
THE GIBBS PHENOMENON FOR RADIAL BASIS FUNCTIONS
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Abstract. What is now known as the Gibbs phenomenon was first observed in the context
of truncated Fourier expansions, but other versions of it arise also in situations such as truncated
integral transforms and for different interpolation methods. Radial basis functions (RBF) is a modern
interpolation technique which includes both splines and trigonometric interpolations as special cases
in 1-D, and it generalizes these methodologies to scattered node layouts in any number of dimensions.
We investigate here the Gibbs phenomenon for 1-D RBF interpolation, and find that it can differ
also qualitatively from previously studied cases.
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1. Introduction. The best known version of the Gibbs phenomenon is the over-
shoot that arises when a discontinuous function is represented by a truncated set of
Fourier expansion terms. A similar situation arises if a truncated Fourier expansion
is instead obtained by means of interpolation on an equispaced grid. Figures 1.1a,b
show more detailed pictures near a unit height jump in these two cases. In the limits
of increasingly many terms and of increasingly high node densities, respectively, exact
formulas for the peak heights are
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i.e. the overshoots amount to approximately 8.95% and 14.11%, respectively, of the
jump heights. Both of these cases are analyzed in [8], Section 2.4; see also [18], [19].
The amplitudes of successive oscillations decay in inverse proportion with the distance
from the jump.

As Figure 1.1 (c) shows, the Gibbs phenomenon for splines differs from the pre-
vious cases especially in terms of how fast the oscillations decay. This is discussed
further in Section 2. We then, in Section 3, generalize splines to what has become
known as radial basis functions (RBF). This is a modern and extremely flexible in-
terpolation method, which includes both splines and trigonometric interpolants in
different 1-D special cases, but which applies immediately also when the data is given
at scattered node locations in any number of space dimensions. The Gibbs phenom-
enon that arises for RBF interpolation has not been studied previously. We find in
Section 4 that it can take quite different character in different situations. Section 5
contains some concluding remarks.
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F��. 1.1. The Gibbs phenomenon for (a) truncated Fourier series, (b) equispaced Fourier
interpolation, and (c) cubic spline interpolation. For (b) and (c), the nodes are located at the
integers, with function value zero at positive integers, else one.

2. The Gibbs phenomenon for spline interpolations. In the case of cubic
splines, one can readily write down the cubic polynomials for each interval in closed
form [9]. In the case shown in Figure 1.1c, the maximum appears on [-1,0], with the
cubic over this interval given by

1 + (− 3
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√
3
2 )x+ (32 − 3

√
3
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√
3)x3 .

The maximum value of 1
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√
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√
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√
6) ≈ 1.1078 occurs at the location

x = 1
6(−3−

√
3 +

√
6) ≈ −0.3804.

The cubic B-spline takes, at successive nodes, the values {0, 16 , 23 , 16 , 0}. Given
that the B-spline expansion coefficients bk for k ≥ 1 in the case of the step data in
Figure 1.1 (c) will need to satisfy the linear recursion relation
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with characteristic equation 1
6r
2+ 2

3r+
1
6 = 0, it follows that the B-spline coefficients

- and therefore the Gibbs oscillations - will decay for increasing |k| at the exponential
rate

|bk| = O((2−
√
3)|k|) ≈ O(e−1.3170 |k|).

This fast rate may not be surprising given that the cubic spline, of all possible in-
terpolants s(x) to the given data, minimizes

∫∞
−∞[s′′(x)]2dx. Persistent oscillations
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Spline Maximum value Oscillation decay rate
degree O(e− c |k|); c =

3 1.1078 1.3170
5 1.1263 0.8426
7 1.1326 0.6250
9 1.1356 0.4976
11 1.1372 0.4136
...

...
...

21 1.1400 0.2247
...

...
...

∞ 1.1411 0
T��	
 2.1

Trends in the Gibbs phenomenon for spline interpolation of increasing orders

cannot be present at increasing distances from the jump location because such would
make this integral quantity large.

In the case of splines of higher orders, closed form expressions for the overshoot
and for the decay rates become more involved, but the quantities are nevertheless
easy to compute numerically. Table 2.1 summarizes some further cases. In the limit
of increasing spline orders, we can see how the trigonometric interpolation case is
recovered (as also follows from the fact that spline interpolants of increasing odd

orders to cardinal data s(x) =
{
1 if x=0
0 otherwise, when x∈Z approach sin πx

πx uniformly in

x; see for ex.[24]). The exponential coefficient decay is lost, and the slow algebraic
rate has instead become dominant.

