = [s̃1l, s̃2l, . . . , s̃Nl]
T for l = 1, . . . ,M where the coefficients sil and s̃il are the expan-

sion coefficients in (3.15) and (3.18) respectively.

3.2.1 Conditions for the end intervals

In this section we consider the end intervals where boundary conditions may be imposed.
Let us first consider arbitrary boundary conditions at the left end point. We have that

f(−1) =

N
∑

i=1

si0φi(−1).

When describing f(1), the right end point of the first interval, we can choose to take the
limit via (3.17) or (3.16). We consider a weighted contribution from these two expansions
by introducing the parameter a∈ [0, 1],

f(1) =

N
∑

i=1

(1 − a)si1φi(1) + asi2φi(−1).

Inserting the expansions for f(±1) into (3.22), we obtain

N
∑

j=1

Sij s̃j1 =

(

N
∑

j=1

(1 − a)sj1φj(1) + asj2φj(−1)

)

φi(1) −
(

N
∑

j=1

sj1φj(−1)

)

φi(−1)

−
N
∑

j=1

Kijsj1

or, equivalently using matrix-vector notation,

Ss̃1 = ((1 − a)F − E −K) s1 + aGs2 (3.25)

where we used the matrices defined in Definition 19. If f(−1) = 0, then (3.25) reduces to

Ss̃1 = ((1 − a)F −K) s1 + aGs2. (3.26)
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Let us repeat the same argument for the last interval, IM . We first consider arbitrary
boundary conditions at the right end point where

f(x̄M+1) =

N
∑

i=1

siMφi(1).

In describing f(x̄M), the left end point of the last interval, we can choose between (3.17) and
(3.16). We will consider a weighted contribution from these two expansions by introducing
the parameter b∈ [0, 1], by

f(x̄M ) =
N
∑

i=1

(1 − b)siMφi(−1) + bsi,M−1φi(1).

Inserting the expansions for f(x̄M+1) and f(x̄M) into (3.22) we have

N
∑

i=1

Sij s̃jM =

(

N
∑

j=1

sjMφj(1)

)

φi(1)

−
(

N
∑

j=1

(1 − b)sjMφj(−1) + bsj,M−1φj(1)

)

φi(−1)

−
N
∑

j=1

KijsjM

or, equivalently, in matrix-vector notation,

Ss̃M = −bG∗sM−1 + (F + (b− 1)E −K) sM. (3.27)

If f(x̄M+1) = 0 then the expression in (3.27) reduces to

Ss̃M = −bG∗sM−1 + ((b− 1)E −K) sM. (3.28)

3.2.2 Interior intervals

In this section we consider the interior intervals. We construct the differentiation matrix for
the interior intervals using a weighted contribution of the left and right limit at both the left
and right boundary of the interval. At the left and right interface we use the parameters b
and a respectively:

f(x̄l) =
N
∑

j=1

(1 − b)sj,lφj(−1) + bsj,l−1φj(1)

f(x̄l+1) =

N
∑

j=1

(1 − a)sj,lφj(1) + asj,l+1φj(−1).
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Using this expression in (3.22) yields

N
∑

j=1

Sij s̃jl =

N
∑

j=1

(1 − a)sj,lφj(1)φi(1) + asj,l+1φj(−1)φi(1)

−
(

N
∑

j=1

(1 − b)sj,lφj(−1)φi(−1) + bsj,l−1φj(1)φi(−1)

)

−
N
∑

j=1

Kijsjl

,

or, in matrix-vector notation,

Ss̃l = −bG∗sl−1 + ((1 − a)F − (1 − b)E −K) sl + aGsl+1, (3.29)

for l = 2, . . . ,M − 1.

3.2.3 Periodic boundary conditions

In order to construct derivative matrices for periodic boundary conditions, we use (3.29) for
the interior intervals. For the first and the last intervals we use (3.29) with l = 1 and l = M ,
respectively, by identifying s0 = sM and sM+1 = s1. Namely, we have

Ss̃1 = −bG∗sM + ((1 − a)F − (1 − b)E −K) s1 + aGs2, (3.30)

and

Ss̃M = −bG∗sM−1 + ((1 − a)F − (1 − b)E −K) sM + aGs1. (3.31)

3.2.4 Construction of the derivative matrix

We now have all the components to construct derivative matrices using different coupling
across the intervals (by varying the parameters a and b), and for different types of boundary
conditions. The derivative matrices with respect to N quadrature nodes over M intervals
can be represented by an M -by-M block tri-diagonal matrix. The structure of the matrix is
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given by

D =



























rl
0 rl

−1 rl
1

r1 r0 r−1

r1 r0 r−1

. . .
. . .

. . .
. . .

. . .
. . .

r1 r0 r−1

r1 r0 r−1

rr
−1 rr

1 rr
0



























(3.32)

where each block is an N ×N matrix. The elements of the blocks are given by (3.25)-(3.31)
and for some blocks, we can use (3.1) to simplify the expression. We summarize the structure
of the blocks in Tables 3.1-3.3.
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Table 3.1: Stencil for the derivative matrix at the left boundary.

Character- a b Boundary rl
0 rl

−1 rl
1

ization conditions

No coupling 0 0 Arbitrary, S−1K∗ 0 0
periodic

No coupling 0 0 f(−1) = 0 S−1(F −K) 0 0

Forward 1 0 Arbitrary, S−1(−E −K) S−1G 0
periodic

Forward 1 0 f(−1) = 0 −S−1K S−1G 0

Backward 0 1 Periodic S−1(F −K) 0 −S−1G∗

Central 1/2 0 Arbitrary S−1(F
2
− E −K) S−1G

2
0

Central 1/2 0 f(−1) = 0 S−1(F
2
−K) S−1G

2
0

Central 1/2 1/2 Periodic S−1(F−E
2

−K) S−1G
2

−S−1G∗

2
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Table 3.2: Stencil for the derivative matrix at the right boundary.

Character- a b Boundary rr
−1 rr

1 rr
0

ization conditions

No coupling 0 0 Arbitrary, 0 0 S−1K∗

periodic

No coupling 0 0 f(x̄M+1) = 0 0 0 S−1(−E −K)

Forward 1 0 Periodic S−1G 0 S−1(−E −K)

Backward 0 1 Arbitrary, 0 −S−1G∗ S−1(F −K)
periodic

Backward 0 1 f(x̄M+1) = 0 0 −S−1G∗ −S−1K

Central 0 1/2 Arbitrary 0 −S−1G∗

2
S−1(F − E

2
−K)

Central 0 1/2 f(x̄M+1) = 0 0 −S−1G∗

2
S−1(−E

2
−K)

Central 1/2 1/2 Periodic S−1G
2

−S−1G∗

2
S−1(F−E

2
−K)
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Table 3.3: Stencil for the derivative matrix for the interior intervals.

Characterization a b r1 r0 r−1

No coupling 0 0 0 S−1K∗ 0

Forward 1 0 0 S−1(−E −K) S−1G

Backward 0 1 −S−1G∗ S−1(F −K) 0

Central 1/2 1/2 −S−1G∗

2
S−1(F−E

2
−K) S−1G

2

3.2.5 Properties of the derivative matrix

In this section we analyze properties of the derivative matrices for multiple intervals. For
simplicity we consider only two intervals. If we uncouple the intervals, we can form

D =

(

d
dx

0
0 d

dx

)

and consider eigenfunctions of this operator. Since an eigenfunction of d
dx

is of the form
u(x) = Ceλx the eigenvectors of D are of the form

u(x) =

(

u(1)(x)
u(2)(x)

)

=

(

C1e
λx

C2e
λx

)

(3.33)

where the superscripts 1 and 2 refer to the left and right interval respectively. The eigenfunc-
tions are not necessarily continuous at the interface. However, if we impose continuity across
the interface, these eigenfunctions become infinitely differentiable over the entire interval.

Let us give a heuristic argument showing that choosing the coupling parameters a = b =
1/2 leads to C1 = C2 in (3.33), that is, smooth eigenfunctions. Without loss of generality
we assume an orthonormal basis. According to (3.32) and Tables 3.1 and 3.2 the derivative
matrix with a = b = 1/2 takes the form

D =

(

F
2
− E −K G

2

−G∗

2
F − E

2
−K

)

=

(

−F
2

+K∗ G
2

−G∗

2
E
2

+K∗

)

(3.34)
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where we used (3.1) for the diagonal blocks. From Section 3.2.1 we see that the operators
F and E evaluates a function at the right and left endpoint of the subinterval, respectively.
The operator G evaluates a function at the left endpoint on the adjacent subinterval to the
right, and G∗ evaluates a function at the right endpoint on the adjacent subinterval to the
left. From Definition 20 we have that K∗ differentiates a function at a subinterval. Assuming
eigenfunctions on the form (3.33), and D on the form (3.34), we have that

Du = λu+

(

eλ

2
(C2 − C1)

eλ

2
(C2 − C1)

)

.

In order for u to be an eigenfunction of D, we must have that C1 = C2 and, therefore, u is
smooth.

55



Chapter 4

Algorithms and numerical results for
differentiation and integration of
bandlimited functions

In order to use bandlimited functions to solve PDEs numerically, we need to construct
derivative operators for bandlimited functions. In this chapter we use the results from
the previous chapters to construct such derivative matrices. We provide algorithms and
numerical results including a comparison with finite differences and pseudo-spectral methods.
Furthermore, we demonstrate that using spectral projectors to remove spurious eigenvalues
of derivative matrices with boundary conditions improves the accuracy.

We consider derivative operators for one and multiple intervals in the first two sections.
In Section 4.3 we construct the second derivative for Dirichlet boundary conditions and
demonstrate the advantage of using spectral projectors. We conclude the chapter with a
section on how to construct an integration matrix with respect to bandlimited functions.

4.1 The derivative operator

In this section we construct derivative matrices via integration by parts as described in
Chapter 3 using bandlimited functions. As mentioned in Section 2.6 there are three bases
available for bandlimited functions on an interval. We choose to construct the derivative
matrix with respect to the approximate prolate spheroidal wave functions introduced in Sec-
tion 2.6.2. This basis is nearly orthogonal and, therefore, allows us to solve (3.5) and (3.22)
in a stable manner. However, in many applications it is more convenient to represent func-
tions with respect to function values rather than with its expansion coefficients. Therefore
we use the transformation matrix Pc defined by (2.31) to transform the derivative matrix to
the interpolating basis defined in Section 2.6.3.
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4.1.1 Construction of derivative matrices

The matrix K representing the inner products of basis functions with the first derivative of
basis functions can be obtained by using (2.21)-(2.25). Let {θk}k denote a set of quadrature
nodes. By introducing the diagonal matrix Θ with the diagonal elements Θkk = θk it follows
that

K = icHQTWΘS̃WQH. (4.1)

where H, Q, S̃, and W are defined in (2.21)-(2.24). Let us summarize the steps to construct
derivative matrices in following algorithm.

Algorithm: Construction of derivative matrices with respect to bandlimited func-
tions

1. Construct N quadrature nodes and weights according to Definition 11.

2. Construct the matrix S according to (2.27), the matrix K according to (4.1), and the
matrices E, F , and G in Definition 19 by using (2.21)-(2.25). Construct the matrices
Pc and P−1

c according to (2.31).

3. Construct the derivative matrix D for single intervals by using Definition 20, and for
multiple intervals by using (3.32) and Tables 3.1-3.3.

4. Compute D̃ = PcDP
−1
c to represent the derivative matrix with respect to function

values.

4.1.2 Accuracy of the derivative matrix for varying bandwidth

Using the algorithm above, we present two graphs that illustrate the accuracy of the deriva-
tive matrix. We fix the number of nodes and change the accuracy ε and observe the change
in the bandwidth c.

In the first experiment we use 32 nodes on the interval [−1, 1]. Note that the Nyquist
frequency for 32 nodes corresponds to the bandwidth c = 16π (for periodic functions). We
construct four derivative matrices with the bandwidth c set to 5.5π, 7π, 8.5π, and 10.5π,
respectively. In order to obtain these bandwidths using 32 nodes, we set the accuracy ε to
10−13, 10−10, 10−7, and 10−4, respectively. We differentiate the function f(x) = eibx for 200
values of b ranging between ±16π. Note that these functions are not necessarily periodic.
For each b we differentiate the test function at the 32 quadrature nodes. We then use the
matrix C introduced in Section 2.6.4 to interpolate the result at 32 equally spaced points
(including the end points) over the interval [−1, 1]. The result is shown in Figure 4.1.
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Figure 4.1: Absolute error (log10) for the first derivative of the function eibx in the interval
[−1, 1] with |b| ≤ 16π. The derivative matrices are constructed with respect to 32 basis
functions. We use a basis of approximate prolate spheroidal wave functions with maximum
bandwidth c = 10.5π (thick solid curve), c = 8.5π (thin solid curve), c = 7π (dotted curve),
and c = 5.5π (dashed curve). The error of each differentiation is measured at 32 equally
spaced points (including the end points) on the interval [−1, 1].
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We note from Figure 4.1 that the error profile is almost uniform for |b| ≤ c. It is also
clear that we trade accuracy for bandwidth. A derivative matrix constructed for low accuracy
gives a good approximation within a larger bandwidth than a derivative matrix constructed
for a higher accuracy.

In the second experiment we use 64 nodes corresponding to the Nyquist frequency 32π (for
periodic functions). We construct four derivative matrices with the bandwidth c set to 18.5π,
20.5π, 23π, and 26π, respectively. In order to obtain these bandwidths using 64 nodes, we
set the accuracy ε to 10−13, 10−10, 10−7, and 10−4, respectively. We differentiate the function
f(x) = eibx for 200 values of b ranging between ±32π. For each b we differentiate the test
function on the 64 quadrature nodes. We then use the transformation matrix C introduced in
Section 2.6.4 to interpolate the result at 64 equally spaced points (including the end points)
over the interval [−1, 1]. The result is shown in Figure 4.2. In this experiment we double the
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Figure 4.2: Absolute error (log10) for the first derivative of the function eibx in the interval
[−1, 1] with |b| ≤ 32π. The derivative matrices are constructed with respect to 64 basis
functions. We use a basis of approximate prolate spheroidal wave functions with maximum
bandwidth c = 26π (thick solid curve), c = 23π (thin solid curve), c = 20.5π (dotted curve),
and c = 18.5π (dashed curve). The error of each differentiation was measured at 64 equally
spaced points (including the end points) on the interval [−1, 1].

number of nodes compared to the previous experiment, and observe the same uniform error
profile. This demonstrate that we can choose any number of nodes without observing any
reduced accuracy. This is not the case with spectral derivative matrices based on polynomials
where the accuracy of the derivative matrix deteriorates with increasing number of nodes.
The ill-conditioning of derivative matrices based on Chebyshev polynomials has been studied
by Greengard [30].
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Let us compare the accuracy of differentiation illustrated in Figure 4.1 to the accuracy
of interpolation illustrated in Figure 2.5. The profile of the error graphs in the two ex-
periments is similar. The error is nearly uniform within the bandwidth c. However, the
absolute error is 2-3 digits greater for the differentiation experiment (Figure 4.1). We give
a heuristic explanation to this phenomenon by using Proposition 3. Extend the function u
to be differentiated onto the real line such that most of its energy is concentrated within
the interval [−1, 1]. Then α ' 1 in Proposition 3 and consequently the ratio ‖Du‖2/‖u‖2

is approximately bounded by c. In particular, this ”norm amplification” holds for the error
made when approximating u, and hence the absolute error may be amplified by a factor of
the order c.

In many situation, the relative error is more relevant. We note that the absolute error
for the functions used in Figure 2.5 coincides with the relative error for the functions since
the max norm in this case equals one. In contrast, the absolute error displayed in Figure 4.1
is greater than the relative error when |b| < 1, since the max norm of deibx

dx
equals b. Thus

dividing the absolute error displayed in Figure 4.1 by b, gives a relative error one to two
digits smaller than the absolute error for all but the lowest frequencies (see Figure 4.3).
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Figure 4.3: Relative error (log10) for the first derivative of the function eibx in the interval
[−1, 1] with |b| ≤ 16π. The derivative matrices are constructed with respect to 32 basis
functions. We use a basis of approximate prolate spheroidal wave functions with maximum
bandwidth c = 10.5π (thick solid curve), c = 8.5π (thin solid curve), c = 7π (dotted curve),
and c = 5.5π (dashed curve). The error of each differentiation is measured at 32 equally
spaced points (including the end points) on the interval [−1, 1].
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4.1.3 Comparison with pseudo-spectral methods and finite differ-
ences

Let us now compare the derivative matrix constructed using approximate prolate spheroidal
wave functions to a second order finite difference derivative matrix and to a spectral derivative
matrix with respect to Chebyshev polynomials. First, we construct such derivative matrices
using 32 nodes corresponding to a Nyquist frequency of 16π. We construct two derivative
matrices with respect to approximate prolate spheroidal wave functions. We construct one
derivative matrix with the accuracy ε = 10−7 and bandwidth c = 8.5π, and another with
the accuracy ε = 10−13 and bandwidth c = 5.5π. For comparison, we construct a second
order central finite difference derivative matrix using a second order boundary stencil for
the first and the last row of the matrix. Finally, we construct a spectral derivative matrix
with respect to the first 32 Chebyshev polynomials using the algorithm in [25, Appendix C].
We differentiate the function f(x) = sin(bx) for 200 values of b ranging between ±16π and
evaluate the result at 32 equally spaced grid points (including the endpoints) on the interval
[−1, 1]. The result is shown in Figure 4.4.
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Figure 4.4: Absolute error (log10) for the first derivative of the function sin(bx) in the
interval [−1, 1] with |b| ≤ 16π. The derivative matrices are constructed with respect to 32
nodes or basis functions using a basis of approximate prolate spheroidal wave functions with
maximum bandwidth c = 8.5π (thick solid curve) and c = 5.5π (thin solid curve), the second
order central finite difference stencil (dashed curve), and the 32 first Chebyshev polynomials
(dotted curve). The error is normalized by dividing by the Nyquist frequency 16π. The
error of each differentiation operation was measured at 32 equally spaced points (including
the end points) on the interval [−1, 1].

61



We next consider an experiment using 64 nodes or basis functions corresponding to a
Nyquist frequency of 32π. We construct two derivative matrices constructed for approximate
prolate spheroidal wave functions with the accuracy ε = 10−7 and bandwidth c = 23π, and
another with ε = 10−13 and bandwidth c = 18.5π. For comparison, we construct a second
order central finite difference derivative matrix using a second order boundary stencil for the
first and the last row of the matrix.

Finally, we construct a block diagonal spectral derivative matrix where each diagonal
block is a derivative matrix with respect to the first 16 Chebyshev polynomials. Each block
is applied to one of the four subintervals [−1,−1/2], [−1/2, 0], [0, 1/2], and [1/2, 1]. The
reason for this sub division is that derivative matrices based on Chebyshev polynomials
tend to become ill-conditioned for high degree polynomials and are therefore not suited for
solving PDEs. The ill-conditioning of derivative matrices based on Chebyshev polynomials
is discussed in [30].

We differentiate the function f(x) = sin(bx) for 200 values of b ranging between ±32π
and evaluate the result at 64 equally spaced grid points (including the endpoints) on the
interval [−1, 1]. The result is shown in Figure 4.5.
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Figure 4.5: Absolute error (log10) for the first derivative of the function sin(bx) in the
interval [−1, 1] with |b| ≤ 32π. The derivative matrices are constructed with respect to
64 nodes or basis functions using a basis of approximate prolate spheroidal wave functions
with maximum bandwidth c = 23π (thick solid curve) and c = 18.5π (thin solid curve),
the second order central finite difference stencil (dashed curve), and the 16 first Chebyshev
polynomials applied to four subintervals (dotted curve). The error is normalized by dividing
by the Nyquist frequency 32π. The error of each differentiation operation was measured at
64 equally spaced points (including the end points) on the interval [−1, 1].
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4.1.4 Differentiation of piecewise differentiable functions

Let us now differentiate a continuous piecewise differentiable function. We illustrate the
differentiation by defining a continuous function that exhibits different types of behavior on
the different subintervals. Consider the function

f(x) =















x+1
2

x∈ [−1, 1)

1 + sin(15π(x−1)
2

) x∈ [1, 3)
−P9(x− 4) x∈ [3, 5)

− sin(3π(x−7)
4

) x∈ [5, 7]

(4.2)

(see Figure 4.6). Here P9(x) refers to the Legendre polynomial of degree 9. We construct
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Figure 4.6: Plot of the function in (4.2).

a derivative matrix using (3.32) and Tables 3.1-3.3 with respect to a basis of approximate
prolate spheroidal wave functions. We use 32 basis functions constructed for the accuracy
ε = 10−7 and the bandwidth c = 8.5π. We couple the intervals using coupling parameters
a = b = 1/2 according to Section 3.2. The reason for coupling the intervals is that later on
when we study wave propagation across interfaces, it will be necessary to couple solutions
on neighboring intervals. We will see that this can be accomplished by introducing coupling
in the derivative matrix. We sample the function at quadrature nodes on each subinterval,
differentiate using the derivative matrix, and evaluate the result at 125 equally spaced nodes
(including the endpoints) in the interval [−1, 7]. However, we disregard the result at the
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interface points x = 1, 3, and 5 where f ′(x) is not defined. We normalize the error with
maxx∈[−1,7] |f ′(x)| ' 28 and display the relative error in Figure 4.7.
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Figure 4.7: The relative error (log10) of f ′(x) where f(x) is given in (4.2) and displayed in
Figure 4.6.

4.2 Using spectral projectors to improve properties of

the derivative matrix with periodic boundary con-

ditions

The algorithm in Section 4.1 can be used to construct derivative operators with periodic
boundary conditions. However, the accuracy of the derivative matrix can be increased by
projecting the operator. In this section, we modify the algorithm in Section 4.1 for the
case of periodic boundary conditions. We begin with showing why it is appropriate to use
the technique of projections. A similar technique will be used in Section 4.3 for the second
derivative operator with zero boundary conditions.

4.2.1 Properties of the derivative matrix

Let us derive the eigenvalues and eigenfunctions that are required for the derivative operator
with periodic boundary conditions. We will see that when constructing the derivative matrix
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using approximate prolate spheroidal wave functions, it makes sense to apply a projection
operator to the derivative matrix to remove spurious eigenvalues.

Consider the eigenvalue problem
{

Du = λu
u(−1) = u(1)

. (4.3)

It is easily seen that

uk(x) = eikπx

for k = 0, 1, . . . are eigenfunctions to (4.3) with the corresponding eigenvalues

λk = ikπ.

Let us consider a discretization of D obtained by the methods in Section 3.1 using ap-
proximate prolate spheroidal wave functions of bandwidth c as the basis. The eigenfunctions
of the discretized problem will mimic the eigenfunctions uk(x). Our choice of basis functions
will give good approximations of uk(x) for all k = 0, 1, . . . such that kπ ≤ c. For k such that
c
π
< k ≤ N the eigenvectors will still ”attempt” to describe the corresponding eigenfunc-

tions uk(x), but the accuracy of these approximations will rapidly decrease with increasing k.
Therefore, the eigenvectors corresponding to eigenfunctions uk(x) for k > c

π
are not useful

to us, since we seek approximations only to bandlimited functions within the bandwidth
c. Hence, the eigenvectors corresponding to higher frequencies can be disregarded. More
formally, let P denote the projector onto the space spanned by all eigenfunctions uk(x) such
that k ≤ c

π
. Our goal is then to find a derivative matrix that approximates the operator

PDP. The details of the construction are given below.

4.2.2 Construction of the projected derivative matrix

To project the derivative matrix D, we diagonalize D as

D = EΛE−1

where E is a matrix with eigenvectors of D as columns and Λ is a diagonal matrix containing
the eigenvalues. The diagonal elements in Λ corresponding to the unwanted eigenspaces are
put to zero giving a new diagonal matrix we denote as Λ̃. The projected operator denoted
as D̃ is then given by D̃ = EΛ̃E−1.

Formally, this procedure can be described as follows. Let ek and fk denote the left and
the right eigenvector of D, respectively, with the eigenvalue λk. Scale ek (or fk) such that
fT
k ek = 1. Define Pk = ekf

T
k . If D is an N -by-N diagonalizable matrix then

D =

N
∑

k=1

λkPk.
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Then the projected matrix D̃ is given by

D̃ =
N
∑

|λk|≤c

λkPk.

As an alternative, one can also use the sign iteration method described in Section 7.2.
A derivative matrix with periodic boundary conditions based on approximate prolate

spheroidal wave functions is given as follows.

Algorithm: Derivative matrix with respect to approximate prolate spheroidal
wave functions with periodic boundary conditions

1. Construct N quadrature nodes and weights according to Definition 11.

2. Construct the matrix S according to (2.27), the matrix K according to (4.1), and the
matrices E, F , and G defined in Definition 19 by using (2.21)-(2.25). Construct the
matrix Pc and P−1

c according to (2.31).

3. Construct the derivative matrix D with periodic boundary conditions for single in-
tervals by using Definition 20, and for multiple intervals by using (3.32) and Tables
3.1-3.3.

4. Project D to obtain

Dproj =
∑

|λk|≤c

λkekf
T
k

where ek and fk are the left and the right eigenvector of D, respectively, scaled such
that fT

k ek = 1.

5. Compute D̃ = PcDprojP
−1
c to represent the derivative matrix with respect to the

interpolating basis.

4.3 The second derivative operator with zero boundary

conditions

When constructing the second derivative with zero boundary conditions, we can increase the
accuracy of the derivative matrix by applying an appropriate projector. The reason for this
is similar to the argument that was given for the periodic derivative in the previous section.
We begin with modifying the reasoning from Section 4.2.1 to derive an appropriate projector
for the second derivative with zero boundary conditions.
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4.3.1 Properties of the derivative matrix

Let us denote the derivative operator with arbitrary boundary condition as D, and the
derivative operator with zero boundary condition as D0. We define the linear operator L0

as L0 = DD0 and consider the eigenvalue problem
{

L0u = λu
u(−1) = u(1) = 0

. (4.4)

It is easily seen that

uk(x) = sin

(

kπ

2
(x+ 1)

)

for k = 1, 2, . . . are eigenfunctions to (4.4) with the corresponding eigenvalues

λk = −k
2π2

4
.

Let us consider a discretization of L0 obtained by the methods in Section 3.1 using
approximate prolate spheroidal wave functions of bandwidth c as basis functions. The eigen-
functions of the discretized problem will mimic the eigenfunctions uk(x). Our choice of basis
functions will give approximations of uk(x) for all k = 1, 2, . . . such that kπ

2
≤ c. For k

such that 2c
π
< k ≤ N the eigenvectors will still ”attempt” to describe the corresponding

eigenfunctions uk(x), but the accuracy of these approximations will rapidly decrease with
increasing k. Therefore, the eigenvectors corresponding to eigenfunctions uk(x) for k > 2c

π

are not useful to us, since we seek approximations only to bandlimited functions within the
bandwidth c. Hence, the eigenvectors corresponding to higher frequencies can be disregarded.
More formally, let P denote the projector onto the space spanned by all eigenfunctions uk(x)
such that k ≤ 2c

π
. Our goal is then to find a derivative matrix that approximates the oper-

ator PL0P. The details of the construction are given in the next section and we give some
numerical results in Section 4.3.3 below.

4.3.2 Construction of the second derivative matrix

A second derivative matrix with zero boundary conditions based on approximate prolate
spheroidal wave functions is given as as follows.

Algorithm: Second derivative matrix with respect to approximate prolate spher-
oidal wave functions with zero boundary conditions

1. Construct N quadrature nodes and weights according to Definition 11.
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2. Construct the matrix S according to (2.27), the matrix K according to (4.1), and the
matrices E, F , and G defined in Definition 19 by using (2.21)-(2.25). Construct the
matrix Pc and P−1

c according to (2.31).

3. Construct the derivative matrix D with arbitrary boundary conditions for single in-
tervals by using Definition 20, and for multiple intervals by using (3.32) and Tables
3.1-3.3.

4. Construct the derivative matrix D0 with zero boundary conditions for single intervals
by using Definition 20, and for multiple intervals by using (3.32) and Tables 3.1-3.3.

5. Compute L0 = DD0.

6. Project L0 to obtain

Lproj =
∑

|λk|≤c2

λkekf
T
k

where ek and fk are the left and the right eigenvector of L0, respectively, scaled such
that fT

k ek = 1.

7. Compute L̃0 = PcLprojP
−1
c to represent the derivative matrix with respect to the

interpolating basis.

4.3.3 Numerical results

Using the algorithm above, we present two experiments that illustrate the accuracy of the
second derivative matrix with zero boundary conditions. In the first experiment we use 32
nodes. Note that the Nyquist frequency for 32 nodes corresponds to the bandwidth c = 16π
(for periodic functions). We construct four derivative matrices with the bandwidth c set
to 5.5π, 7π, 8.5π, and 10.5π, respectively. In order to obtain these bandwidths using 32
nodes, we set the accuracy ε to 10−13, 10−10, 10−7, and 10−4, respectively. We differentiate
the function f(x) = sin bkx where bk = kπ/2 for k = 1, . . . , 32. For each bk we differentiate
the test function at the 32 quadrature nodes. We then use the transformation matrix C
introduced in Section 2.6.4 to interpolate the result at 32 equally spaced points (including
the end points) over the interval [−1, 1]. The result is shown in Figure 4.8.

In the second experiment we use 64 nodes corresponding to the Nyquist frequency 32π
(for periodic functions). We construct four derivative matrices with the bandwidth c set
to 18.5π, 20.5π, 23π, and 26π, respectively. In order to obtain these bandwidths using 64
nodes, we set the accuracy ε to 10−13, 10−10, 10−7, and 10−4, respectively. We differentiate
the function f(x) = sin bkx where bk = kπ/2 for k = 1, . . . , 64. For each bk we differentiate
the test function at the 64 quadrature nodes. We then use the transformation matrix C
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introduced in Section 2.6.4 to interpolate the result at 64 equally spaced points (including
the end points) over the interval [−1, 1]. The result is shown in Figure 4.9.

We now demonstrate the importance of projecting the operator as described in Sec-
tion 4.3.1. Let us construct two second derivative matrices with zero boundary conditions
using 32 nodes. One of the matrices is projected according to the algorithm in Section 4.3.2,
while the other derivative matrix is constructed without any projection. We choose the
bandwidth c = 8.5π. In order to obtain this bandwidths using 32 nodes, we set the accuracy
ε to 10−7. For both the derivative matrices, we differentiate the function f(x) = sin bkx
where bk = kπ/2 for k = 1, . . . , 32. For each bk we differentiate the test function at the 32
quadrature nodes. We then use the transformation matrix C introduced in Section 2.6.4 to
interpolate the result at 32 equally spaced points (including the end points) over the interval
[−1, 1]. The result is shown in Figure 4.10.

Note that the error is larger when using the non-projected derivative matrix for all
bandwidths |bk| within the maximum bandwidth c. An explanation to this behavior is given
by comparing the norms of the two derivative matrices. For the projected derivative matrix,
the Frobenius norm of the matrix was approximately 1431, while the Frobenius norm for
the non-projected derivative matrix was approximately 72520. Hence, the norm for the
non-projected matrix is approximately 50 times larger than for the projected matrix, which
causes amplifications of any error of the function to be differentiated. The reason for the
larger norm of the non-projected matrix, is that it tries to approximate highly oscillatory
modes. However, the basis functions used in the construction do not have the bandwidth
to properly approximate these modes. Therefore, such modes may be disregarded without
affecting the class of functions we aim at differentiating. Removing these oscillatory modes
decreases the norm of the matrix.

4.4 The integration operator

In solving integral equations it is often useful to map a sequence of function values {f(θk)}N
k=1

to the sequence of integrals {
∫ θk

−1
f(x) dx}N

k=1. We refer to such a mapping as an integration
matrix. If the function can be expanded into basis functions that can be integrated exactly
we can achieve high accuracy of the integration.

In this section we construct an integration matrix for the bandlimited functions on an
interval. The approach is to represent the function to be integrated with respect to the
interpolating basis and then transform to the basis of approximate prolate spheroidal wave
functions. We choose the approximate prolate spheroidal wave functions as a basis rather
than the exponentials to avoid the numerical instabilities discussed in Section 2.7.1.
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Figure 4.8: Relative error (log10) for the second derivative of the function sin bkx where
bk = kπ/2 for k = 1, . . . , 32. The derivative matrices are constructed with respect to
32 basis functions. We use a basis of approximate prolate spheroidal wave functions with
maximum bandwidth c = 10.5π (thick solid curve), c = 8.5π (thin solid curve), c = 7π
(dotted curve), and c = 5.5π (dashed curve). The error of each differentiation is measured
at 32 equally spaced points (including the end points) on the interval [−1, 1].
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Figure 4.9: Relative error (log10) for the second derivative of the function sin bkx where
bk = kπ/2 for k = 1, . . . , 64. The derivative matrices are constructed with respect to
32 basis functions. We use a basis of approximate prolate spheroidal wave functions with
maximum bandwidth c = 26π (thick solid curve), c = 23π (thin solid curve), c = 20.5π
(dotted curve), and c = 18.5π (dashed curve). The error of each differentiation is measured
at 64 equally spaced points (including the end points) on the interval [−1, 1].
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Figure 4.10: Relative error (log10) for the second derivative of the function sin bkx where
bk = kπ/2 for k = 1, . . . , 32 using two different derivative matrices. Both derivative matrices
are constructed with respect to 32 basis functions using a basis of approximate prolate
spheroidal wave functions with maximum bandwidth c = 8.5π. The first derivative matrix
is constructed using projections according to the algorithm in Section 4.3.2 (thin line), while
the other derivative matrix was constructed without using any projection (thick line). The
error of each differentiation is measured at 32 equally spaced points (including the end points)
on the interval [−1, 1].
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4.4.1 Construction of the integration matrix

Let {θk}N
k=1 denote a set of quadrature nodes defined in Definition 11. If N is even, the

symmetry of the nodes guarantees that all nodes are non-zero. If N is odd one quadrature
node is zero. Define the matrix T̃ with elements defined by

T̃kl =

∫ θk

−1

eicθlx dx =

{

eicθkθl−e−icθl

icθl
, k 6= N+1

2

θk + 1, k = N+1
2

. (4.5)

for k, l = 1, . . . , N . Note that if N is even, only the first case applies. Using (2.14) we find
that

∫ θk

−1

Ψl(x) dx = Hkk

N
∑

m=1

WmmQmlT̃km

The integration matrix based on approximate prolate spheroidal wave functions is given as
as follows.

Algorithm: Integration matrix with respect to approximate prolate spheroidal
wave functions

1. Construct N quadrature nodes and weights according to Definition 11.

2. Construct the matrices Q, W , and H according to (2.21)-(2.23).

3. Construct T̃ according to (4.5).

4. Construct P−1
c according to Section 2.6.4.

5. Compute the integration matrix T by T = T̃WQHP−1
c .

4.4.2 Numerical results

Using the algorithm above, we present two graphs that illustrate the accuracy of the integra-
tion matrix. In the first experiment we use 32 nodes. Note that the Nyquist frequency for
32 nodes corresponds to the bandwidth c = 16π (for periodic functions). We construct four
integration matrices with the bandwidth c set to 5.5π, 7π, 8.5π, and 10.5π, respectively. In
order to obtain these bandwidths using 32 nodes, we set the accuracy ε to 10−13, 10−10, 10−7,
and 10−4, respectively. Let {θk}32

k=1 be a set of quadrature nodes for bandlimited functions.

We compute the integrals
∫ θk

−1
eibx dx for 200 values of b ranging between ±16π. Note that

it includes integration of non-periodic functions. The result is shown in Figure 4.11.
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In the second experiment we use 64 nodes corresponding to the Nyquist frequency for
c = 32π (for periodic functions). We construct four integration matrices with the bandwidth
c set to 18.5π, 20.5π, 23π, and 26π, respectively. In order to obtain these bandwidths using
64 nodes, we set the accuracy ε to 10−13, 10−10, 10−7, and 10−4, respectively. Let {θk}64

k=1 be

a set of quadrature nodes for bandlimited functions. We compute the integrals
∫ θk

−1
eibx dx

for 200 values of b ranging between ±32π. Note that this includes non-periodic functions.
The result is shown in Figure 4.12.

We note that the error behaves in the same way as for the derivative matrices in Sec-
tion 4.1. However, the accuracy is in general higher for integration than for differentiation.
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Figure 4.11: Absolute error (log10) for integrals
∫ θk

−1
eibx dx in with |b| ≤ 16π where {θk}32

k=1

are quadrature nodes. The integration matrices are constructed with respect to 32 basis
functions. We use a basis of approximate prolate spheroidal wave functions with maximum
bandwidth c = 10.5π (thick solid curve), c = 8.5π (thin solid curve), c = 7π (dotted curve),
and c = 5.5π (dashed curve).
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Figure 4.12: Absolute error (log10) for integrals
∫ θk

−1
eibx dx in with |b| ≤ 32π where {θk}64

k=1

are quadrature nodes. The integration matrices are constructed with respect to 64 basis
functions. We use a basis of approximate prolate spheroidal wave functions with maximum
bandwidth c = 26π (thick solid curve), c = 23π (thin solid curve), c = 20.5π (dotted curve),
and c = 18.5π (dashed curve).
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Chapter 5

Low rank representations of operators

In this thesis we propose a scheme to solve the acoustic equation using a semi-group ap-
proach. If the spatial operator L in the acoustic equation is time independent, then we
solve the equation by computing the matrix exponential etL using the scaling and squaring
method (see Golub and Van Loan [29]). This technique shifts the difficulty into the question
of representing the operators so that we can control the complexity of the computations.
We also need to maintain an efficient operator representation for relatively large time steps
t. If the spatial operator is time dependent, we write the differential equation as an integral
equation, and use an iterative scheme to solve such equation. Using the matrix exponen-
tial allows large time steps and assures high accuracy. However, the matrix operations are
computationally expensive since we need to perform a large number of matrix-matrix mul-
tiplications to compute etL. Computing the matrix exponential in two dimensions directly
becomes prohibitively slow even for moderate sizes. The computational cost for a matrix-
matrix multiplication in d dimensions grows as O(N 3d).