3. Radial basis functions. The RBF methodology was originated by Rolland
Hardy around 1970 in connection with a cartography application that required mul-
tivariate scattered-node interpolation [17]. In a much noted 1982 survey [16], this
approach, using a certain type of basis functions known as multiquadrics (MQ), was
found to be the preferable one of about 30 then known methods (scoring the best in 13
out of 18 tests, and second best in 3 of the remaining 5 tests). Although unconditional
non-singularity of the interpolation problem was known early in a very special case
[2], it was the breakthrough discovery in 1986 of guaranteed nonsingularity also for
MQs [22] which propelled the development of RBF into one of the most active areas
in modern computational mathematics.

In the brief RBF introduction below (following a more extensive description in
[10]), we first introduce RBF as a generalization of standard cubic splines to multiple
dimensions. The types of RBF we are most interested in depend on a scalar shape
parameter ε. The limit of ε → 0 (basis functions becoming increasingly flat) is of
special interest, since the accuracy then can become particularly high, with both
polynomial and trigonometric interpolants arising as special cases [6], [9], [13], [14].

3.1. Introduction to RBF via cubic splines. A cubic spline is made up of
a different cubic polynomial between each pair of adjacent node points (in 1-D), and
it may at these node points feature a jump in the third derivative (i.e. the function,
and its first two derivatives are continuous everywhere). The standard approach for
computing the coefficients of the different cubics which form the spline requires only
the solution of a tridiagonal linear system. If the spacing between the sample points is
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h, it is well known that the size of the error, when interpolating smooth functions, will
decrease like O(h4). It makes almost no difference in the algorithm if the nodes are
not equally spaced. However, simple generalizations to more space dimensions have
in the past been available only if the nodes are lined up in the coordinate directions.

Another way to approach the problem of finding the 1-D cubic spline (for now
omitting to address the issue of end conditions) is the following: At each data location
xi, i = 1, . . . , n, place a translate of the function φ(x) = |x|3, i.e. at xi the function
φ(x− xi) = |x− xi|3. We then ask if it is possible to form a linear combination of all
these functions

s(x) =
n∑

i=1

λi φ(x− xi) (3.1)

such that this takes the desired function values fi at the data locations xi, i =
1, . . . , n., i.e. such that s(xi) = fi holds. This amounts to asking for the coefficients
λi to satisfy a linear system of equations




φ(x1 − x1) φ(x1 − x2) · · · φ(x1 − xn)
φ(x2 − x1) φ(x2 − x2) φ(x2 − xn)
...

...
φ(xn − x1) φ(xn − x2) · · · φ(xn − xn)







λ1
λ2
...
λn


 =




f1
f2
...
fn


 . (3.2)

Assuming that this system is non-singular, it can be solved for the coefficients λi.
The interpolant s(x), as given by (3.1), will then become a cubic function between
the nodes and, at the nodes, have a jump in the third derivative. We have thus
found another way to create an interpolating cubic spline. This time, we have arrived
at a full linear system rather than a tridiagonal one. However, as we will see next,
this formulation opens up powerful opportunities for generalizing the form of the
interpolant, and also for extending the methodology to scattered data in any number
of space dimensions.

3.2. Generalization to multiple dimensions. Figure 3.1a illustrates the RBF
idea in 1-D. At each data location xi, we have centered a translate of our symmetric
function φ(x). In 2-D, as illustrated in Figure 3.1b, we instead use a rotated version of
the same radial function. In d dimensions, we can write these rotated basis functions
as φ(||x−xi||), where ‖·‖ denotes the standard Euclidean norm. The form of the RBF
interpolant and of the linear system that is to be solved has hardly changed from the
1-D case. Instead of (3.1) and (3.2), we now use as interpolant

s(x) =
n∑

i=1

λi φ(‖x− xi‖) (3.3)

with the collocation conditions



φ(‖x1 − x1‖) φ(‖x1 − x2‖) · · · φ(‖x1 − xn‖)
φ(‖x2 − x1‖) φ(‖x2 − x2‖) φ(‖x2 − xn‖)
...