In order to overcome the prohibitive computational costs for solving PDEs using the semi-
group approach in two or higher dimensions, we need an efficient operator representation.
Such multidimensional operator calculus has been introduced by Beylkin and Mohlenkamp
[7], and in this chapter we review their work for two dimensional problems. If L is an operator
in two dimensions, then the separated representation decomposes the operator L as

L =
r
∑

k=1

skAk ⊗ Bk (5.1)

where sk > 0 are scalars, and Ak and Bk are matrices in one dimension. If the separation
rank in (5.1), r, is small, then the separated representation decomposes the operator L to
a short sum of operators in one dimension, thus, greatly reducing the computational cost.
In Chapter 6 we demonstrate that we can solve the acoustic equation efficiently in two
dimensions using this representation.
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For a large domain, the operators Ak and Bk are represented by large matrices. The
matrices we use are dense, oscillatory, non-Toeplitz, and usually of high rank. This prevents
us from using the Fourier or wavelet techniques to compress these matrices. In this thesis
we use the so-called Partitioned Low Rank (PLR) representation which is a simplification
of the Partitioned Singular Value Decomposition (PSVD) previously studied by Rokhlin et
al. ([34], [31], and [48]), and by Beylkin et al. [10]. In this new PLR representation, we
partition the matrix such that the diagonal blocks are represented as dense matrices, and
the off-diagonal blocks are decomposed into sums of the type

B =

r
∑

k=1

skekf
∗
k (5.2)

where ek and fk are vectors and sk are scalars. Unlike in PSVD, we do not require the
vectors ek and fk to be orthonormal. This significantly simplifies the algorithm for reducing
the rank in (5.2) after performing linear algebra operations. It turns out that these vectors
are close to being orthogonal. In Chapter 6 we demonstrate that the separated representation
combined with the PLR representation, efficiently represent operators necessary for solving
the acoustic equation. In addition to compute the matrix exponential, we compute spectral
projectors in Chapter 7 using this representation for solving inverse problems.

In this chapter we consider algorithms for matrix operations on these representations
including the computation of linear combinations and products. The separated rank repre-
sentation is reviewed in Section 5.1, and we introduce the PLR representation in Section 5.2.
When applying these algorithms, we will see that the rank r may grow and it is essential
for r to remain small to control the computational cost of the algorithms. We provide an
algorithm to reduce the rank in Appendix B.1.

5.1 The separated representation

To solve the acoustic equation in two dimensions we propagate the solution in time by
computing the exponential etL, where L is the spatial operator. This scheme allows us to
propagate the solution using large time steps with high accuracy and avoid the time-step
restriction that the Courant-Friedrich-Levy (CFL) condition implies on differential formula-
tions on wave propagation problems. The computation of the exponential of a dense matrix
is computationally expensive and prohibitively slow for operators in two dimensions. Once
etL has been computed, propagating the solution by computing the matrix vector product
etLu repeatedly is slow in two dimensions. We note that representing a function on an N -
by-N mesh requires N 2 samples. We adopt the naming convention from [7] and refer to such
a vector as a vector in two dimensions, and refer to an operator acting on a vector in two
dimensions as an operator in two dimensions. A straightforward discretization of an operator
in two dimensions requires N 4 elements. Consequently, a matrix-vector multiplication costs
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O(N4) operations and a matrix-matrix multiplication costs O(N 6) operations. If the matri-
ces acting in the two directions are banded such that all entries outside the distance b/2 from
the diagonal are zero, then the computational cost for matrix products is O(b4N2) which
is still too expensive for solving PDEs. Also, the bandedness of a matrix is not preserved
under matrix-matrix multiplications.

The approach in [7] generalizes the usual technique of separation of variables. For exam-
ple, consider the Laplacian operator in two dimensions which we write as

∆ = Dxx ⊗ I + I ⊗Dyy

where Dxx and Dyy denote second derivatives, and I denotes the identity operator. The
left and the right factors in the tensor products act in the x- and y-directions, respectively.
Even if we represent the second derivatives and the identity operator as dense matrices,
this representation still requires only 4N 2 elements to be stored. Generalizations of such
representations in higher dimensions have been studied in [7]. In this thesis, we will consider
the two dimensional case, but our methods can be generalized to higher dimensions using
the algorithms in [7].

Let L : � N2 → � N2
be a linear operator. Let {Ak}r

k=1 and {Bk}r
k=1 be N -by-N matrices,

and {sk}r
k=1 be scalars, such that

L =
r
∑

k=1

skAk ⊗Bk.

We refer to this sum as a separated representation of L of rank r. Note that we can always
find a representation such that r ≤ N 2. The number of elements in a separated representation
is given by 2rN 2 + r.

This definition is specific for two dimensions, and has no analogue in higher dimensions.
In many applications, it suffices to find an approximation to L in a separated form. Therefore
we will use

Definition 21 (Separated representation) For the accuracy ε > 0, we define the sepa-
rated rank representation of an operator L as

L̃ =

r̃
∑

k=1

skAk ⊗ Bk

such that

‖L− L̃‖ < ε.
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Usually, we construct the representation such that sk > 0, ‖Ak‖ = 1, and ‖Bk‖ = 1. This
definition is sufficient for numerical purposes, and generalizes in higher dimensions [7]. In
many cases r̃ � r.

In one and two dimensions, these two definitions are connected by the SVD, namely, by
dropping terms in the SVD expansion we can match the two definitions within a precision
determined by the singular values. The SVD in one dimension, L =

∑

k σkekf
∗
k , has the

property that the left factors ek span the column space (range) of A, and the right factors
fk span the row space of A. Hence, in a sense the SVD separates the input from the output.
This is not the case for the separated representation in higher dimensions where the left and
the right factors separates the action of L into different directions, but does not separates
the input from the output.

As suggested by Beylkin and Mohlenkamp [8], we replace the orthogonality with the
weaker requirement that the separation condition number of the operator L defined as

κ ≡
∑r

k=1 sk

‖L‖ ,

is low. (Here we assume that sk > 0 and that Ak and Bk are normalized.)

5.1.1 Operator calculus using the separated rank representation

If u∈ � N2
is a vector in two dimensions, stored as a two dimensional array, (or equivalently,

as a matrix in one dimension), then the matrix-vector product in two dimensions can be
computed by

Lu =
r
∑

k=1

skAkuB
T
k . (5.3)

In other words, the matrix Ak acts upon the columns of u, and Bk acts upon the rows of
u. The computational cost for a matrix-vector multiplication in two dimensions is given by
O(rN3).

Let us consider examples of linear algebra operations for this representation. Let L1 =
∑r1

k=1 s
(1)
k A

(1)
k ⊗ B

(1)
k and L2 =

∑r2

k=1 s
(2)
k A

(2)
k ⊗ B

(2)
k . We compute linear combinations by

αL1 + βL2 =

r1+r2
∑

k=1

s̃kÃk ⊗ B̃k, (5.4)

where

{s̃k}r1+r2

k=1 = {αs(1)
1 , . . . , αs(1)

r1
, βs

(2)
1 , . . . , βs(2)

r2
},
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{Ãk}r1+r2

k=1 = {A(1)
1 , . . . , A(1)

r1
, A

(2)
1 , . . . , A(2)

r2
},

and

{B̃k}r1+r2

k=1 = {B(1)
1 , . . . , B(1)

r1
, B

(2)
1 , . . . , B(2)

r2
}.

The rank is reduced using the algorithm in Appendix B.1. Typically, the approximate rank
r̃ is significantly less than r1 + r2.

Similarly, the matrix product of the two separated representations L1 and L2 is computed
as

L1L2 =

r1
∑

k=1

r2
∑

l=1

s
(1)
k s

(2)
l

(

A
(1)
k A

(2)
l

)

⊗
(

B
(1)
k B

(2)
l

)

. (5.5)

We note that its rank is r1r2. Again, we use the algorithm in Appendix B.1 to reduce the
rank of the matrix product after each addition in (5.5). Typically, the approximate rank r̃
is significantly less than r1r2.

5.1.2 Separated representation of operators for point wise multi-
plication

Operators representing pointwise multiplication are needed when considering the acoustic
equation utt = Lu with variable coefficients, where

L =
1

κ(x, y)

∂

∂x

(

σ(x, y)
∂

∂x

)

+
1

κ(x, y)

∂

∂y

(

σ(x, y)
∂

∂y

)

.

Consider a multiplication operator F represented by the function f(x, y) such that if u is
function of two variables, then

Fu(x, y) = f(x, y)u(x, y).

If we discretize such an operator on an N -by-N mesh we can represent F by the following
proposition.

Proposition 22 A point wise multiplication operator F representing a function f on an
N-by-N mesh, can be represented as

F =
r
∑

k=1

σkUk ⊗ Vk.

where Uk and Vk are diagonal matrices.
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Proof. Represent f by its SVD,

f =
r
∑

k=1

σkukv
∗
k

where uk and vk are the left and right singular vectors, respectively. The proposition follows
by constructing the diagonal operators Uk = diag(uk) and Vk = diag(vk).

�

5.2 The Partitioned Low Rank (PLR) representation

In this section we introduce the Partitioned Low Rank (PLR) representation. This rep-
resentation turns out to be efficient for many differential operators and functions of such
operators. The idea of the PLR representation has been used by Rokhlin et al. ([34], [31],
and [48]), for the fast multipole method, and for spectral projectors by Beylkin et al. [10].
The exponential of a matrix with pure imaginary spectrum and the bandlimited derivative
matrix constructed in Chapter 4 are of high rank, dense, non-Toeplitz, and highly oscillatory.
For exponentials of operators with pure imaginary spectrum there is no decay of modes as
time increases. Unlike operators with real, negative spectrum, exponentials of such operators
are not necessarily compressible via the wavelet transform while the PLR representation is
efficient for functions of differential operators even when wavelet or multiwavelet transforms
are dense. In Chapter 6 we apply the technique to exponentials of operators with pure
imaginary spectrum, and in Chapter 7 we apply the representation to spectral projectors.

The idea of the PLR representation can be described heuristically as follows. A dense
matrix acting on a vector couples all elements of the vector it acts upon. Interaction between
elements of the vector set apart roughly by size are of low rank, while interaction between
nearby elements are of high rank.

Definition 23 (PLR representation) Let A be an Ñ -by-Ñ matrix where Ñ is even. Par-

tition A into four Ñ
2
-by- Ñ

2
blocks. Decompose the off-diagonal blocks into the separated rep-

resentation

B =

r
∑

k=1

skekf
∗
k .

We refer to this partition as a level one PLR representation of A.
Let L be an N-by-N matrix for N = K2M where K is odd and M is a positive integer.

Let m ≤M . A level m PLR representation of L is defined by the following algorithm.
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For k = 1 : m

For l = 1 : 2k−1

Apply a level one PLR representation to the diagonal block of L given by the
elements Lij, i, j = (l − 1) N

2k + 1, . . . , lN
2k

end

end

We illustrate the level one PLR representation in Figure 5.1.

A

D1

D2

U

PLR

(D1)ij = Aij , i, j = 1, . . . , N/2

(D2)ij = Aij , i, j = N/2 + 1, . . . , N2

L

U =
∑rU

k=1 s
(U)
k e

(U)
k f

(U)∗

k

L =
∑rL

k=1 s
(L)
k e

(L)
k f

(L)∗

k

Figure 5.1: Illustration of a level one PLR representation. The diagonal blocks are dense
and the off-diagonal blocks are given as separated representations.

The general PLR representation is defined recursively by level one PLR representations
and is illustrated in Figure 5.2. In Figure 5.2 we use the notation Dl, U

k
l , and Lk

l to denote
the blocks of the partitioned matrix at different levels. This notation is convenient when
describing linear algebra operations in the PLR representation.

5.2.1 Compression of matrices using the PLR representation

In all our computations we seek an approximation Ã of an operator A such that ‖A−Ã‖ < ε,
where ‖ · ‖ is an operator norm, for some accuracy ε > 0. For many operators represented in
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A =

D1

D2

D3

D4

D5

D6

D7

D8

U3
1

U3
2

U3
3

U3
4

U2
1

U2
2

U1
1

L3
1

L3
2

L3
3

L3
4

L2
1

L2
2

L1
1

Dl are dense matrices

Uk
l =

∑r
(U)
kl

i=1 (αkl)i(ekl)i(fkl)
∗
i

Lk
l =

∑r
(L)
kl

i=1 (βkl)i(gkl)i(hkl)
∗
i

Figure 5.2: Illustration of a level three PLR representation. The diagonal blocks are dense
and the off-diagonal blocks are given as separated representations where αkl and βkl are
scalars, and ekl, fkl, gkl, and hkl are vectors.
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the PLR representation, the coefficients sk in the separated representation of the off-diagonal
blocks decays rapidly in magnitude. In such cases, the sum in the separated representation
can be truncated. In the following theorem, we estimate the threshold value we need to use
at each level in a PLR representation of an operator A such that ‖A− Ã‖2 < ε where Ã is
the truncated operator and ε > 0 is some accuracy.

Theorem 24 Consider an N-by-N matrix A given by a level m PLR representation. Let
Ã denote an approximation of A where each off-diagonal block has been truncated. If we
approximate each off-diagonal block B =

∑

i σiuiv
∗
i given by its SVD, by the operator

B̃ =
∑

σi≥εk

σiuiv
∗
i ,

where εk = ε
2km

for level k, then

‖A− Ã‖2 ≤ ε.

In practice, the separated representation may differ from the SVD, but by performing suffi-
ciently many orthogonalization sweeps in the algorithm in Appendix B.1, we can approximate
the SVD with arbitrary accuracy.

Proof. We note that

‖A‖2 ≤
m
∑

k=1





2k
∑

l=1

‖Dk
l ‖2 +

2k−1
∑

l=1

(

‖Uk
l ‖2 + ‖Lk

l ‖2

)



 . (5.6)

An off-diagonal block B at level k is represented by

B =

r
∑

i=1

σiuiv
∗
i .

If we truncate this sum using the threshold εk such that the truncated block B̃ is given by

B̃ =
∑

σi≥εk

σiuiv
∗
i ,

then ‖B − B̃‖2 < εk. There are 2k off-diagonal blocks at each level. Hence, if we select the
truncation error εk = ε

2km
and do not truncate the diagonal blocks, the truncated matrix Ã

satisfies

‖A− Ã‖2 ≤
m
∑

k=1

2k ε

2km
= ε.
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To further justify the use of the PLR representation we review an example from [7]. Accord-
ing to the Christoffer-Darboux formula, the separated sum

n
∑

k=0

pk(x)pk(y)

where {pk(x)}k is a set of orthonormal polynomials, can be written as the operator product
D1AD2 where D1 and D2 are diagonal operators and A = 1

x−y
. The matrix A can be

efficiently represented by the PLR representation, and multiplying the matrix with diagonal
matrices does not change this fact. In contrast, if D1 and D2 are diagonal matrices with
random numbers along the diagonal, wavelet techniques perform badly when compressing
D1AD2 even if A is compressible in the wavelet representation.

As an example of the efficiency of the PLR representation, consider the matrix L with
elements given by

Lij =

{

(−1)i−j

i−j
, i 6= j

0, i = j
. (5.7)

This matrix is of the same form as a derivative matrix on an equally spaced grid of infinite
order (see [25, Section 3.2]). The example therefore gives an idea of how derivative matrices
in general can be compressed using the PLR representation. In Table 5.1 we show the rank
for the off-diagonal blocks along with the compression ratio of the truncated matrix for
different sizes. The blocks are truncated such that the relative error in the Frobenius norm
is less that 10−7. In the next section we square this matrix using the PLR representation.
More examples with the PLR representation are given in Chapter 6 and Chapter 7.

5.2.2 Operator calculus using the PLR representation

In this section we provide algorithms for computing matrix-vector multiplications, linear
combinations, and products of matrices in the PLR representation. We use the notation for
the blocks introduced in Figure 5.2 and introduce the notation u(i : j) to denote the vector
[u(i), u(i+ 1), . . . , u(j)] and define Nk as Nk = N

2k .
Let us construct an algorithm to compute the matrix-vector product v = Au where

u∈ � N , and A is an N -by-N matrix given as a level m PLR representation. From Figure 5.2
it is clear that there are two types of matrix-vector multiplications we need to compute.
First, we need to compute Dku((k − 1)Nm + 1 : Nm) for k = 1, . . . , 2m which is a dense
matrix-vector multiplication with an Nm-by-Nm matrix. Secondly, we need to compute
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matrix-vector products of the type Lk
l ũ and Uk

l ũ where ũ∈ � Nk , and Lk
l and Uk

l are Nk-by-
Nk matrices given as separated representations on the form

∑

i σieif
∗
i . If Lk

l =
∑r

i=1 sieif
∗
i

then the matrix-vector product Lk
l u is computed by the formula

Lk
l u =

r
∑

i=1

si < u, fi > ei. (5.8)

Since the computational cost of the inner product is O(Nk), the total cost of such a matrix-
vector multiplication scales as O(rNk). The full algorithm for the matrix-vector multiplica-
tion is given in Appendix B.2.

In order to compute linear combinations and products of two PLR representations, we
need the following results. Let L1 =

∑r1

k=1 s
(1)
k e

(1)
k f

(1)∗

k and L2 =
∑r2

k=1 s
(2)
k e

(2)
k f

(2)∗

k . We
compute a linear combination by

αL1 + βL2 =

r1+r2
∑

k=1

s̃kẽkf̃
∗
k (5.9)

where

{s̃k}r1+r2
k=1 = {αs(1)

1 , . . . , αs(1)
r1
, βs

(2)
1 , . . . , βs(2)

r2
},

{ẽk}r1+r2
k=1 = {e(1)

1 , . . . , e(1)r1
, e

(2)
1 , . . . , e(2)r2

},

and

{f̃k}r1+r2
k=1 = {f (1)

1 , . . . , f (1)
r1
, f

(2)
1 , . . . , f (2)

r2
}.

The rank is reduced using the algorithm in Appendix B.1. Typically, the approximate rank
r̃ is significantly less than r1 + r2.

Similarly, the matrix product of the two separated representations L1 and L2 is given by

L1L2 =

r1
∑

k=1

r2
∑

l=1

s
(1)
k s

(2)
l < e

(2)
l , f

(1)
k > e

(1)
k f

(2)∗

l . (5.10)

We note that its rank is r1r2. Again, we use the algorithm in Appendix B.1 to reduce
the rank of the matrix product after each addition in (5.5). Typically, the approximate
rank r̃ is significantly less than r1r2. In both (5.9) and (5.10) we note that the structure
of the separated representation is preserved under linear combinations and multiplications,
respectively. That is, if the input is given as separated representations, then the output is
also given as a separated representation.
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We next describe an algorithm for computing the product of two matrices given in the
PLR representation. In many applications, it is essential that the matrix product preserves
the structure of the PLR representation. We present an outline to an algorithm that ac-
complishes this goal. A detailed algorithm depends on what data structure that is used for
storing the data of a PLR representation.

Consider the matrix product C = AB where A, B, and C are N -by-N matrices given as
level m PLR representations. We write A as the block matrix

A =

[

A11 A12

A21 A22

]

where the off-diagonal blocks are given as separated representations on the form
∑

i σieif
∗
i

and the diagonal blocks are level m−1 PLR representations. We partition B in the same way.
The product A and B involves two types of block multiplications. The first type is a product
between two separated representations, and such multiplications can be computed using
(5.10) which preserves the separated representation. The second type of block multiplication
is a block given as a level m−1 PLR representation multiplied with block given in a separated
representation. This gives the algorithm a recursive structure.

The product of two level one PLR representations consists of three different types of mul-
tiplications; block multiplications between dense (small) matrices, multiplications of a dense
block and a separated representation, and products of separated representations. Products
of a dense block and a separated representation is computed by repeated use of the matrix-
vector algorithm in Appendix B.2, and the product of two separated representations is given
by (5.10). A more detailed algorithm is given in Appendix B.3.

We conclude this chapter with a numerical example. We use the operator L used for the
experiment in Section 5.2.1 and square this operator using the algorithm in Appendix B.3
combined with the rank reduction algorithm in Appendix B.1. We select the truncation such
that the relative error in the Frobenius norm of the product is less than 10−7. We record the
time for a standard (dense) matrix-matrix multiplication algorithm (using the subroutine
dgemmm in the BLAS package), and divide the time with the CPU time for multiplying the
matrices using the PLR representation. The time ratio is displayed in Figure 5.3.
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Figure 5.3: Time ratio for computing the square of the matrix in (5.7) using dense multipli-
cation compared with PLR multiplication.
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Table 5.1: Compression using the PLR representation. The maximum (full) rank is given
within parenthesis. The compression ratio is measured as the number of stored elements
for the full dense representation divided by the number of stored elements for the full PLR
representation. The off-diagonal block at the fifth level for N = 512 has rank 8, and is
therefore not worth compressing.

N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024

Rank of U1
1 7 (16) 8 (32) 9 (64) 10 (128) 11 (256) 12 (512)

Rank of U2
l , N.A. 7 (16) 8 (32) 9 (64) 10 (128) 12 (256)

l = 1, 2
Rank of U3

l , N.A. N.A. 7 (16) 8 (32) 10 (64) 11 (128)
l = 1, . . . , 4
Rank of U4

l , N.A. N.A. N.A. 7 (16) 9 (32) 10 (64)
l = 1, . . . , 8
Rank of U5

l , N.A. N.A. N.A. N.A. (dense) 9 (32)
l = 1, . . . , 16
Compression 1.1 1.4 2.0 3.0 4.5 7.3
ratio
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Chapter 6

Numerical solutions to the acoustic
equation in two dimensions

In this chapter we use the tools from this thesis to construct a numerical scheme for solving
the acoustic equation in two dimensions. Let us consider

κ(x, y)utt = (σ(x, y)ux)x + (σ(x, y)uy)y + F (x, y, t), (x, y)∈D, t∈ [0,∞)

u(x, y, 0) = f(x, y)

ut(x, y, 0) = g(x, y)

u|∂D = h(x, y)

(6.1)

where D is a rectangle. The function κ(x, y) is the compressibility of the medium, and the
function σ(x, y) denotes the specific volume (the inverse of density).

Iserles [33] gives an overview of finite difference methods for solving hyperbolic problems,
and Fornberg [25] discusses the use of pseudo-spectral methods. Alpert et al. use a method
related to the spherical means representation to construct a numerical scheme for the wave
equation in [2].

Let us first write the acoustic equation (6.1) as a first order system in time. This allows
us to use the semigroup approach to solve the equation by constructing a propagator P (t)
such that P (t)u(x, y, 0) solves the equation at any time t. Since our medium coefficients κ
and σ are time independent, the propagator for homogeneous problems (F = 0) is given by
the exponential of a matrix.

In this thesis we introduce a method for solving (6.1) by computing the matrix exponen-
tial. To control the computational cost, we represent the spatial operator by the separated
representation described in Section 5.1 which decomposes the operator into a short sum of
matrices acting in one dimension. These matrices are compressed using the PLR represen-
tation introduced in Section 5.2. To minimize the sampling rate, we use the bandlimited
functions introduced in Chapter 2 as a basis. We incorporate the boundary and interface
conditions according to Chapter 3.
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In the first two sections we review the first order formulation of the acoustic equation and
the semi-group approach. In the final section we present our algorithm and provide a number
of numerical results with constant and variable coefficients. Our scheme is compared to a
fourth order scheme using the fourth order finite difference stencil in space and the explicit
Runge-Kutta scheme of order 4 (RK4) in time.

6.1 The acoustic equation in two dimensions as a first

order system

Our first step is to convert (6.1) to a first order system in time. We follow the derivation
by Bazer and Burridge [3] for hyperbolic equations. Once the equation is given in the form
ut = Lu, we can use either a traditional time stepping scheme for first order ODEs, such as
the RK4, or we can solve the equation by computing the exponential etL.

By introducing functions v and w, we write the acoustic equation (6.1) as





v
w
u





t

=







0 0 σ(x, y)[ ∂b

∂x
⊗ Iy]

0 0 σ(x, y)[Ix ⊗ ∂b

∂y
]

1
κ(x,y)

[ ∂
∂x

⊗ Iy]
1

κ(x,y)
[Ix ⊗ ∂

∂y
] 0











v
w
u





+





0
0

∫ t

0
F (x, y, τ) dτ



 ≡ Lu + F,

(6.2)

where the operators ∂
∂x

⊗ Iy and Ix ⊗ ∂
∂y

are defined by

[
∂

∂x
⊗ Iy]u(x, y) ≡ ux(x, y) and [Ix ⊗

∂

∂y
]u(x, y) ≡ uy(x, y) ,

and the left and right factors are operators in one dimension acting upon x and y variables,
respectively. Here ∂b

∂x
and ∂b

∂y
denote differentiation operators with boundary conditions

imposed in the x and y direction, respectively. We note that ∂
∂x

and ∂b

∂x
, and ∂

∂y
and ∂b

∂y
, do

not generally commute. In Appendix C.1 we look closer at the meaning of ∂
∂x

⊗ Iy when the
domain is composed of subdomains where each subdomain has its set of basis functions.

We will use (6.2) when solving the acoustic equation by using the bandlimited functions.
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As an alternative, we can write (6.1) as

[

v
u

]

t

=

[

0 1
κ

(

∂
∂x

(

σ ∂b

∂x

)

⊗ Iy + Ix ⊗ ∂
∂y

(

σ ∂b

∂y

))

Ix ⊗ Iy 0

]

[

v
u

]

+

[

F
0

]

≡ Lu + F

(6.3)

which we use to construct the fourth order scheme.

6.2 The semigroup approach

In this section we use (6.2) to construct a numerical scheme based on the semigroup approach.
The semigroup approach for PDEs is described by, e.g., Yoshida [57] and Evans [23]. Nu-
merical schemes for the semigroup approach for parabolic PDEs and the advection-diffusion
equation have been developed by Beylkin and Keiser [5], and by Alpert et al. [1].

We can write (6.2) and (6.3) as

ut = Lu + F

u(0) = u0

(6.4)

where u = [v w u]T (for (6.2)), u = [v u]T (for (6.3)), and L is the linear operator on the
right-hand side of equations (6.2) and (6.3). From now on we assume that (6.4) is discretized
in space resulting in a finite dimensional system of ODEs.

The equation (6.4) is solved by

u(t) = P (t)u0 + P (t)

∫ t

0

P (τ)−1F(τ) dτ

where the propagator P (t) is an invertible matrix of the same dimensions as L solving the
integral equation

P (t) = I +

∫ t

0

L(τ)P (τ) dτ.

If L is time independent, then P (t) = etL. The propagator P (t) = etL is continuous with
respect to time and has the properties P (0) = I and P (t+ s) = P (t)P (s) = P (s)P (t) which
gives the propagator the semigroup property. The main difficulty in using this approach as a
numerical scheme is to control the complexity of the computation of the matrix exponential.
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6.3 Numerical results

In this section we provide examples of wave propagation in two dimensions. We will com-
bine the techniques from previous chapters. We construct L using derivative operators for
bandlimited functions with boundary and interface conditions incorporated according to
Chapter 3 and propagate the solution by applying the matrix exponential etL. We refer
to this scheme as the bandlimited semigroup method and give the details of the algorithm
below.

We compare the resulting scheme to a fourth order finite difference (FD4) scheme where
we propagate the solution in time by using the RK4 scheme. For both schemes we display
the accuracy for the case with constant coefficients where we compare the result with the
exact solution. In addition, we provide examples with variable coefficients. For variable
coefficients we cannot compare the solution to the exact solution, but we provide image
sequences that illustrate that the solution using the bandlimited semigroup method behaves
in the expected manner. In contrast, we demonstrate how the fourth order scheme generates
artifacts associated with numerical dispersion.

6.3.1 The bandlimited semigroup method

Let us describe a numerical scheme for solving the homogeneous acoustic equation (6.1) in
two dimensions with time independent coefficients.
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Algorithm: The bandlimited semigroup method

1. Write the acoustic equation as a first order system in time according to (6.2).

2. Construct the derivative matrices representing ∂
∂x

and ∂b

∂x
using the algorithm in Ap-

pendix C.2.

3. Construct the separated representation of the multiplication operators A and B rep-
resenting 1/κ(x, y) and σ(x, y), respectively, by using Proposition 22.

4. Construct the spatial operator

L =







0 0 B[ ∂b

∂x
⊗ Iy]

0 0 B[Ix ⊗ ∂b

∂y
]

A[ ∂
∂x

⊗ Iy] A[Ix ⊗ ∂
∂y

] 0






.

5. Use the algorithm in Appendix B.1 to reduce the separation rank of each block in L.

6. Select ∆t (see below) and compute the matrix exponential e∆tL using the scaling and
squaring algorithm [29]. The linear combinations and products of the matrix blocks
given in the separated representation are computed using the methods described in
Section 5.1.1.

7. For k = 1 : Ntime

u(tk) = e∆tLu(tk−1)

end

If the factors in the separated representation, (which are matrices in one dimension), are
large, we use the PLR representation described in Section 5.2 to speed up the computations
in Step 6 and 7 of the algorithm.

In most numerical methods for wave propagation, the time step is restricted by the
Courant-Friedrich-Lewy (CFL) condition, see, e.g., Iserles [33]. To avoid numerical insta-
bility according to the CFL conditions, the spatial step is controlled by the speed of the
propagating waves. For example, for the wave equation with constant coefficients in one
dimension, the ratio of the time step and the spatial step cannot exceed one. When using
the matrix exponential, the time step ∆t can be chosen as large as desired without causing
instabilities as long as the operator L has eigenvalues with non-positive real part. However,
a large time step will increase the separation rank and the ranks in the PLR representation.
On the other hand, a large time step means that we need fewer time steps in Step 7 of
the algorithm. We have found that choosing the time step between 0.5-2 periods gives a
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good compromise between an efficient representation of the matrix exponential and a small
number of time steps in Step 7 of the algorithm.

For this scheme we solve the equation at the quadrature nodes (x, y) = (θk, θl) used for
the bandlimited representation. For illustrations, before displaying the solution as a picture,
we interpolate the result to an equally spaced grid using the matrix C in Section 2.6.4.

6.3.2 Comparison of the results

We compare the bandlimited semigroup method to two other methods. In the first compar-
ison we use the algorithm in Section 6.3.1, but replace Step 6 and 7 with the explicit RK4
solver in time. In the second comparison we write the acoustic equation (6.1) as a first order
system in time using (6.3), and discretize it in space using the fourth order finite difference
stencil. We solve the equation on an equally spaced grid including the endpoints. We use
fourth order boundary stencils which we construct according to [25] and use the explicit RK4
solver in time.

To evaluate the performance of our method we introduce the following characteristic time
and length scales. Consider the equation















utt = uxx + uyy, (x, y)∈(−1, 1) × (−1, 1)
u(x, y, 0) = sin (c(x + 1)) sin (c(y + 1))
ut(x, y, 0) = 0
u(±1, y) = u(x,±1) = 0

where c = kπ/2 for some integer k, and its solution given by

u(x, y, t) = sin (c(x + 1)) sin (c(y + 1)) cos(
√

2ct).

Let us adopt the following convention. We define the characteristic (temporal) period

∆t =

√
2π

c
,

and the characteristic length scale

∆s =
π

c
.

If we consider a fixed time t, then ∆s corresponds to the spatial wave length.

6.3.3 Numerical results for constant coefficients

In this section we demonstrate the accuracy of the algorithm and compare its computational
speed to that of the two methods described in Section 6.3.2. We also propagate a sharp
pulse to demonstrate numerical dispersion.
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Comparison of accuracy and speed

For the experiments in this section, we solve



















utt = uxx + uyy, (x, y)∈(−1, 1) × (−1, 1)

u(x, y, 0) = sin
(

π(x+1)
2

)

sin
(

π(y+1)
2

)

+ sin (b(x + 1)) sin (b(y + 1))

ut(x, y, 0) = 0
u(±1, y) = u(x,±1) = 0

, (6.5)

where b = kπ/2 for some integer k > 1, and the solution is given by

u(x, y, t) = sin

(

π(x+ 1)

2

)

sin

(

π(y + 1)

2

)

cos(
π√
2
t)

+ sin (b(x + 1)) sin (b(y + 1)) cos(
√

2bt).

We note that this solution contains both low frequency (the first term) and high frequency
(the second term) modes. For the experiments in this section, we measure the error of the
vector u = [v w u]T when using a bandlimited scheme, and the error of the vector u = [v u]T

when using the fourth order scheme. The functions v and w are defined in Section 6.1. We
measure the error using the relative max norm, that is, if ũ approximates the exact solution
u, then

error =
‖u − ũ‖∞
‖u‖∞

.

In the first experiment, we solve (6.5) using b = 22.5π. We propagate the solution
and evaluate the error over a range of 1 − 104 characteristic periods, and also record the
computational (CPU) time it took to produce the solution.

For the bandlimited semigroup method , we construct quadrature nodes and weights for
the bandwidth c = 23π which corresponds to an oversampling factor of approximately 1.4
for periodic functions. We set the accuracy in the construction to ε = 10−7 resulting in 64
nodes, and select the time step ∆t =

√
2

23
corresponding to approximately 0.98 characteris-

tic periods, and represent the operator using the separated and PLR representations from
Chapter 5. This gives the separation rank 5 for the blocks in the exponential operator. For
the comparison method, we use the same spatial discretization as for the bandlimited semi-
group method, but use the RK4 solver in time with the timestep ∆t

128
. The result is shown in

Figure 6.1. We see that the bandlimited semigroup method is significantly faster than the
other method.

In order for the fourth order scheme to reach similar accuracy, we need more than 1024
samples in space corresponding to an oversampling factor of approximately 22 (for periodic
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Figure 6.1: Accuracy for solving (6.5) using the approximate prolate spheroidal wave func-
tions as the basis. Relative error (log10) in the max-norm for approximating the solution to
(6.5) (top) and the computational time (bottom).
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functions) and a timestep t = ∆t
128

. With this sampling rate, the computational time per
characteristic period is almost four minutes, or more than 5000 times slower than the ban-
dlimited semigroup method. However, such oversampling factor is significantly larger than
is typically used. In the next experiment, we therefore solve the same equation as in the pre-
vious experiment, but use 400 samples in space for the fourth order scheme, corresponding
to an oversampling factor of approximately 8.7 (for periodic functions), and a timestep ∆t

32
.

For the bandlimited semigroup method we use the same data as in the previous experiment.
The result is shown in Figure 6.2. In this experiment, the computational times for the two
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Figure 6.2: Relative error (log10) in the max-norm for approximating the solution to (6.5)
(top), and the computational time (bottom).

methods are comparable, but the bandlimited semigroup method is significantly more accu-
rate. The error profile for the fourth order scheme oscillates significantly over time, while
the error profile for the bandlimited semigroup method is roughly linear.

In the next experiment, we demonstrate that the cost for higher accuracy is small for
the bandlimited semigroup method. Let us fix b = 19.5, and solve the model problem
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(6.5) using the bandlimited semigroup method for the bandwidth c = 20π with 52, 56, 60,

64, and 68 nodes. For all solutions, we use the time step ∆t =
√

2
20

(approximately one
characteristic period). The result is shown in Figure 6.3. We observe that using 60 nodes
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Figure 6.3: Relative error (log10) in the max-norm for approximating the solution to (6.5)
for b = 20π using two different sampling rates (top). The CPU time for propagating the
wave one characteristic period for a varying number of nodes (bottom).

takes approximately two times longer than using 52 nodes but gives approximately 4 more
digits of accuracy. We also note that the error increases linearly over time.

Numerical dispersion

Due to inaccuracies of differentiation, the different Fourier modes of a pulse propagate with
different speeds. After some time the shape of the pulse deteriorates. To examine this
phenomenon, let us consider the wave equation in one dimension, ut + cux = 0, the solutions
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of which correspond to right-traveling waves. Solutions of this equation take the form

u(x, t) = eiω(x−ct),

which we refer to as a Fourier mode of frequency ω traveling to the right with velocity c.
Exact differentiation of this solution yields

∂

∂x
u = iωeiω(x−ct).

If the error in the representation of the differentiation operator is of the form

∂

∂x
u ' if(ω)eiω(x−ct),

then the Fourier mode propagates with the velocity cf(ω)/ω. Unless f(ω) = ω, which
corresponds to the exact differentiation, the Fourier modes of different frequencies travel with
different velocities. For example, in the case of the second order centered finite difference
approximation of the derivative, f(ω) = sin(ω).

In this section we compare numerical dispersion using the bandlimited semigroup method
and the fourth order comparison scheme described in Section 6.3.2. Let us solve















utt = uxx + uyy, (x, y)∈(−2, 2) × (−2, 2)
u(x, y, 0) = sinc2 (27πx) sinc2 (27πy)
ut(x, y, 0) = 0
u(±2, y) = u(x,±2) = 0

. (6.6)

The solution is a sharp pulse originating at the origin of the domain (cf. the example in
Section 2.2), and expanding outward. In the absence of numerical dispersion, the shape of
the pulse should be maintained.

For the bandlimited semigroup method, we construct 128 quadrature nodes and weights
for the bandwidth c = 54π. We set the accuracy in the construction to ε = 10−7. We
use a domain consisting of 2-by-2 subdomains with each subdomain of the size 128-by-128
nodes, and use the coupling parameters a = b = 1/2 in Table 2.3 for the construction
of the derivative matrix. We use the time step ∆t = 2π

c
corresponding to propagating two

characteristic wavelengths, and represent the operator using the separated representation and
the PLR representation from Chapter 5. This gives a separation rank of 5-6 for the blocks in
the exponential operator. For the fourth order scheme, we use 432 samples in space and the
timestep ∆t = π

10c
corresponding to propagating a tenth of the characteristic wavelength.

This sampling rate gives the two schemes approximately the same computational time. The
results are shown as sequences of images in Figure 6.4 and Figure 6.5. We note that for
the bandlimited semigroup method, the shape of the pulse is maintained. For the fourth
order scheme, the pulse begins to deteriorate into ripples, corresponding to Fourier modes
traveling with the wrong velocity.
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t=0 t=40

t=84 t=128

Figure 6.4: Solution of (6.6) using the bandlimited semigroup method. The shape of the
pulse is maintained throughout the propagation.
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t=0 t=40

t=84 t=128

Figure 6.5: Solution of (6.6) using a fourth order scheme. Note the ripples near the wave
front which are caused by numerical dispersion.
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6.3.4 Numerical results for variable coefficients

In this section we solve the acoustic equation for variable coefficients. Since we do not have
an analytical solution to the equation, we evaluate the methods by displaying a sequence of
images and study the shape of the pulse as it propagates throughout the domain. Let us
solve















utt = 1
κ(y)

(uxx + uyy) , (x, y)∈(−1, 1) × (−1, 1)

u(x, y, 0) = e−1000(x2+y2)

ut(x, y, 0) = 0
u(±1, y) = u(x,±1) = 0

(6.7)

where

κ(y) =
1

1 − sin(π(y+1))
2

.

The solution is a sharp pulse originating at the origin of the domain, and expanding out
wards with varying velocity.

For the bandlimited semigroup method, we construct 128 quadrature nodes and weights
for the bandwidth c = 54π. We set the accuracy in the construction to ε = 10−7 and use
the coupling parameters a = b = 1/2 in Table 2.3 for the construction of the derivative
matrix. We use the time step ∆t = 2π

c
corresponding to propagating two characteristic

wavelengths, and represent the operator using the separated representation and the PLR
representation from Chapter 5. We use a level one PLR representation for each matrix in
one dimension in the representation of e∆tL. This gives a separation rank of 7-8 for the
blocks in the exponential operator. Using the PLR representation for computing e∆tLu is in
this case approximately 25% faster than using a dense representation of the matrices in one
dimension. The time gain increases for larger problems. For the fourth order scheme, we
use 216 samples in space and the timestep ∆t = π

10c
corresponding to propagating a tenth

of a characteristic wavelength. This sampling rate gives the two schemes approximately the
same computational time. The results are shown as sequences of images in Figure 6.6 and
Figure 6.7.