...
φ(‖xn − x1‖) φ(‖xn − x2‖) · · · φ(‖xn − xn‖)







λ1
λ2
...
λn


 =




f1
f2
...
fn


 . (3.4)

In particular, we note that the algebraic complexity of the interpolation problem has
not increased with the number of dimensions - we will always end up with a square
symmetric system of the same size as the number of data points. Cubic splines have
thus been generalized to apply also to scattered data in any number of dimensions.
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F��. 3.1. Illustration of the RBF concept in 1-D and in 2-D.

3.3. Different types of radial functions. The error O(h4) for cubic splines in
1-D will become O(h6) in the case of quintic splines. And it falls to O(h2) for linear
splines (corresponding to φ(x) = |x|). In general, if we take the RBF approach as
outlined above, and use φ(x) = |x|2m+1, the error will become O(h2m+2) (even powers
in φ(x) will not work; for ex. if φ(x) = x2, the interpolant (3.1) will reduce to a
single quadratic polynomial, no matter the value of n, and attempting to interpolate
more than three points will have to give rise to a singular system). The sizes of these
errors correspond directly to which derivative of φ(x) is it that features a jump at the
origin. This leads to the ‘obvious’ question: why not choose a φ(x) which is infinitely
differentiable everywhere, such as φ(x) =

√
1 + x2 ? This idea is an excellent one -

and can be applied to good advantage in any number of dimensions. If we still ignore
boundary issues (possibly leading to some counterpart of the Runge phenomenon for
polynomials), the accuracy will become spectral: better than any polynomial order,
and generally of the form O(e−c n), where c > 0 and n is the number of points [26].

Table 3.1 lists a number of possible choices of radial functions, with illustrations
in Figure 3.2. In the piecewise smooth category (where we so far have discussed only
φ(r) = |r|2m+1), we include now also thin plate splines φ(r) = |r|2m ln |r|. These are
commonly used in 2-D, especially then with m = 1. Just like the natural cubic spline

(i.e. with end conditions s′′(a) = s′′(b) = 0) minimizes
∫ b
a
[s′′(x)]2dx over all possible

1-D interpolants, the RBF interpolant using φ(r) = r2 log r achieves the equivalent
minimization for 2-D scattered data [7].

The spectral accuracy noted above for smooth radial functions holds in any num-
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F��. 3.2. Illustrations of the six different radial functions in Table 3.1.

ber of spatial dimensions. For the non-smooth RBF, the order accuracy actually
improves with the number of dimensions, d. For example, for φ(r) = |r|2m+1 and
for φ(r) = |r|2m ln |r|, the order of accuracy becomes O(h2m+1+d) and O(h2m+d)
respectively [23].

For the infinitely smooth RBF in Table 3.1, we have also introduced a shape
parameter, which we denote by ε. For small values of ε, the basis functions become
very flat, and for large values, they become sharply spiked (e.g. for IQ, IMQ, GA)
or, in the case of MQ, it approaches the piecewise linear case. Table 3.1 also shows
the Fourier transform of the radial functions (or generalized Fourier transform if the
integral that defines the regular version would be divergent, cf. [1], [20], [21]; we
use here the convention u(x) = 1

2π

∫∞
−∞ û(ξ) eiξxdξ, û(ξ) =

∫∞
−∞ u(x) e−iξxdx). The

following are some key theorems regarding RBF interpolation. For proofs and further
discussions, see for ex [3], [6], [10], [25]:

• All the smooth RBF choices listed in Table 3.1 will give coefficient matrices
A in (3.4) which are nonsingular, i.e. there is a unique interpolant of the form
(3.3) no matter how the (distinct) data points are scattered in any number
of space dimensions. In the cases of IQ, IMQ and GA, the matrix is positive
definite and, for MQ, it has one positive eigenvalue and the remaining ones
all negative.