Both of the solutions behave qualitatively the same way by propagating faster in the
upper part of the domain where the wave velocity is higher. Both solutions also reflect and
switch phases at the boundaries. We note that for the bandlimited semigroup method, the
shape of the pulse is maintained. For the fourth order scheme, the pulse begins to deteriorate
into ripples, corresponding to Fourier modes traveling with the wrong velocity.
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t=0 t=40

t=90 t=256

Figure 6.6: Solution of (6.6) using the bandlimited semigroup method.
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t=0 t=40

t=90 t=256

Figure 6.7: Solution of (6.6) using a fourth order scheme. Note the ripples which are caused
by numerical dispersion.
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Chapter 7

Wave propagation on space-like
surfaces

In this chapter we consider wave propagation on space-like surfaces. This problem appears,
for example, in solving the inverse problem for acoustic wave propagation. Let us consider
the equation

1

κ(x)
∆u+ ω2(1 + f(x))u = 0, ω∈ �

, x∈ � n

u(x) = eiωx·ν + w(x), ||ν|| = 1

(7.1)

where w(x) satisfies the Sommerfeld radiation condition and κ(x) = 1 for x outside some
bounded domain. We refer to eiωx·ν as the incident wave and κ as the background compress-
ibility. The wave velocity is given by 1/

√
κ.

For the inverse problem, our goal is to determine the scatterer f , where u is known
at a boundary outside the scatterer. The inverse problem for acoustics in two and three
dimensions has been studied extensively, see Colton and Kress [15], Natterer and Wübbeling
[44], and Chen [14], and references therein. In this thesis, we consider problems in two
dimensions.

To introduce our approach, let us first consider a scheme proposed by Natterer and
Wübbeling [44]. They introduced an iterative scheme to solve the inverse problems (7.1) for
constant background in situations where the Born or Rytov approximations are not valid.
The method requires repeated solution of forward problems of the type

uyy = −uxx − κ(x, y)ω2(1 + f)u ≡ Au, (x, y)∈ [−1, 1] × [−1, 1]

u(x,−1) = g(x)

uy(x,−1) = h(x)

u(−1, y) = r(y)

u(1, y) = s(y)

. (7.2)
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We refer to this type of problem as wave propagation on space-like surfaces. This equation
is inherently unstable. In [44] this difficulty is solved for constant background by using the
Fourier techniques to filter out the high frequencies of the solution u, but does not generalize
to variable background.

A more typical approach in applications is to factor the equation into waves going along
some preferred direction (e.g. vertically), rather than using the approach by Natterer and
Wübbeling. For example, this method has been studied for geophysical applications, see
Gautesen and de Hoop [27] and references therein. The apparent advantage of factorization
is that it can deal, although approximately, with variable background. The advantage of
Natterer and Wübbeling’s approach, however, is that it does not suppress the backscattered
waves. In this thesis, we propose a generalization to this method for variable background. It
is a first step to solve the multi-dimensional inverse problem. We demonstrate how this can
be done in the case of y-independent coefficients, and plan to discuss the general problem
elsewhere.

We note that the operator A is self-adjoint and, therefore, has a real spectrum. In
general, A has both negative and positive eigenvalues. By projecting the operator A onto the
eigenspace associated with the negative eigenvalues, we obtain a negative definite operator.
In Section 7.1 we illustrate how a negative definite operator gives a stable problem. This
shifts the problem to the question of constructing a fast algorithm for computing spectral
projectors. As discussed in Beylkin et al. [10], fast computations of spectral projectors is
also of interest for many-body problems in atomic physics. In the second section of this
chapter we construct an algorithm for fast computation of spectral projectors using the sign
iteration combined with the operator representations from Chapter 5. In the third section,
we use the spectral projectors along with the tools for wave propagation presented in this
thesis to solve the wave propagation problem on space-like surfaces.

7.1 Spectral projectors for wave propagation problems

on space-like surfaces

Let us see how using spectral projectors gives a stable scheme for solving (7.2). We establish
stability for the case when the compressibility κ of the background and the scatterer f are
y-independent and plan to address the general case in future work.

If we disctretize (7.2) in the x-direction and incorporate the boundary conditions into
the spatial operator according to Chapter 3, we can establish stability from the following
well-known results from the theory of ODEs.

Theorem 25 Let u∈ �
N and let A be a negative definite diagonalizable matrix. Then the
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solution u(y) to the equation

uyy = Au, y ≥ 0

u(0) = u0

uy(0) = v0

(7.3)

is stable, that is, there exists a constant K such that ‖u(y)‖ ≤ K for all y ≥ 0.

Proof. We first write (7.3) as the first order system

[

v
u

]

y

=

[

0 A
I 0

] [

v
u

]

≡ Lũ (7.4)

where I is the N -by-N identity matrix. Since A is diagonalizable, there exists an invertible
matrix S such that L = S−1LDS where LD is a diagonal matrix with the eigenvalues λ of L
along the diagonal. Define w = Sũ. Since L is y-independent, S commutes with d

dy
and we

can write (7.4) as dw
dy

= LDw or, equivalently, solve

dwk

dy
= λkwk

for k = 1, 2, . . . , 2N where [w1(y) w2(y) · · ·w2N(y)]T = w(y). Since wk(y) = eλkywk(0) we
can define C = supk |wk(0)| to establish the bound |wk(y)| ≤ |eλky|C. Since A is negative
definite, the eigenvalues λk are pure imaginary according to Appendix C.2 and hence

‖w(y)‖ =

√

√

√

√

2N
∑

k=1

|wk(y)|2 ≤
√

2NC

for y ≥ 0. Therefore,

‖u(y)‖ ≤ ‖ũ(y)‖ = ‖S−1w(y)‖ ≤ ‖S−1‖
√

2NC

which is bounded for any fixed N .
�

Hence, by projecting the operator A in (7.2) onto the eigenvectors corresponding to neg-
ative eigenvalues, we can solve the equation in a stable manner.

Let us now see how this approach relates to the approach by Natterer and Wübbeling. In
their approach the instability is recognized as a high frequency phenomenon and stability is
imposed by low pass filtering the solution. To see this, consider the operator L = − ∂2

∂x2 −ω2I
where ω is real and I denotes the identity operator. The eigenfunctions of L are linear
combinations of the functions u(x) = e±i

√
ω2+λx where λ is an eigenvalue of L. If we impose
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the boundary condition u(±1) = 0, then λ = −ω2 + k2π2

4
for k = 0, 1, . . . . If λ is negative,

then we must have that kπ
2
≤ |ω|. Now consider the equation

uyy = −uxx − ω2u

with the boundary conditions u(±1) = 0. The solutions to this equation take the form

u(x, y) = sin

(

kπ(x+ 1)

2

)

cos

(
√

ω2 − k2π2

4
(y + 1)

)

for k = 1, 2, . . . . Hence, it is clear that these solutions are bounded for all y ≥ 0 if kπ
2
≤ |ω|.

In other words, by filtering out high frequency modes in the x-direction, we effectively project
the solution onto bounded functions.

7.2 Computation of spectral projectors

In this section we consider the problem of computing spectral projectors. Consider a diago-
nalizable matrix A with pure real spectrum. Given its spectral decomposition

A =
∑

k

λkPk

where {λk}k are the eigenvalues of A, and {Pk}k are projectors, we construct a fast algorithm
to compute the spectral projector

P (µ) ≡
∑

λk<µ

Pk

such that

P (µ)A =
∑

λk<µ

λkPk

without computing the individual operators Pk. For self-adjoint matrices, Pk = ekek
T

where ek is the eigenvector corresponding to the eigenvalue λk. For general diagonalizable
matrices, Pk = ekfk

T where ek and fk are the right and left eigenvectors, respectively.
However, constructing the spectral projector by computing eigenvectors can be costly. In
our approach, we use the method by Beylkin et al.[10] where the sign function is computed
by an iterative scheme that only requires matrix-matrix multiplications and additions. This
shifts the difficulty to representing the matrix so that the matrix products can be computed
efficiently. We use the separated representation and the PLR representation from Chapter 5
to represent the operators so that matrix products can be computed rapidly.
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7.2.1 The spectral decomposition of a diagonalizable matrix

In [10] fast algorithms for computing spectral projectors are constructed for self-adjoint
matrices. The derivative matrices for bandlimited functions constructed in Section 4.1 are
neither self-adjoint nor normal. However, these matrices are diagonalizable and have pure
imaginary spectrum. The second derivative operators constructed in Section 4.3 are not
normal, but diagonalizable and have pure real spectrum. In this and the next section, we
construct spectral projectors for diagonalizable matrices with pure real or pure imaginary
spectrum. Let us first consider the spectral decomposition of a matrix which is diagonalizable
but not necessarily self-adjoint.

Proposition 26 Let A be a matrix where all eigenvalues have algebraic multiplicity one. Let
ek and fk be the right and the left eigenvectors of A, respectively, and let λk be the eigenvalue
corresponding to the eigenvector ek. Scale ek (or fk), such that fk

Tek = 1. Define

Pk = ekfk
T .

Then

1. Pkek = ek

2. PkPl = δklPk

3. I =
∑

k Pk

4. A =
∑

k λkPk

5. Pkx∈span{ek}
The proof is given in Appendix D.1. We note that if A is self-adjoint, then fk = ek.

7.2.2 The sign function

Let us show how spectral projectors can be constructed by computing the sign function. We
define the sign function for real values x by

signRe(x) =







1, x > 0
0, x = 0
−1, x < 0

,

and the sign function for imaginary values z by

signIm(z) =







i, Im(z) > 0
0, Im(z) = 0
−i, Im(z) < 0

.
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We will write sign( ) without suffix when there is no chance of confusion. We define the sign
function for the diagonalizable matrix A with pure real or pure imaginary spectrum by

sign(A) =
∑

k

sign(λk)ekfk
T .

For a diagonalizable matrix A with pure real spectrum, we can express the spectral
projector onto eigenvectors corresponding to eigenvalues less than µ by

P (µ) =
∑

λk<µ

Pk =
I − signRe(A− µI)

2
. (7.5)

Similarly, for diagonalizable matrices A with pure imaginary spectrum, we define

P (µ) =
∑

Im(λk)<µ

Pk =
I + i signIm(A− µiI)

2
. (7.6)

We need an algorithm to compute the sign function of a matrix. Such algorithms have
been given by Kenney and Laub [35], and by Beylkin et al. [10]. The algorithm in [10] is
iterative and requires a normalization to initialize the iteration. However, the normalization
used in [10] does not guarantee convergence for non-self adjoint matrices. The algorithm
below computes the sign function of matrices that are diagonalizable with pure real or pure
imaginary spectrum, but not necessarily self adjoint.

Theorem 27 Let A be a diagonalizable matrix with pure real or imaginary spectrum. Let S
be the similarity transform such that A = S−1diag(λi)S where {λi}i are the eigenvalues of
A. If α < 1

cond(S)‖A‖2
, then the recursion

A0 = αA

Ak+1 =

{

3Ak−A3
k

2
if A has real spectrum

3Ak+A3
k

2
if A has imaginary spectrum

(7.7)

converges to sign(A).

Proof. We first observe that if A0 is diagonal, then Ak is diagonal for all k = 1, 2, . . . .
Hence, since A is diagonalizable, it suffices to establish convergence in the diagonal basis.

Let us consider the real case. Consider the scalar recursion xk+1 =
3xk−x3

k

2
. This recursion

has the super stable fixed points x = ±1, and the unstable fixed point x = 0. Since the ratio

xk+1

xk

=
3

2
− x2

k

2
≥ 1,
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we have that xk → 1 if x0∈(0, 1) and xk → −1 if x0∈(−1, 0). Since we consider the diagonal
basis, it remains to show that |αλi| < 1 for all eigenvalues λi of A. From the assumption on
α it follows that

‖α diag(λi)‖2 = α‖SAS−1‖2 ≤ α‖S‖2‖A‖2‖S−1‖2 = α cond(S)‖A‖2 < 1.

The proof for the case of pure imaginary spectrum is analogous.
�

The theorem above is shown in [10] for self-adjoint matrices where it is also shown that
the number of iterations needed for (7.7) to converge to accuracy ε is O(log2(cond(A)) +
O(log2(log2(1/ε))).

Using (7.7) we can now compute spectral projectors by a sequence of matrix-matrix
multiplications. We need a fast algorithm for computing matrix products and for this pur-
pose, we use the separated representation from Section 5.1 for multi-dimensional operators,
and the PLR representation from Section 5.2 for one-dimensional matrices to control the
complexity of the algorithm.

Let us justify why the PLR representation is appropriate for representing spectral pro-
jectors. Consider a self-adjoint operator L where the eigenfunctions are orthonormal poly-
nomials. We use the Christoffel-Darboux formula (see Section 5.2.1) to see that the spectral
projectors for L take the form P = D1AD2 where D1 and D2 are diagonal operators and
A = 1

x−y
. As demonstrated in Section 5.2.1 and Section 5.2.2, the PLR representation

performs well for this type of operators.

7.3 A numerical scheme for wave propagation on space-

like surfaces

In this section we consider the problem (7.2) of wave propagation on space-like surfaces. We
relate this equation to the corresponding equation in the time domain in Appendix D.2. We
solve (7.2) for zero boundary conditions and y-independent coefficients. The case with y-
dependent coefficients requires solution of an integral equation and will be studied elsewhere.
We formulate the equation as a first order system in y and use the spectral projectors from
the previous section along with the tools from this thesis to construct a fast algorithm for
solving wave propagation problems on space-like surfaces.

7.3.1 Wave propagation on space-like surfaces as a first order sys-

tem

Let us convert (7.2) to a first order system in time. Once the equation is given in the form
wy = Lw, we can write this equation as an integral equation which we can solve by fixed
point iteration, or, if L is y-independent, by computing the matrix exponential eyL.
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By introducing the function v, we write (7.2) as

[

v
u

]

y

=

[

0 A
I 0

] [

v
u

]

≡ L

[

v
u

]

(7.8)

where I denotes the identity operator and A ≡ − ∂2

∂x2 − κω2(1 + f). In Appendix C.2 it is
shown that the eigenvalues λ of L are of the form λ =

√
µ where µ is an eigenvalue of A.

Hence, if A is negative definite, then L has a pure imaginary spectrum. If we define the
projector P = (I − sign(A))/2 according to (7.6), then the solution to the equation

[

v
u

]

y

=

[

0 PAP
I 0

] [

v
u

]

≡ Lp

[

v
u

]

(7.9)

is stable according to Theorem 25.

7.3.2 Numerical results

In this section we construct an algorithm to solve (7.2) for zero boundary conditions and
y-independent compressibility coefficients. The algorithm can be generalized for non-zero
boundary conditions by adding a forcing term to the equation. By formulating the equation
as an integral equation which we solve iteratively, we can solve problems with y-dependent
coefficients.

We provide two numerical examples. In the first example, we let f = 0 which gives us
the Helmholtz equation as an initial value problem. We solve this equation numerically,
and compare the solution to the exact solution. In the final example, we consider variable
coefficients. This problem cannot be solved analytically, but we display the solution and
verify stability of the algorithm.

The following algorithm solves (7.2) numerically in two dimensions for zero boundary
conditions and y-independent coefficients.
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Algorithm: Numerical scheme for wave propagation on space-like surfaces

1. Write (7.2) as a first order system in time according to (7.9).

2. Construct the derivative matrix L0 = DD0 using the algorithm in Section 4.3, but
without the projection step (see remark below).

3. Compute A = −L0 − κω2(1 + f)I where I denotes the identity operator.

4. Construct the spectral projector P = (I − sign(A))/2 according to Theorem 27.

5. Construct the spatial operator

L =

[

0 PAP
I 0

]

.

6. Select the step size ∆y (see discussion in Section 6.3.1 on how to choose the step size),
and compute the matrix exponential e∆yL using the scaling and squaring algorithm
[29].

7. For k = 1 : Ny

u(yk) = e∆yLu(yk−1)

end

If the matrices P , A, or PAP are large, we use the PLR representation described in Sec-
tion 5.2 to speed up the computations in Step 3, 5, and 6 of the algorithm. In this algorithm,
it is essential not to project the second derivative matrix L0. In the algorithm in Section 4.3,
the projection step maps highly oscillatory eigenfunctions corresponding to eigenvalues larger
than the bandwidth c, to eigenfunctions with the eigenvalue zero. However, in this algorithm
the computation of the matrix A = −L0 − κω2(1 + f)I will shift these eigenvalues to non-
zero eigenvalues, and the oscillatory eigenfunctions may now cause instabilities when solving
(7.2). By not projecting the matrix L0, the highly oscillatory eigenfunctions are still asso-
ciated with large eigenvalues. However, in the algorithm above, these eigenfunctions will be
”removed” in step 4, as long as |ω| ≤ c.

Numerical results for constant coefficients

Let us solve


















uxx + uyy + ω2u = 0, (x, y)∈(−1, 1) × (−1, 1)

u(x,−1) = sin
(

π(x+1)
2

)

+ sin (b(x + 1))

uy(x,−1) = 0
u(±1, y) = 0

, (7.10)
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where b = kπ/2 for some integer k ≥ 1 and ω =
√

b2 + (23π)2. The solution is given by

u(x, y) = sin

(

π(x+ 1)

2

)

cos

(
√

ω2 − π2

4
(y + 1)

)

+ sin (b(x + 1)) cos(
√
ω2 − b2(y + 1)).

We note that this solution contains both low frequency (the first term) and high frequency
(the second term) modes. We measure the error using the relative max norm, that is, if ũ
approximates the exact solution u, then

error =
‖u− ũ‖∞
‖u‖∞

.

We construct quadrature nodes and weights for the bandwidth c = 23π which corresponds
to an oversampling factor of approximately 1.4 for periodic functions. We set the accuracy in
the construction to ε = 10−7. We use the step size ∆y = 1

32
corresponding to approximately

3 samples per wavelength in the y-direction. The result is shown in Figure 7.1. We note

0 10 20 30 40 50 60 70
−16

−14

−12

−10

−8

−6

−4

−2

0

Highest spatial frequency mode b

R
el

at
iv

e 
er

ro
r,

 lo
g 10

Figure 7.1: Relative error (log10) in the max-norm for approximating the solution to (7.10)
for b = π

2
, π, . . . , 23π.

that the error is close to the accuracy chosen for the quadrature, and also that the error is
essentially uniform within the bandwidth.
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Numerical results for variable coefficients

Let us solve the Helmholtz equation as an initial value problem for the case with variable
background in the x-direction. Consider the equation















uxx + uyy + κ(x)(27π)2u = 0, (x, y)∈(−1, 1) × (−1, 7)
u(x, 0) = g(x)
uy(x, 0) = 0
u(±1, y) = 0

(7.11)

which simulates the pressure in a wave guide with ”soft” (zero pressure) boundary conditions.
We solve this equation using the numerical scheme given earlier in this section using 128
quadrature nodes for the bandlimited functions with the bandwidth c = 54π and the accuracy
ε = 10−7. Since we propagate using the exponential, we are free to use any step size
without causing instabilities. However, for this experiment we choose the step size ∆y = 1

128
,

corresponding to approximately 10 samples per wavelength for easier visualization of the
resulting wave field.

For the first experiment, we choose a constant background (κ1(x) = 1) and the initial
pulse e−1000x2

. We display the resulting wave field in the left image in Figure 7.3. The initial
condition can be compared to a wave entering the domain through a ”smooth” slit centered
at (x, y) = (0,−1). The wave diffracts and then reflect at the boundaries.