• Interpolation using MN and TPS can become singular in multi-dimensions.
However, low degree polynomials can be added to the RBF interpolant to
guarantee that the interpolation matrix is positive definite (a stronger condi-
tion than non-singularity). For example, for cubic RBF and TPS in d dimen-

sions, this becomes the case if we use as interpolant s(x) =
∑d+1
k=1 γkpk(x) +

6



Type of radial function 1-D Fourier transform φ̂(ξ)
Piecewise smooth

MN monomial |r|2m+1 (−1)m+1(2m+ 1)!
√
8π

|ξ|2m+2

TPS thin plate spline |r|2m ln |r| (−1)m+1(2m)!
√
2π3

|ξ|2m+1
Infinitely smooth

MQ multiquadric
√

1 + (εr)2
−2K1

(
|ξ|
ε

)

|ξ|
IQ inverse quadratic

1

1 + (εr)2
π

ε
e−

|ξ|
ε

IMQ inverse MQ
1√

1 + (εr)2
1

ε
K0

(
|ξ|
ε

)

GA Gaussian e−(εr)
2

√
π

ε
e−ξ

2/(4ε2)

SH Sech sech(εr)
π

ε
sech

(
πξ

2ε

)

T��	
 3.1

Definition and Fourier transforms for some cases of radial functions

∑n
k=1 λk φ(‖x− xk‖) together with the constraints

∑n
j=1 λjpk(xj) = 0, k =

1, . . . , d + 1. Here, pk(x) denotes a basis for polynomials of degree one in
d dimensions, i.e. in the case of d = 3 (with x = (x1, x2, x3)), we have
p1 = 1, p2 = x1, p3 = x2, p4 = x3.

• In 1-D, the RBF interpolant in the limit of ε → 0 converges to Lagrange
interpolation polynomial [6] (no matter how the distinct nodes are scattered).

• For 1-D periodic data, this same limit reproduces standard trigonometric
interpolants (again, for all node distributions). For scattered nodes on a
sphere, it reproduces a spherical harmonics interpolant [12].

4. The Gibbs phenomenon for RBF. Although the main point in using RBF
is their flexibility in allowing smooth mesh-free interpolation of scattered data in any
number of dimensions, we limit ourselves in this first study of the Gibbs phenomenon
for RBF interpolants to 1-D unit-spaced data. For each of the radial functions in
Table 3.1, we can introduce a 2π-periodic function

Ξ(ξ) =
∞∑

k=−∞
φ(k) ei k ξ =

∞∑

j=−∞
φ̂(ξ + 2πj). (4.1)

The second sum above, following from Poisson’s summation formula, will converge
also in the cases where the first one diverges.

As a key step towards analyzing the Gibbs phenomenon, we consider cardinal
data, defined at the integer lattice points as f0 = 1 and fk = 0 at x = k non-zero
integer. It has previously been shown [4], [11] that the corresponding RBF expansion

7



coefficients then become

λk =
1

2π

∫ 2π

0

cos kξ

Ξ(ξ)
dξ (4.2)

and the RBF cardinal interpolant becomes

sC(x) =
1

2π

∫ ∞

−∞

φ̂(ξ) cosxξ

Ξ(ξ)
dξ. (4.3)

Derivations of these formulas are given in Appendix A. If we, in place of cardinal
data, consider step (Gibbs-) data (fk = 1 at x = k non-positive integer and fk = 0 at
x = k positive integer), adding translates of (4.3) gives the Gibbs interpolant as

sG(x) =
∞∑

j=0

sC(x+ j). (4.4)

Substituting (4.3) into (4.4) leads to

sG(x) =
1

2
− 1

4π

∫ ∞

−∞

φ̂(ξ)

Ξ(ξ)

sin(x− 1
2)ξ

sin ξ
2

dξ. (4.5)

In contrast to (4.3) and (4.4), this simplified expression is only valid in cases for which
Ξ(ξ) sin ξ

2 is everywhere non-zero, (e.g. MN, TPS and MQ). The main task of the
present study is to analyze and display sG(x). Our starting point will be to investigate
how λk varies with k, as described by (4.2). The similarity between the integrals (4.2)
and (4.3) will then permit the essential observations for λk to be carried over, first to
sC(x) and then by (4.4) to sG(x). The next subsections describe these steps in more
detail.