For the following two experiments, we choose the background coefficients

κ2(x) =
1

√

1 + sin π(x+1)
2

and

κ3(x) =
1

√

(

1 + sinπ(x+1)
2

)

(1 − 0.9e−100x2)

,

respectively. The profile of the compressibility and the velocity 1√
κ(x)

are given in Figure 7.2

We use the initial condition g(x) = e−1000(x+0.5)2 for these two experiments and show the
results in Figure 7.3. We note that the waves travel faster in the left part of the domain as
expected, causing the rays to bend. We also note the dark line in the last image due to the
sharp scatterer centered along x = 0.
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Figure 7.2: Velocity and compressibility profiles for κ2(x) (top), and κ3(x) (bottom).
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Figure 7.3: Absolute value of the wave field from the solution to (7.11) for the three com-
pressibilities κ1(x) (top), κ2(x) (center), and κ3(x) (bottom).
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Chapter 8

A fast reconstruction algorithm for
electron microscopy

In this chapter we summarize the paper ”A fast reconstruction algorithm for electron mi-
croscopy” by Beylkin, Mastronarde, and Sandberg [6]. We provide a version of the paper in
Appendix E.

In the paper we consider the problem of three-dimensional tomographic reconstruction
of the density of a biological specimen using transmission electron microscopy. The three-
dimensional problem is solved as a sequence of two-dimensional problems. The specimen is
illuminated by an electron beam and the intensity of the beam is recorded after transmission.
We refer to such a measurement as a projection. The projections are recorded for a range of
angles typically between ±70o (due to physical limitations). We model the decay of intensity
of the beam by line integrals and, therefore, interpret the collected data as the (discretized)
Radon transform of the density.

The problem of reconstructing an object by measuring projections has a rich history and
many applications. For example, the x-ray tomography, radio astronomy, as well as seismic
processing are using results of the basic inversion technique first considered by Radon [45].
The Radon inversion formula was re-discovered by Cormack [17] for x-ray tomography, and
by Bracewell [12] for radio astronomy. For an introductory overview of the subject, see Deans
[18]. Reconstruction algorithms for electron microscopy imaging of biological specimens have
been described by DeRosier and Klug [19] via a Fourier based method, and by Gilbert [28]
via direct summation.

The goal of the paper is to construct a fast reconstruction algorithm that produces the
same results as the direct summation technique [28] traditionally used for electron microscopy
tomography. Our goal is to construct an algorithm that scales as O(N 2 logN) compared to
O(N3) for the direct summation technique.

The well-known Fourier slice theorem relates projection data to the Fourier transform
of the image. The collected projection data corresponds to samples on a polar grid in the
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Fourier space where the polar angles are not necessarily equally spaced. The standard two-
dimensional Fast Fourier Transform (FFT) requires sampling on an equally spaced rectangu-
lar grid and, hence, fast Fourier reconstruction methods require some interpolation scheme
in the Fourier space. Such Fourier based techniques have previously been proposed by, e.g.,
Lanzavecchia and Bellon [41]. They used an improvement of the moving window Shannon
technique (Lanzavecchia and Bellon [40]) to interpolate the data on a polar grid to an equally
spaced square grid in Fourier space. Our approach is different, and involves the Unequally
Spaced Fast Fourier Transform introduced by Dutt and Rokhlin [21], and by Beylkin [4].

The algorithm is described and evaluated in detail in Appendix E, using data sets col-
lected by The Boulder Laboratory for 3-D Electron Microscopy of Cells at University of
Colorado at Boulder. The algorithm has been incorporated into the IMOD software package
[32]. We give an overview of Appendix E in the following section.

8.1 Preliminaries

In Section E.2 of the paper, we formulate the problem. The notation and experimental
set-up is described schematically in Figure E.1. The goal is to estimate the density g(x, z)
of a two-dimensional slice of the specimen at an M -by-N equally spaced grid from the
measurements of transmitted electron beams. We measure the intensity of the electron
beam after transmission through the specimen at the (equally spaced) points t1, . . . , tM , and
repeat the measurements for the (not necessarily equally spaced) angles θl, l = 1, . . . , Nθ.
The measurement data is given by the arrayRθl

(tk) which is assumed to measure line integrals
of the density, that is,

Rθl
(tk) ≡

∫

Ctk,θ

g(x, z) ds

where

Ct,θ = { (x, z)∈ � 2 | t = x cos θ + z sin θ } (8.1)

(see Figure E.1).
In Section E.2.2 and Section E.2.3 we review the reconstruction formula known as direct

summation. The resulting sum can be shown to approximate the inverse of the Radon
transform of the density g. The reconstruction formula takes the form

g(xm, zn) =

Nθ
∑

l=1

wl [ρ ∗Rθl
](t(xm, zn)) (8.2)
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where wl are scalar weights, t(xm, zn) are given by (E.1), and ρ is a bandlimited convolution
operator. This reconstruction technique is often referred to as filtered back projection or
direct summation. The direct summation method therefore consists of two steps; a convolu-
tion step (which can be computed efficiently using the FFT), and a summation step which
dominates the computational cost. In the summation step we sum over Nθ terms M × N
times for the total computational cost of O(NθMN). From the definition of t in (8.1), we
note than in general we do not have measurement for arbitrary values of t(xm, zn) but we
must interpolate the measured data Rθl

(tk) to estimate Rθl
(t(xm, zn)). The interpolation is

typically linear.

8.2 Inversion in the Fourier domain

In Section E.3 we derive a reconstruction formula in the Fourier domain that matches the
direct summation formula (8.2) exactly. For a fixed z = zn, we Fourier transform (8.2) with
respect to x. We see that ĝn(ω) ≡

∫∞
−∞ g(x, zn)e2πixω dx takes the form

ĝn(ω) =

Nθ
∑

l=1

vl(ω)e−2πiξl(ω)zn

where ξl(ω) = ω tan θl. To derive the expression for vl(ω), we must interpolate the mea-
surement data Rθl

(tk) in order to have an expression for Rθl
(t) for any t. We observe that

piecewise polynomial interpolation using B-splines can represented by a convolution ker-
nel with a closed form expression in the Fourier domain which appears as a factor in the
expression for vl(ω), namely,

vl(ω) =
wl

cos θl

e
−2πixs

ω
cos θl ρ̂(

ω

cos θl

)β̂(
ω

cos θl

)

M−1
∑

m=0

rmle
2πim ω

cos θl , (8.3)

where β̂ denotes the Fourier transform of the B-spline kernel. Using the Fourier-representation
of the B-spline kernel, we can obtain any order of piecewise polynomial interpolation at no
extra computational cost.

8.3 Implementation

In Section E.4, we discretize the expression for ĝnk ≡ ĝn(ωk) for the frequencies ω1, . . . , ωMf

where Mf ≥M . The expression for ĝnk takes the form

ĝnk = ck

Nθ
∑

l=1

vl(
k

Mf

)e
−2πiξl(

k
Mf

)zn
(8.4)
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where ck are scalars, and vl is given by (8.3). We can now estimate g(xm, zn) by the following
three steps:

1. For each l = 1, . . . , Nθ and k = 1, . . . ,Mf , compute vl(ωk) defined by (8.3).

2. For each n = 1, . . . , N and k = 1, . . . ,Mf , compute ĝnk defined by (8.4).

3. For each n = 1, . . . , N , compute g(xm, zn) by applying the inverse FFT of ĝnk with
respect to k.

The key to a fast algorithm is that the sums in (8.4) and (8.3) can be written on the
form

ûn =
M
∑

k=1

uke
±2πiξkn, n = −N

2
,−N

2
+ 1, . . . ,

N

2
− 1

and

û(ξk) =

N
2
−1
∑

n=−N
2

une
±2πinξk , k = 1, 2, . . . ,M,

respectively, for a given set of real points {ξk}M
k=0, where |ξk| < 1/2 for each k. We note that

M may be different from N . Such sums can be computed efficiently using the Unequally
Spaced Fast Fourier Transform (USFFT) in [21] and [4]. We choose the algorithm in [4]
which gives the final algorithm the computational cost O(NθM logM) +O(NθMf logMf).

In Section E.4.3 we provide an expression for selecting Mf which has to be sufficiently
large to avoid aliasing artifacts. Typically, Mf is approximately 1.5-2 times larges than
M . In Section E.4.5 we show how to incorporate any (odd) order of piecewise polynomial
interpolation into the algorithm. In the direct summation method, higher order interpolation
can be cumbersome to implement and increases the computational cost. With our Fourier-
based approach, such interpolation is trivial to implement. In fact, higher order interpolation
can even speed up the algorithm, since the interpolation effectively low-pass filter the data,
thus reducing the number of frequencies ωk that contribute significantly to the final image.

8.4 Results

In Section 2.7, the algorithm is tested on data sets collected by The Boulder Laboratory for
3-D Electron Microscopy of Cells at University of Colorado at Boulder. The new method
and the direct summation method are shown to produce visually identical reconstructions.
The reconstructions are also evaluated using the Fourier Ring Correlation (FRC) test (see
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Saxton and Baumeister [49]). The FRC test evaluates the performance in the presence of
noise, and the proposed algorithm and the direct summation method are shown to give
practically identical results according to the FRC test.

Speed comparisons of the two methods are made on three computer architectures; Athlon
MP, Pentium 4, and SGI R12000. The Fourier-based method is demonstrated to be 1.5-2.5
faster than the direct summation method for typical data sizes. The relative speed gain is
even higher for larger sizes. The gain is particularly large when fixing the image size and
varying the number of projections.
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Appendix A

Proof of Corollary 10

We observe that
∫ 1

−1

eictx dt =
1

c
v(x),

where v(x) =
∫ c

−c
eiωx dω. By the variable substitution τ = ω

2c
, we have that

v(x) = 2c

∫ 1
2

− 1
2

ei2cτx dτ. (A.1)

Let us introduce the parameter γ ∈ (0, 1) and choose an integer N such that N ≥ 2c
γπ

. By

defining ν = c
γNπ

≤ 1
2

and substitute t = 2ντ in (A.1), we have that

v(x) = 2c

∫ 1
2

− 1
2

eiπ2ντNax dτ =
c

ν

∫ ν

−ν

eiπtNγx dt.

By introducing y = Nγx and the weight function

σ(t) =

{

c/ν, t∈ [−ν, ν]
0, t 6∈ [−ν, ν] ,

we have that

v(x) =

∫ ν

−ν

σ(t)eiπty dt, y = Nγx. (A.2)

We observe that |y| ≤ γN and that σ(t) is supported on [−ν, ν] ⊆ [− 1
2
, 1

2
]. Hence, the

assumptions for using Theorem 9 are fulfilled and accordingly there exist constants vk and
tk such that |tk| < ν and

∣

∣

∣

∣

∣

∫ ν

−ν

σ(t)eiπty dt−
N
∑

k=1

vke
iπtky

∣

∣

∣

∣

∣

< ε.
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By introducing wk = vk/c and θk = πtk/c we have that

∣

∣

∣

∣

∣

∫ 1

−1

eictx dt−
N
∑

k=1

wke
icθkx

∣

∣

∣

∣

∣

< ε/c.

We note that |θk| ≤ πν/c = 1
γN

so by choosing N sufficiently large, |θk| < 1.

According to Theorem 9, the error for approximating v(x) is bounded by

∣

∣

∣

∣

∣

∫ ν

−ν

σ(t)eiπty dt−
N
∑

k=1

vke
iπtky

∣

∣

∣

∣

∣

< ε ≤

2‖σ‖1

(

3

(

c

γNπ

)2m

+
2

2 + (2 +
√

3)N + (2 −
√

3)N
+

2dm

1 − e−αm
e−αm(1−γ)N

)

.

We conclude the proof by observing that ‖σ‖1 = 2c.
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Appendix B

Algorithms for low rank
representations of operators

B.1 Rank reduction

In order to reduce the rank of a separated representation on the form
∑

i σieif
∗
i and obtain

an almost orthonormal separated representation, we need a way to ”re-orthogonalize” a
given separated representation. Such an algorithm is given for operators in an arbitrary
number of dimensions in [7]. In this thesis, we present a simpler algorithm that works for
two dimensional problems. We first provide a heuristic description of the rank reduction
procedure and give a more detailed algorithm below.

Consider a sum of the form

L =

r
∑

k=1

skekf
∗
k

where we assume that the vectors ek, fk ∈ � N have been normalized using the norm ‖v‖2 =√
< v, v > where < , > denotes the standard dot-product. For two dimensional problems,

ek and fk correspond to vectors in � N2
. In this case, the norm corresponds to the Frobenius

norm for matrices.
Let us first orthogonalize the left factors ek to obtain a new set of left factors ẽk which is

an orthonormal set. The scalars sk and the right factors fk are simultaneously re-computed
such that the new decomposition still equals the matrix L. Throughout this process, we
measure the norm of the terms, and truncate terms that fall below a given threshold. This
means that the rank usually will reduce during this process. We refer to this step as an
orthogonalization sweep. One such sweep will give a separated representation where all the
left factors are orthonormal. However, there is no guarantee that also the right factors will
be orthogonal. Therefore, we perform another orthogonalization sweep but switch the role
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for the left and the right factors. This will orthogonalize the right factors, but may change
the left factors such that they are no longer orthonormal. By iterating this process by
alternating the orthogonalization sweeps for the left and the right factors, the decomposition
will converge to the SVD. In practice, we have found that one sweep for each factor is usually
sufficient to reduce the rank close to the optimal rank, and produce left and right factors
that are almost orthonormal.

The following algorithm describes the rank reduction process in more detail.
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Algorithm: Rank reduction of a separated representation

1. Normalize {ek}k and {fk}k and adjust {sk}k accordingly. Set i = 1.

2. Pivot (put the term with the largest si first)

3. While i < r

fi = sifi

For j = i + 1 : r

aj =< ei, ej >

ẽj = ej − ajei (This means that < ẽj, ei >= 0.)

bj = ‖ẽj‖2

fi = fi + sjajfj

end

For j = i + 1 : r

s̃ = sjbj

If s̃ > ε

ẽj =
ẽj

bj

sj = s̃

else

r = r − 1

end

si = ‖fi‖
If si > ε

fi = fi

si

else

r = r − 1

end

end

Pivot (put the term with the largest si first)

i=i+1

end
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B.2 PLR matrix-vector multiplication

Algorithm: Matrix-vector multiplication for a matrix given by a PLR represen-
tation

For k = 1 : 2m

Compute the contribution from the diagonal blocks:
v((k − 1)Nm + 1 : kNm)) = Dku((k − 1)Nm + 1 : kNm))

end

For k = 1 : m (Loop over the levels.)

Set Nk = N
2k , i1 = 0, and i2 = Nk.

For l = 1 : 2k−1 (Loop over the off-diagonal blocks at level k)

Compute the contribution from the l:th upper diagonal block at level k:
v(i1 + 1 : i1 +Nk) = v(i1 + 1 : i1 +Nk) + Uk

l u(i2 + 1 : i2 +Nk)

Compute the contribution from the l:th lower diagonal block at level k:
v(i2 + 1 : i2 +Nk) = v(i2 + 1 : i2 +Nk) + Lk

l u(i1 + 1 : i1 +Nk)

end

i1 = i1 + 2Nk

i2 = i2 + 2Nk

end

B.3 PLR products

Consider the matrix product C = AB where A, B, and C are N -by-N matrices given as
level m PLR representations. Let us adopt the notation from Figure 5.2 and introduce the
following notation. We refer to a block indexed as U k

l (or Lk
l ) as the l:th upper (lower)

diagonal block at level k, and to the diagonal block Dl as the l:th diagonal block. We refer
to Dk

l as the l:th diagonal block (counted from the upper left corner) of size N
2k -by- N

2k . For
example, in Figure 5.2,

D2
3 =

[

D5 U3
3

L3
3 D6

]

.

In other words, Dk
l is a diagonal block which in itself is a PLR representation.
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We use the corresponding notation for the matrices B and C, but mark blocks from these
matrices with a tilde (̃ ), and a hat (̂ ), respectively. The operator restrict(F )U,k

l restricts
a matrix to the portion that covers the l:th upper diagonal block at level k. The operator
restrict(F )L,k

l restricts a matrix to the portion that covers the l:th lower diagonal block
at level k.

We can now compute the l:th upper diagonal block of C at level k by using the following
algorithm.

1. Compute the following matrices

For i = k − 1 : 1

For j = 1 : 2i−1

F i
j = U i

j L̃
i
j

Gi
j = Li

jŨ
i
j

end

end

2. Ûk
l = Dk

2l−1Ũ
k
l + Uk

l D̃
k
2l

3. Set j = l

4. For i = k − 1 : 1 (Loop over parent levels)

If j is odd

j = d j

2
e

Ûk
l = Ûk

l + restrict(F i
j )

U,k
l

else

j = d j

2
e

Ûk
l = Ûk

l + restrict(Gi
j)

U,k
l

end

end

Here the symbol d e refers to rounding to the nearest larger integer. Note that the data
for each off-diagonal block in the product should be stored as a separated representation in
order to preserve the PLR structure under multiplication.

We note that this algorithm involves three types of block multiplications. The product
Dk

2k−1Ũ
k
l corresponds to a PLR matrix multiplied by a separated representation. Such a

multiplication can be computed in a fast way by applying the algorithm for matrix-vector
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multiplication in Appendix B.2 on the left factors in the separated representation of Ũk
l .

We can compute the product Uk
l D̃

k
2k in a similar way. Finally, we can compute the product

U i
j L̃

k
l using (5.10). After each matrix addition, it is essential to apply the rank reduction

algorithm in Appendix B.1.
The algorithm for computing lower diagonal and diagonal blocks are similar. The al-

gorithm to compute the l:th lower diagonal block of C at level k is given by the following
algorithm.

1. L̂k
l = Lk

l D̃
k
2l−1 +Dk

2lL̃
k
l

2. Set j = l

3. For i = k − 1 : 1 (Loop over parent levels)

If j is odd

j = d j

2
e

Ûk
l = Ûk

l + restrict(F i
j )

L,k
l

else

j = d j

2
e

Ûk
l = Ûk

l + restrict(Gi
j)

L,k
l

end

end

The computation of the matrices F i
j and Gi

j is given in the algorithm for the upper diagonal
block.

The algorithm to compute the l:th (dense) diagonal block of C for a level m PLR repre-
sentation is given by the following algorithm.

1. D̂l = DlD̃l

2. If l is odd

D̂l = D̂l + Um−1

d j

2
e L̃

m−1

d j

2
e

else

D̂l = D̂l + Lm−1

d j

2
e Ũ

m−1

d j

2
e

end

3. Set j = l
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4. For i = m− 1 : 1 (Loop over parent levels)

If j is odd

j = d j

2
e

Ûk
l = Ûk

l + restrict(F i
j )

D
l

else

j = d j

2
e

Ûk
l = Ûk

l + restrict(Gi
j)

D
l

end

end

The operator restrict(F )D
l restricts a matrix to the portion that covers the l:th diagonal

block of a matrix represented as a level m PLR representation.
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Appendix C

The acoustic equation in two
dimensions

C.1 The derivative operator in two dimensions on a

subdivided domain

Let us look at the derivative operator ∂
∂x

⊗ Iy introduced in Section 6.1. Consider the case
where the domain consists of M -by-M subdomains, where each domain has its own set
of N basis functions according to Section 3.2 in each direction. Using the notation from
Section 3.2 we write functions on such subdivided domain as

u(x, y) =

M
∑

k=1

M
∑

l=1

N
∑

m=1

N
∑

n=1

smksnlφmk(x)φnl(y).

From the definition of ∂
∂x

⊗ Iy we have that

[

∂

∂x
⊗ Iy

]

u(x, y) =
M
∑

l=1

N
∑

n=1

snl

(

M
∑

k=1

N
∑

m=1

smkφ
′
mk(x)

)

φnl(y)

≡ g(x)
M
∑

l=1

N
∑

n=1

snlφnl(y).