4.1. Analysis of cardinal expansion coefficients λk. Since this task was
carried out in some detail in [11], we limit ourselves here to explaining the main ideas
and results from that study. For some types of RBF, it turns out to be possible to
extensively simplify the expressions that are obtained from combining the Fourier
transforms from Table 3.1 with (4.1) and (4.2). For example:

Cubic RBF (MN with j = 1; same as cubic splines):

λ0 = −4 + 3
√
3, λ±1 = 19

2 − 6
√
3 and λ±k = (−1)k3

√
3

(2+
√
3)k

, k ≥ 2

IQ: λk =
(−1)kε sinh(πε )

π2

π∫

0

cos kω

cosh(ω/ε)
dω,

GA: λk =
e(εk)

2

2
·

∑∞
j=k(−1)j e−ε

2(j+ 1

2
)2

∑∞
j=0(−1)j(j + 1

2) e
−ε2(j+ 1

2
)2
,

SH: λk =
1∑∞

j=−∞(−1)j sech2(εj)
· (−1)k sech(εk).

Instead of pursuing more simplifications of this type, it turns out that we obtain more
insights by evaluating the integral in (4.2) by means of Cauchy’s theorem and the
calculus of residues. The case of MQ is used below to illustrate this approach.
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F��. 4.1. Magnitude of h(ξ), as given by (4.6) over the domain 0 ≤ Re ξ ≤ 2π, −8 ≤ Im ξ ≤ 8.

4.1.1. Cardinal data expansion coefficients by contour integration. We
consider MQ RBF and choose for simplicity ε = 1. The task becomes to evaluate

λk = − 1

4π

∫ 2π

0

h(ξ) ei k ξdξ

where

h(ξ) =
1

∑∞
j=−∞

K1(|2πj+ξ|)
|2πj+ξ|

.

The function h(ξ) is 2π-periodic, and can over ξ ∈ [0, 2π] be written, without taking
magnitudes, as

h(ξ) =
1

∑∞
j=0

K1(2πj+ξ)
2πj+ξ +

∑∞
j=1

K1(2πj−ξ)
2πj−ξ

. (4.6)

In this latter form, h(ξ) can be extended as a single-valued analytic function through-
out the strip 0 ≤ Re ξ ≤ 2π, −∞ < Im ξ < ∞. Figure 4.1 illustrates the magni-
tude of this function, and Figure 4.2 shows its schematic character. We change the
integration path as is indicated in Figure 4.2, and note that the two leading contri-
butions to the integral, when k increases, will come from (i) the first pole and (ii)
from the (non-cancelling) contributions from the vicinities of the branch points at
ξ = 0 and ξ = 2π. Along the line ξ = π + i t, t real, the function h(ξ) is purely
real and 1/h(ξ) features decaying oscillations. The first pole of h(ξ) appears near
π + 1.056109 i and has a residue of approximately -34.866, thus contributing a term
of 17.433 (−1)k e−1.056 k to λk. The singularity of h(ξ) around the origin (repeated
at ξ = 2π) comes from only one term in the denominator of (4.6), taking the form
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F��. 4.2. Character of the function h(ξ) in the complex plane. The original and the modified
integration paths are shown.

ξ
K1(ξ)

= ξ2 + (14 −
γ
2 + ln 2

2 − ln ξ
2 )ξ4 + . . . The branch singularity is to leading order

of the form −1
2ξ
4 ln ξ = −1

2ξ
4(ln |ξ| + i arg ξ) (and similarly around ξ = 2π). What

does not cancel between the two sides of the contour but instead adds up (hence the

factor 2 below) amounts to 2(− 1
4π )
∫ i·{some δ > 0}
0

(− 1
2)ξ

4i π2 e
−ikξ dξ. Letting ξ = it

and noting that, as k →∞, we can change the upper integration limit to infinity, this
simplifies to − 1

8

∫∞
0
t4e−ktdt = − 3

k5 . For increasing k, we thus obtain

λk ≈ 17.433 (−1)k e−1.056 k + . . .︸ ︷︷ ︸ − 3

k5
+ . . .

︸ ︷︷ ︸
exponential part algebraic part

(4.7)

Figures 4.3a,b compare, using log-linear and log-log scales respectively, the true values
for |λk| against the 2-term approximation in (4.7). The agreement is seen to be nearly
perfect.