If we use the construction of the derivative matrix in one dimension from Section 3.2 with
the coupling parameters a = b = 1/2, the heuristic argument in Section 3.2.5 gives that g(x)
is continuous. Hence,

[

∂
∂x

⊗ Iy
]

u(x, y) is continuous across the vertical interfaces for each y.
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C.2 Construction of derivative matrices for the acous-

tic equation

In order to decrease the norm of the matrix representing the spatial operator L in the acoustic
equation (6.2), we project the operator. The reasoning similar to what we do for the second
derivative in Section 4.3.

Consider the block matrix

A =

[

0 A12

A21 0

]

(C.1)

where each block is an (N ×N) matrix. Let IN and I2N denote an (N ×N) and (2N × 2N)
identity matrix, respectively, and consider

det(A− λI2N ) = det

[

−λIn A12

A21 −λIN

]

.

Since the diagonal blocks commute with the off-diagonal blocks we can use the identity

det(A− λI2N) = det(λ2IN − A21A12)

(see, e.g., Gantmacher [26]). Let σ( ) denote the spectrum of a matrix. Then

det(λ2In − A21A12) =
∏

µk∈σ(λ2I−A21A12)

µk.

Since each eigenvalue µk of λ2I −A21A12 equals an eigenvalue of −A21A12 shifted by λ2, we
have that

∏

µk∈σ(λ2I−A21A12)

µk =
∏

νk∈σ(A21A12)

(λ2 − νk).

Therefore,

det(A− λI2n) =
∏

νk∈σ(A21A12)

(λ2 − νk)

and hence an eigenvalue λ of A must be of the form λ2 = ν where ν ∈ σ(A21A12). If, for
example, A12 = IN and A21 is negative definite, then λ is imaginary. Based on this result, we
construct the following algorithm for constructing derivative matrices D and D0. (A similar
algorithm can be used for periodic boundary conditions.)
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Algorithm: Construction of D and D0 for using to solve the acoustic equation.

1. Construct N quadrature nodes and weights according to Definition 11.

2. Construct the matrix S according to (2.27), the matrix K according to (4.1), and the
matrices E, F , and G defined in Definition 19 by using (2.21)-(2.25). Construct the
matrix Pc and P−1

c according to (2.31).

3. Construct the derivative matrix D with arbitrary boundary conditions for single in-
tervals by using Definition 20, and for multiple intervals by using (3.32) and Tables
3.1-3.3.

4. Construct the derivative matrix D0 with zero boundary conditions for single intervals
by using Definition 20, and for multiple intervals by using (3.32) and Tables 3.1-3.3.

5. Construct

L =

[

0 D0

D 0

]

.

6. Project L to obtain

Lproj =
∑

|λk|≤c

λkekf
T
k

where ek and fk are the left and the right eigenvector of L, respectively, scaled such
that fT

k ek = 1.

7. Construct Dproj as

Dproj
ij = (Lproj)ij, i = N/2 + 1, . . . , 2N, j = 1, . . . , N/2

and

(Dproj
0 )ij = (Lproj)ij, i = 1, . . . , N/2, j = N/2 + 1, . . . , 2N.

8. Compute D̃ = PcD
projP−1

c and D̃0 = PcD
proj
0 P−1

c to represent the derivative matrices
with respect to the interpolating basis.
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Appendix D

Inverse problems

D.1 Proof of Proposition 26

We first observe that since A is diagonalizable, there exists an invertible matrix S such that
A = Sdiag(λk)S

−1 where the columns of S are right eigenvectors ek of A and the columns
of (S−1)T are the left eigenvectors fk. By scaling the eigenvectors such that fk

Tek = 1, we
have that

fk
Tel = δkl. (D.1)

(1) This follows from the definition of Pk and the scaling fk
Tek = 1.

(2) By using (D.1) we have that

PkPl = ekfk
Telfl

T = ek(δkl)fl
T = δklPk.

(3) Since A is diagonalizable, the eigenvectors form a complete basis and, hence, if x is
an arbitrary vector then

x =
∑

k

xkek

for some set of coefficients xk. Using (D.1) it follows that

∑

l

Plx =
∑

l

Pl

(

∑

k

xkek

)

=
∑

l

(

∑

k

xkelfl
Tek

)

=
∑

l

xlPlel =
∑

l

xlel = x

and, since x is arbitrary, I =
∑

k Pk.
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(4) Let x be an arbitrary vector. Then

Ax = A
∑

k

xkek =
∑

k

xkAek =
∑

k

λkxkek =
∑

k

λkPkx

and, since x is arbitrary, A =
∑

k λkPk.
(5) Using (D.1) and that the eigenvectors form a complete basis, we have that

Pkx = Pk

∑

l

xlel = xkek.

D.2 The inverse problem for acoustics in the time do-

main

The equation defining the inverse problem for acoustics (7.1), is related to the time domain
as follows. Consider the case when the density of the acoustic equation (6.1) is constant
throughout the space. Consider a scatterer in the bounded domain D with the compressibility
κs(x, y) supported in D and a variable background with the compressibility κ(x, y). Then
the acoustic pressure p satisfies ∆p = κptt outside D and ∆p = κsptt inside D. We can then
write the equation for the pressure as ∆p = κ(1 + f)ptt where

f(x, y) =

{

κs(x,y)
κ(x,y)

− 1 (x, y)∈ [−1, 1] × [−1, 1]

0 (x, y) 6∈ [−1, 1] × [−1, 1]
.

Fourier transforming p with respect to time gives the frequency domain equation in (7.1).
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Appendix E

A fast reconstruction algorithm for
electron microscopy [6]

Gregory Beylkin
Department of Applied Mathematics, University of Colorado at Boulder

David N. Mastronarde
Boulder Laboratory for 3-D Electron Microscopy of Cells,

Department of Molecular, Cellular, and Developmental Biology, University of Colorado at
Boulder

Kristian Sandberg
Department of Applied Mathematics, University of Colorado at Boulder

Abstract. We have implemented a Fast Fourier Summation algorithm for tomographic
reconstruction of three-dimensional biological data sets obtained via transmission electron
microscopy. We designed the fast algorithm to reproduce results obtained by the stan-
dard filtered backprojection. For two-dimensional images, the new algorithm scales as
O(NθM logM) + O(MN logN) operations, where Nθ is the number of projection angles
and M × N is the size of the reconstructed image. Three-dimensional reconstructions are
constructed from sequences of two-dimensional reconstructions. For typical data sets, the
new algorithm is 1.5-2.5 times faster than computing the filtered backprojection using direct
summation in the space domain. The speed advantage is even greater as the size of the data
sets grows. The new algorithm also allows us to use higher order spline interpolation of the
data without additional computational cost. The algorithm has been incorporated into a
commonly used package for tomographic reconstruction.

Keywords: electron tomography, weighted backprojection, 3-D reconstruction algo-
rithm, Unequally Spaced Fast Fourier Transform (USFFT)
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E.1 Introduction

In this paper we describe a Fast Fourier Summation algorithm for tomographic reconstruc-
tion of data obtained with transmission electron microscope. For two-dimensional recon-
structions, the algorithm scales as O(NθM logM) + O(MN logN) operations, where Nθ is
the number of projection angles and M × N is the size of the reconstructed image. This
should be compared to computing the standard filtered backprojection using direct summa-
tion in the space domain which scales as O(NθMN). Our algorithm has been applied to data
of typical sizes and is shown to be 1.5-2.5 times faster than direct summation. For larger
data sets, the time gain is even higher.

The method of filtered backprojection for tomographic reconstruction sums filtered pro-
jection data in the space domain (direct summation). We designed the algorithm to repro-
duce the results of the direct summation algorithm within the required accuracy. We show
that without any additional cost, we obtain an algorithm which uses higher order spline
interpolation of the data whereas the direct summation uses only linear interpolation.

Reconstruction algorithms for electron microscopy imaging of biological specimens have
been described by DeRosier and Klug [19] via a Fourier based method, and by Gilbert [28]
via direct summation. For a review, see Frank [22].

The problem of reconstructing an object by measuring projections has a rich history and
many applications. For example, the x-ray tomography, radio astronomy, as well as seismic
processing are using results of the basic inversion technique first considered by Radon [45].
The Radon inversion formula was rediscovered by Cormack [17] for x-ray tomography, and by
Bracewell [12] for radio astronomy. For an introductory overview of the subject, see Deans
[18].

The well-known Fourier slice theorem relates projection data to the Fourier transform
of the image. The collected projection data corresponds to samples on a polar grid in
Fourier space where the polar angles are not necessarily equally spaced. The standard two-
dimensional Fast Fourier Transform (FFT) requires sampling on an equally spaced rectangu-
lar grid and, hence, fast Fourier reconstruction methods require some interpolation scheme
in Fourier space. Such methods have been proposed by e.g. Lanzavecchia and Bellon [41].
We propose a technique that uses the one-dimensional unequally spaced fast Fourier trans-
form for performing summation in the Fourier domain as opposed to summation directly in
the space domain as in the direct summation algorithm. The method we propose guarantees
accuracy while controlling the computational cost. We also gain flexibility for choosing inter-
polation schemes and incorporating filters which are applied in the Fourier domain without
additional computational cost.

We introduce and formulate the inversion problem in Section E.2. We then give a brief
review of the direct summation algorithm, where the summation over the projection angles
is performed in the space domain. In Section E.3 we derive an inversion formula which
effectively sums over the angles in the Fourier domain. We discretize the inversion formula in
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Section E.4 where we also describe how to use the Unequally Spaced Fast Fourier Transform
(USFFT), select sampling, and show how to apply higher order interpolation. Finally in
Section E.5 we demonstrate the algorithm on data sets collected by The Boulder Laboratory
for 3-D Electron Microscopy of Cells at University of Colorado at Boulder and compare the
results with those obtained by using the direct summation algorithm. We do this for three-
dimensional tomographic reconstructions as a part of the IMOD package ([32] and Kremer,
Mastronarde, and McIntosh [36]).

E.2 Preliminaries

E.2.1 Formulation of the problem

We consider the problem of estimating the density of a biological specimen. We restrict
ourselves to reconstructing densities in the plane and build the three-dimensional volume as
a collection of two-dimensional slices. We consider a specimen illuminated by an electron
beam and the intensity of the beam is measured after it passes through the specimen. This
procedure is repeated for different tilt angles of the electron beam relative to the specimen
as schematically shown in Figure 1 below. In practice, the tilt angles θ are limited to some
interval and typically range between ' ±70◦ with an angular separation of 1−2 degrees. The
intensity is measured at M points for each angle θl, l = 1, 2, . . . , Nθ. The problem is then
formulated as that of finding a discrete approximation to the density of the specimen, g(x, z),
on a rectangular (equally spaced) grid with M points in the x-direction and N points in the
z-direction. Adopting a common convention used in electron microscopy, we refer to the
x-direction as the wide direction and to the z-direction as the thick direction. The number
of points in the x-direction is typically 500-2000. The number of points in the z-direction is
usually less than the number of points in the x-direction.

As is customary, we assume that the intensity of the electron beam decays along straight
lines through the specimen. For a comprehensive treatment of the physics of electron mi-
croscopy, see Reimer [46]. We consider a family of straight lines through the specimen given
by

Ct,θ = { (x, z)∈ � 2 | t = x cos θ + z sin θ } (E.1)

(see Figure 1) and define the function Rθ(t) as the line integral of the density function g(x, z)
along Ct,θ,

Rθ(t) =

∫

Ct,θ

g(x, z) ds. (E.2)

We note that evaluating Rθ(t) for all lines through the support of g(x, z) is equivalent to
computing the Radon transform of g(x, z). We assume the measured intensity is described
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Iθ(t)

t=0

t

t,θC θ={ (x,z)  |  t = x cos + z sin }θ

z

Specimen with density g(x,z)

N pixels

M pixelsM pixels∆

extM pixels

θ

x

Figure E.1: A specimen with density distribution g(x, z) is illuminated by an electron beam
through different angles θ. The intensity is recorded as the function Iθ(t). The intensity of
the electron beam is modelled to decay along line integrals through the specimen. The line
integrals are defined along the family of lines Ct,θ. The variables ∆M and Mext are discussed
in Section E.4.3.
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by Iθ(t) = I0e
−Rθ(t), where I0 is the incident intensity. We assume that I0 is a constant, and

set I0 = 1.
Our goal is to approximate g(x, z) by measuring Iθ(t). On taking Rθ(t) = − ln Iθ(t),

our measurements provide us with Rθl
(tk), where θl and tk are discretizations of θ and t

respectively. Sampling Rθ(t), typically at equal angles and distances, yields the matrix,

rkl = Rθl
(tk), (E.3)

where k = 0, 1, . . . ,M − 1 and l = 1, 2, . . . , Nθ. Each column l of the matrix contains all
measurements for the angle θl.

The problem can now be formulated as given the measurement data rkl, find an approx-
imation to g(xm, zn), where xm, zn is some grid, m = 1, 2, . . . ,M and n = 1, 2, . . . , N . The
total amount of data is significant since it consists of measurements from a large number
of two dimensional slices of a specimen (typically as many as points in the x-direction).
Therefore, we want to not only find an accurate approximation of the density distribution,
but also to compute it in an efficient manner.

E.2.2 Inversion of the Radon transform

As is well known, (see e.g. Deans [18]), the two-dimensional density g(x, z) can be recovered
from the line integrals Rθ(t) in (E.2) via the integral

g(x, z) =

∫ π

0

(ρ ∗Rθ)(t(x, z)) dθ, (E.4)

where ρ is a convolution operator. For each angle θ the projection coordinate t depends on
(x, z) according to (E.1) but we will omit the angle dependence in our notation for t. In the
Fourier domain the convolution operator is represented by

ρ̂(ω) = |ω|. (E.5)

In practice, this filter is often modified by a bandlimiting window.

E.2.3 Filtered backprojection using direct summation

If we assume that the electron beam is modelled by line integrals over infinitesimally thin
straight lines then reconstructing the density of a specimen from its projections can be viewed
as the inversion of the Radon transform. Many reconstruction algorithms rely on this fact
and solve the inversion problem analytically by discretizing the inverse Radon transform [18],
[28]. In this section we describe the widely used direct summation algorithm (also known as
R-weighted backprojection).
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We discretize (E.4) by the sum

g(xm, zn) =

Nθ
∑

l=1

wl [ρ ∗Rθl
](t(xm, zn)) (E.6)

where wl are weights and t(xm, zn) are given by (E.1). For measurements performed over
equally spaced angles, the weights wl are usually set to one. Since we have measurements
only for a discrete set t(xm, zn), the values Rθl

(t(xm, zn)) are estimated by some interpolation
scheme, usually piecewise linear interpolation. Let us summarize the steps for estimating
the density of g(x, z) from measurements of projections as follows.

1. Filter the data to obtain (ρ ∗Rθl
)(tk), k = 0, 1, . . . ,M − 1:

(a) Apply the FFT along the columns of the matrix rkl defined by (E.3).

(b) Multiply each element of the transformed matrix by the
(pre-computed) filter coefficients and the weights wl if necessary.

(c) Apply the inverse FFT column wise.

2. Summation:

(a) For each given (xm, zn), compute t(xm, zn).

(b) Find (ρ ∗Rθl
)(t(xm, zn)) by linearly interpolating (ρ ∗Rθl

)(tk).

(c) Sum according to (E.6).

Step 2 dominates the computational cost since we have to sum over Nθ terms N ×M times,
for the total computational cost of O(NθMN). Usually Nθ,M and N are of the same order
of magnitude so the above algorithm has a computational cost of O(N 3).

E.3 Inversion algorithm in the Fourier domain

Let us first derive an algorithm for inversion in the Fourier domain that
is identical to the direct summation algorithm. In the following section
we will describe a numerical implementation that results in a fast
O(NθM logM) +O(MN logN) algorithm.

Our goal is to find the density g(x, z) on an equally spaced grid in x and z. In our
derivation of the Fast Fourier Summation algorithm, we discretize in z but keep x as a
continuous variable until the very end of our derivation. If we fix z = zn while treating x
as a continuous variable, we write gn(x) = g(x, zn) and, similarly, tn(x) = t(x, zn), where t
is defined in (E.1). In the following derivation f̂(ω) =

∫∞
−∞ f(t)e2πitω dt denotes the Fourier

transform of a function f(t).
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Consider the sum used for filtered backprojection (E.6),

gn(x) =

Nθ
∑

l=1

fl(tn(x)) , (E.7)

where we have introduced fl(tn(x)) = wl(ρ ∗ Rθl
)(t(x, zn)). In our approach we will Fourier

transform (E.7) with respect to x and perform the summation in the Fourier domain. The
Fourier transform of (E.7) with respect to x gives

ĝn(ω) =

Nθ
∑

l=1

∫ ∞

−∞
fl(x cos θl + zn sin θl)e

2πixω dx

=

Nθ
∑

l=1

e−2πiωzn tan θl

cos θl

∫ ∞

−∞
fl(s)e

2πis ω
cos θl ds

=

Nθ
∑

l=1

vl(ω)e−2πiξl(ω)zn ,

(E.8)

where ξl(ω) = ω tan θl and

vl(ω) =
1

cos θl

∫ ∞

−∞
fl(s)e

2πis ω
cos θl ds . (E.9)

By definition,

fl(tn(x)) = wl(ρ ∗Rθl
)(t(x, zn)) = wl

∫ ∞

−∞
ρ̂(ω)R̂θl

(ω)e−2πiωt dω, (E.10)

which combined with (E.9) gives us

vl(ω) =
wl

cos θl

ρ̂(
ω

cos θl

)R̂θl
(
ω

cos θl

). (E.11)

Recall that Rθl
(tk) corresponds to a discrete set of measurements. In the filtered backpro-

jection algorithm, we use interpolation to define Rθl
(t) for any t. If linear interpolation is

used, then Rθl
(t) is continuous. Alternatively, let us introduce the “hat” function, or the

linear spline,

β(t) =

{

1 − |t| −1 < t < 1
0 otherwise

. (E.12)

We express piecewise linear interpolation of our discrete data using β(t) by defining

Rθl
(t) =

M−1
∑

k=0

β(t− k + xs) rkl, (E.13)
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where xs is a shift parameter which depends on the selection of the coordinate system in x.
It is easily verified that the function Rθl

(t) is continuous with respect to t. Using (E.13) we
have

R̂θl
(ω) =

M−1
∑

k=0

rkl

∫ ∞

−∞
β(t− k + xs)e

2πitωdt

=

M−1
∑

k=0

rkle
2πi(k−xs)ω

∫ ∞

−∞
β(s)e2πisωds

= e−2πixsωβ̂(ω)
M−1
∑

k=0

rkle
2πikω.

(E.14)

Combining (E.11) and (E.14) yields

vl(ω) =
wl

cos θl

e
−2πixs

ω
cos θl ρ̂(

ω

cos θl

)β̂(
ω

cos θl

)
M−1
∑

k=0

rkle
2πik ω

cos θl

= Fl(ω)r̂l(
ω

cos θl

),

(E.15)

where

Fl(ω) =
wl

cos θl

e
−2πixs

ω
cos θl ρ̂(

ω

cos θl

)β̂(
ω

cos θl

), (E.16)

and

r̂l(
ω

cos θl

) =

M−1
∑

k=0

rkle
2πik ω

cos θl . (E.17)

Note that the factor Fl(ω) is independent of the data once the angles θl are known.
The final step is computing gn(x) from ĝn(ω). By taking the inverse Fourier transform

of (E.8) we arrive at

gn(x) =

∫ ∞

−∞

(

Nθ
∑

l=1

vl(ω)e−2πiξl(ω)zn

)

e−2πiωx dω, (E.18)

where ξl(ω) = ω tan θl and vl(ω) are defined in (E.15). We also observe

gn(x) =

∫ ∞

−∞

(

Nθ
∑

l=1

vl(ω)e−2πiξl(ω)zn

)

e−2πiωx dω

=
∑

j∈ �

(

∫ 1
2

− 1
2

(

Nθ
∑

l=1

vl(ω + j)e−2πiξl(ω+j)zn

)

e−2πi(ω+j)x dω

)

,

(E.19)
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where we recall

vl(ω + j) =
wle

−2πixs
ω

cos θl ρ̂( ω+j

cos θl
)β̂( ω+j

cos θl
)r̂l(

ω+j

cos θl
)

cos θl

.

Let us consider a bandlimited filter ρ such that the support of ρ̂ is contained in [− 1
2
, 1

2
]. As

an important example consider

ρ̂(ω) =







|ω|, |ω| ≤ 1
2

0, |ω| > 1
2

.

For this example we observe that vl(ω + j) = 0 for all j 6= 0. Hence (E.19) reduces to

gn(x) =

∫ 1
2

− 1
2

(

Nθ
∑

l=1

vl(ω)e−2πiξl(ω)zn

)

e−2πiωx dω. (E.20)

Remark. Note that equation (E.20) is equivalent to the sum (E.6) used in the direct
summation algorithm, where ρ is a bandlimiting filter.

�

E.4 Implementation

E.4.1 Discretization

Let us evaluate (E.20) at pixel locations in our final image given by

xm = −xs +m, m = 1, 2, . . . ,Mf ,

where Mf > M will be selected in Section E.4.3. By discretizing ω as

ωk = −1

2
+

k

Mf

, k = 1, 2, . . . ,Mf ,
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we approximate (E.20) by

gn(xm) ' 1

Mf

Mf

2
∑

k=−Mf

2
+1

(

Nθ
∑

l=1

vl(
k

Mf

)e
−2πiξl(

k
Mf

)zn

)

e
−2πi k

Mf
xm

=
1

Mf

Mf

2
∑

k=−Mf

2
+1

(

Nθ
∑

l=1
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for m = 1, 2, . . . ,Mf , where
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)zn
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The final expression (E.21) is an approximation of the exact reconstruction formula
(E.20). By choosing Mf large enough (see Section E.4.3), we can approximate the exact
expression with arbitrary precision. Since the precision of transmission electron microscopy
data is typically low, we have found that setting Mf to 1.5−2 times the number of projections
M usually suffices. We will demonstrate the accuracy of (E.21) in Section E.5.2.

Remark. The z-variable can be discretized as zn = zs + n. The constant zs shifts the
coordinate system in z. Such shifts are essential in some cases when reconstructing three-
dimensional volumes as discussed in Section E.5.1.

�

E.4.2 Unequally spaced FFT (USFFT)

As is well-known, the discrete Fourier transform

ûn =

N−1
∑

k=0

uke
±2πik n

N , n = 0, 1, . . . , N − 1 (E.23)

can be computed in O(N logN) operations using the Fast Fourier Transform (FFT) (Cooley
and Tukey [16]).
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Since our algorithm uses the sum (E.22), we need a fast algorithm to compute the sums

ûn =

M
∑

k=1

uke
±2πiξkn, n = −N

2
,−N

2
+ 1, . . . ,

N

2
− 1 (E.24)

and

û(ξk) =

N
2
−1
∑

n=−N
2

uke
±2πinξk , k = 1, 2, . . . ,M (E.25)

for a given real set of points {ξk}M
k=0, where |ξk| < 1/2 for each k. We note that M may

be different from N . Also, we can always reformulate our problem so that the condition
|ξk| < 1/2 is fulfilled. Indeed,

e2πiξkn = e2πi(ξk+l)n

for any integer l and therefore if |ξk| > 1/2 (but finite) we can always find an integer l such
that |ξk + l| < 1/2.

The sums in (E.24) and (E.25) can be computed using Unequally Spaced Fast Fourier
Transform (USFFT) (see Dutt and Roklin [21], and Beylkin [4]). This algorithm effectively
contains interpolation that guarantees the accuracy of the result. We use the algorithm in
[4] which requires C1M + C2N logN operations and produces a prescribed accuracy. For
this reason we can match our results with those obtained via the filtered backprojection. We
note that since accuracy is guaranteed, the USFFT can be used as a step in an algebraic
reconstruction technique although we do not pursue this point further in this paper.

E.4.3 Oversampling

Applying the backprojection operator, we note that the collected data will produce non-
zero intensity not only within but also outside the the shaded portion of the specimen in
Figure 1. We refer to the shaded portion as “the region of interest”. The extention of the
support outside the region of interest, does not cause any problems in the direct summation
algorithm. However, by using (E.21), we will reconstruct a periodic image. If the length Mf

is not large enough, the reconstructed area outside the region of interest will wrap around
and overlap with the region of interest causing undesirable artifacts. Hence, knowing the
full extent of the reconstruction, Mext in Figure E.1, it is essential to choose the number of
frequencies Mf large enough. Since the size of Mf affects the computational speed of the
algorithm, it is important to choose a minimal Mf .

From Figure E.1 we observe that

∆M =
Mext −M

2
= N tan θmax
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where θmax = max{|θl|}Nθ

l=1. This is illustrated in Figure E.2, where there is no wraparound
between the left and right sides of the reconstruction.

If Mf is smaller than the spatial support Mext = M + 2∆M , we will observe aliasing,
namely, the left and right part of the image will overlap. As long as the overlapping region
is outside the region of interest, no harm is done to the reconstruction. Hence, in order to
avoid aliasing artifacts, we must choose

Mf ≥M +N tan θmax. (E.26)

This is illustrated in Figure E.3, where the wraparound does not overlap the region of
interest. Choosing Mf larger than M can be thought of as oversampling the image. The
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Figure E.2: For this reconstruction M = 572, N = 140, and θmax = 73.31o. This gives that
∆M ' 467 and, hence, the extent of the horizontal support of the reconstruction is given by
Mext = 1506. For this reconstruction we chose Mf = 1512. We observe that for this choice
of Mf , the entire support of the image fits in the reconstructed image.
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Figure E.3: We construct the same data set as in Figure E.2, but here we chose Mf = 1080
which satisfies (E.26). Here we do see some wraparound in the left and right part of the
upper image, but it does not overlap the region of interest cropped out in the lower image.

oversampling factor is given by the ratio Mf/M and it is desirable to make this factor as
close to one as possible. For typical data sets, we have found that this oversampling factor
ranges between 1.5 − 2.
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E.4.4 Numerical algorithm

Our first goal in designing a Fast Fourier Summation algorithm is to match the direct sum-
mation algorithm. We do it for two reasons. First, since the direct summation algorithm
has been used for a long time in this field, we avoid the issue of acceptance. Second, we
demonstrate the flexibility of the Fast Fourier Summation algorithm. As it turns out by
changing parameters we can achieve higher order interpolation in the input data in compar-
ison with the linear interpolation used within the direct summation. The results obtained in
this manner appear to be less ”noisy”, but we leave the practical utility of such interpolation
outside the scope of this paper.

In order to match the direct summation algorithm we consider linear interpolation and use
a bandlimited version of the filter defined in (E.5). We use the discretization in both x and
frequency, described in Section E.4.1. We consider a discretization of z into N equally spaced
points and denote them zn. The discretization of the radial weighting and interpolation filters
is as follows

ρ̂(ωk) =







|ωk| , ωk ≤ 1/2

0, ωk > 1/2

β̂(ωk) =

(

sin(πωk)

πωk

)2

.

We discuss other choices of filters in Section 2.6.3 below.
Next we summarize the main steps of the Fast Fourier Summation algorithm. Let us con-

sider a case when given M projection points at Nθ angles, we wish to reconstruct a sequence
of Ni images at M × N grid points. In what follows Mf satisfying (E.26) is the number of
spatial frequency modes in the x direction.

Algorithm.

1. Precomputation: For each angle θl and each frequency ωk, compute Fl(ωk) defined by
(E.16).

2. For each image, evaluate (E.21):

(a) For each angle θl and each frequency ωk, compute the sum (E.17) using the
USFFT and multiply the result by Fl(ωk) to obtain vl(ωk) in (E.15). See the
Appendix for details of organizing computation of the USFFT. Computational
cost: O(NθMf ) +O(NθM logM).

(b) For each frequency ωk, compute the sum in (E.22) using the USFFT. See the
Appendix for details. Computational cost: O(MfNθ) +O(MfN logN).
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(c) Compute the sum in (E.21) using the FFT. Computational cost: O(NMf logMf )

The steps are illustrated in Figure E.4.
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Figure E.4: The measurement given by the data acquisition is represented by the filled dots.
Step 2a in the algorithm amounts to interpolating the data to the positions indicated by
the squares. Since we are using a bandlimited filter, all points are restricted to within the
bandlimit. Step 2b of the algorithm computes the matrix ĝn(ωk) column-wise by adding data
along the summation lines. The final step of the algorithm computes the image by applying
the inverse FFT row-wise on ĝn(ωk).
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A Fast Fourier Summation algorithm is important when reconstructing a large number
of two-dimensional slices. In most applications, the angles θl and filters are the same for all
slices, which means that the precomputation step in the algorithm above only needs to be
done once while steps 2a-c are repeated for each slice.

We remind that Mf = cM where c is an oversampling factor given by (E.26). In most
applications, the tilt angles θ are bounded, and projections at high tilt angles requires thin
specimens, that is a small value of N . Hence, the oversampling factor is bounded in most
applications and we have found that typically Mf ≤ 2M . Therefore, the total computational
cost of the full three-dimensional reconstruction algorithm is given by O(NiNθM logM) +
O(NiNθMf logMf). This should be compared to the cost O(NiMNNθ) for the traditional
method of direct summation. Actual speed comparisons are given in Section E.5.2.

Remark. The sum
∑M−1

k=0 rkle
2πik ω

cos θl computed in Step 2 of the algorithm is similar
to the sums that can be computed with the FFT. For each fixed angle θl, the nodes are
equally spaced if ω is sampled on an equally spaced grid. The factor 1

cos(θl)
means that

we are effectively “stretching” the spacing between these nodes to evaluate the sum at a
new set of equally spaced grid points (see Figure 2). This prevents direct use of the FFT.
However, the sum is of the type in (E.25) which means that these sums can be evaluated in
O(NθM) +O(NθMf logM) operations. Again, the details are given in the Appendix.

�

E.4.5 Interpolation

We have demonstrated in Section E.3 that the Fast Fourier Summation reproduces the
result of the direct summation algorithm that uses piecewise linear interpolation of the
data. In direct summation, the interpolation is applied in Step 2b in the algorithm given in
Section E.2.3. Let us show that higher order interpolation schemes can be easily incorporated
into the Fast Fourier Summation without additional computational costs.

As in the case of linear interpolation, the piecewise interpolation of higher order can
be described in the space domain by using the B-splines, (Schoenberg [50]). For the linear
interpolation, the linear B-spline is given by the hat function in (E.12). Although higher
order interpolation schemes may be cumbersome to implement in the space domain, in
our algorithm the interpolation is implemented in the Fourier domain where it is simply a
multiplication by an appropriate filter. From the definition of the B-splines as a repeated
convolution of the characteristic function, it follows that the Fourier transform of the B-spline
of odd order k is given by

β̂(k)(ω) =

(

sin(πω)

πω

)k

, k = 1, 3, 5, . . . . (E.27)
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Thus, all we need to use higher order interpolation in our reconstruction algorithm, is to
apply (E.27) when computing the factor Fl(ω) given by (E.16). This is done in Step 1 in the
algorithm in Section E.4.4.

Since the higher order interpolation filter (E.27) decays faster with order k, increasing
the order of interpolation effectively low-passes the data and can therefore be used to reduce
high frequency noise. We leave the choice of the order as a parameter in the algorithm. Such
choice should be guided by practical considerations and experiences. Since using high order
interpolation has a bandlimiting effect, it also implies that we need fewer frequencies for the
reconstruction which, in turn, provides a marginal speed improvement.

E.5 Results

E.5.1 Incorporation of the Fast Fourier Summation into IMOD

The Fast Fourier Summation (FFS) was incorporated into the Tilt program of the IMOD
package [32], [36]. The basic framework of this program was originally written by Mike
Lawrence while at the Medical Research Council in Cambridge. Before the speed comparisons
reported here, the direct summation procedures in Tilt were optimized in two ways. First,
all boundary checks were moved outside of the inner summation loops. Second, each line of
input data was stretched by the cosine of the tilt angle, with the stretched data oversampled
by a factor of two to minimize the filtering effect of interpolating twice. The result is that
a line of stretched input data can be added into a line of the tomographic slice by stepping
through the input line at a fixed interval and with fixed interpolation factors. The advantages
of FFS would have been considerably higher than described here without these improvements
to the original code.

Further developments in the Tilt program and in the FFS algorithm were spurred by the
desire to correct for the plane of the specimen not being parallel to the tilt axis. When the
specimen is tilted in the plane of the reconstruction, the thickness of the reconstruction must
be increased to contain the material of interest, sometimes by as much as 50% for large data
sets. To avoid this, the Tilt program can apply a tilt around the x axis when computing the
reconstruction by direct summation. However, this means that one output slice is based on
multiple lines of input data, making fast backprojection unusable for this computation. To
solve this problem, the FFS algorithm was modified to shift the output slice vertically (in
the z dimension) by a chosen amount. Tilt now uses FFS to compute slices perpendicular
to the tilt axis, (dashed vertical line in Figure E.5), each shifted appropriately in z so that
it covers the region needed for the reconstructed output slice. It then interpolates between
these perpendicular slices to obtain an output slice tilted around the x axis (tilted solid line
in Figure E.5).
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Figure E.5: Side view of section to be reconstructed where the section is tilted by the angle
α around the x-axis. Dashed lines are slices computed by the algorithm and the solid line is
the output slice interpolated from vertical slices.

E.5.2 Tests

Accuracy

The data set shown here is based on images from the mitotic spindle of a dividing cell from
the PtK cell line. The cell was high-pressure frozen, freeze-substituted, embedded in epon-
araldite, and sectioned at 300 nm. The section was tilted between ±70 at 1.5 degree intervals
and images were recorded on film in a JEOL microscope operating at 1,000 KeV. The grid was
then rotated by 90 degrees in the specimen holder and a second, similar tilt series was taken.
Data were digitized at a pixel size of 2.3 nm using a CCD camera. The resolution of both
the film and the CCD camera were good enough to ensure that the images have substantial
information out to the Nyquist frequency. The overall Modular Transfer Function (MTF) is
estimated to be 30% at Nyquist. The single axis and combined tomograms were computed
as described previously (see Mastronarde [42]).

Figure E.6 shows that the FFS algorithm produces essentially the same reconstruction
as direct summation. One slice from the reconstruction of the test data set computed
with FFS appears in Figure E.6a. The two densest features, one above and one below
the sectioned material, are colloidal gold particles placed on the surface of the support film
as fiducial markers for alignment. The difference between this image and the corresponding
slice reconstructed by direct summation appears in Fig. E.6b, at the same contrast as in
Fig. E.6a, and again in Fig E.6c with the contrast amplified 29 times. Aside from differences
in the edge artifacts produced by the two procedures, the most prominent difference is at
the gold particles, where the difference is about 1% of the density of the particles relative to
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Figure E.6: (a): A test data set computed with the Fast Fourier Summation algorithm.
(b): The difference between the image in (a) and the corresponding slice reconstructed by
direct summation with the same contrast as in (a). (c): The same dataset as in (b), but
with the contrast amplified 29 times. (d): Test data set for the Fourier ring correlation test.
(e): Portion of reconstruction of the data set in (d) without noise added. (f): Portion of
reconstruction of the data set in (d) with noise added.
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the background. The differences within the section are smaller and are less than 2% of the
range of densities found there.

For a quantitative assessment of the fidelity of reconstruction by the two methods, a
sample volume was reprojected, then tomograms were built from the re-projections and
compared with the original volume by Fourier ring correlation (see Saxton and Baumeister
[49]). The combined dual-axis tomogram of our test data set was used as the sample volume;
Fig. E.6d shows the corresponding slice from this volume. This volume was considered
suitable because the characteristic artifacts from single axis tomography, namely the dark
rays at the terminal angles of the tilt series and white shadows to the sides of densities, are
much reduced there [42]. The volume was reprojected at 1.5 degree intervals between ±66
degrees, either with no added noise or with added Poisson noise. The latter images were
filtered by the estimated MTF of the film and digitizing apparatus. Noise levels equivalent
to 1000, 3000 or 9000 electrons/pixel were explored, to represent both low dose and standard
exposure situations. Several different high frequency cutoffs were applied in each of these
situations. Figures E.6d and e show a central portion of the reconstruction from the noise-free
data and the data with 3000 electrons/pixel of noise, respectively.

Figure E.7 shows the correlation between the Fourier transforms of the reconstruction
and of the test volume, as a function of spatial frequency, averaged over 190 slices of each
reconstruction. Clearly the two methods are equivalently good at reconstructing the test
volume, regardless of the amount of noise added. From all of the cases tested, there was a
tendency for the Fast Fourier Summation to be slightly worse at low frequencies and slightly
better at higher frequencies except near Nyquist; however, in practical terms these differences
are insignificant.

Speed

The speed of the Fast Fourier Summation algorithm was explored with a variety of data
sizes and under several computer architectures. The width of the input data was varied
from 256 to 4096 pixels; the number of projections was varied from 21 to 375, with an
extreme angle of either 60 degrees or 70 degrees; and the thickness of the reconstruction was
varied from 25 to 400 pixels. For a particular data size, CPU time was measured for the
computation of one slice and ten slices, and the incremental time to compute 9 slices was
used to compare Fast Fourier Summation and direct summation. Comparisons were done
on SGI Octane computers with R10000 and R12000 processors, on a Sun Sparc Ultra-60,
and on Intel-architecture computers with Pentium 3, Pentium 4, Athlon Thunderbird, and
Athlon MP processors. For the SGI and Sun tests, programs were compiled with the native
compilers; the Intel-architecture tests were done both with programs compiled with GNU
compilers and with Intel compilers.

The results in Figure E.8, from SGI, Pentium 4, and Athlon processors, illustrate the
range of performance benefits found with Fast Fourier Summation. Each graph shows the
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Figure E.7: The graph shows the correlation between the Fourier transforms of the recon-
struction and those of the test volume, as a function of spatial frequency, averaged over 190
slices of each reconstruction.
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Figure E.8: (Direct summation)/(Fast Fourier Summation) execution time ratio for three
computer architectures. (a): Dependence on number of projections with width 1024 and
thickness 200. (b): Dependence on reconstruction width with 80 projections and thickness
200. (c): Dependence on thickness with 80 projections and width 1024.
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dependence on one of the size dimensions with the other two held at typical values. The
strongest dependence is on the number of projections (Fig. E.8a), where the speed benefit
climbs 5-fold with an increase from 20 to 320 projections. For the other dimensions, the
benefit from Fast Fourier Summation tends to rise with initial increases then flatten out.
This initial rise was most abrupt and pronounced with Athlon processors (e.g., Fig. E.8c)
and it reflects predominantly a slowing down of the direct summation per unit of computation
rather than a speedup of Fast Fourier Summation. Our interpretation is that the architecture
of the Athlons is particularly favorable to the direct summation for small data sizes, but at
some point a limit in cache or pipeline size is reached and the performance falls abruptly for
direct summation.

Overall, the typical benefit from Fast Fourier Summation is about 1.5 - 2.5 fold, with
greater benefits available on some computers and with larger data sets. The Fast Fourier
Summation is actually slower than direct summation for small data sets (Fig. E.8a,b).
To avoid using a slower algorithm, the Tilt program switches to direct summation when the
width, thickness, or number of projections falls below a specified limit for the given computer
architecture.
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