The same procedure as above can be carried through for any value of the shape
parameter ε and also for all of the RBF types listed in Table 3.1. There will in every
case be an exponential decay process, featuring oscillations in sign. It will depend
on the regularity of φ̂(ξ) at ξ = 0 (branch point or not when continued to complex
ξ) whether there will also be an algebraic non-oscillatory decay present. If this is

present, it will dominate when k is sufficiently large. Given the expressions for φ̂(ξ)
in Table 3.1, we can see that λk will decay exponentially for all k in the cases of MN
(confirming what we obtained earlier when we considered MN splines in Section 2),
GA and SH, whereas there will be a transition from exponential to algebraic decay in
the cases of TPS, MQ, IQ and IMQ.

4.2. Cardinal data interpolants sC(x). The formulas for λk (4.2) and sC(x)
(4.3) differ only in a few respects:

• A trivial multiplicative factor,
• The free parameter is called x instead of k (and we will consider it also for
non-integer values),
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F��. 4.3. Comparison between correct values of |λk| for MQ in 1-D, ε = 1 (dots) and the
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F��. 4.4. Original and modified integration contours for evaluating (a) the integral (4.2) for
λk and (b) the integral (4.3) for sC(x).

• There is an extra factor φ̂(ξ) in the numerator of (4.3),
• The integration interval is [−∞,∞] instead of [0, 2π].

In the same way as we deformed the contour for the integral (4.2), as was shown in
Figure 4.2, and is again shown more schematically still in Figure 4.4a, we now deform
the contour for (4.3) as is shown in Figure 4.4b. Since Ξ(ξ) is 2π-periodic, the poles will
in the two cases have the same imaginary parts, and therefore the exponential decay
rates will be the same for sC(x) as was found for λk. The singularity at the origin will

be cancelled by the factor φ̂(ξ) in the numerator of (4.3), but the contributions from
other multiples of 2π will not be cancelled, so algebraic decay rates (if at all present)
will also be the same (to leading order) for λk and sC(x).

We illustrate the general observations above with the case of IQ. In this case, it
transpires that we can simplify (4.3) to

sC(x) =
sinh 2π

ε sinπx

πεx(cosh 2π
ε − cos 2πx)

∫ π

0

cosxξ

cosh2( ξε )
dξ

11



F��. 4.5. Cardinal interpolant sC(x) in the case of IQ, ε = 1, shown over the intervals (a)
[0,4] and (b) [4,10].

(now a finite integration interval and no Poisson sum). Figure 4.5 illustrates how this
cardinal data interpolant at first decays in an oscillatory manner at an exponential
rate, followed by algebraic decay without changes of sign, entirely as predicted by the
general argument above.

4.3. Gibbs data interpolant sG(x). Considering the fast decay of cardinal
RBF interpolants, it is clear that superposing translates of these according to (4.4)
will give results for sG(x) which are qualitatively the same as those for the cardinal
interpolant sC(x).

With help of the formulas (4.3), (4.4), or (4.5), one can readily compute the Gibbs
interpolants for any radial function. Figures 4.6a-c show the Gibbs oscillations in a
number of cases. In accordance with the analysis, we can note that the oscillations
decay exponentially for all distances in cases when 1

φ̂(ξ)
is analytic around the origin

(here shown only in the case of GA), but otherwise there will at some distance be
a transition to one-sided oscillations which decay at a slower algebraic rate. For the
infinitely smooth RBF, it is also of interest to see how the Gibbs phenomenon varies
with the shape parameter ε. As ε → 0, the oscillations seen in Figure 4.7 c (MQ,
ε = 0.1) increasingly resemble the trigonometric interpolation case shown in Figure
1.1b. The transition point between exponential and algebraic decay, visible around
x = 4 in the case of ε = 10 (Figure 4.7a) and around x = 16 for ε = 1 (Figure 4.7b)
has in the ε = 0.1 case moved too far out to be visible in computations carried out in
standard 16-digit numerical precision. In this limit, the exponential decay has itself
slowed up, and turned into the slow algebraic one of trigonometric interpolation.

4.4. Examples of Gibbs and Runge phenomena on a finite interval.
In practical applications, RBF are almost always used on finite domains and with
irregularly placed nodes. In contrast, analysis is most easily carried out - as we have
done above - on equispaced infinite (or periodic) lattices. A key question that always
must be asked following such analysis is to what extent the main observations will
carry over to more practical situations. We will here focus this discussion on the test
case of interpolating f(x) = arctan 20x over x ∈ [−1, 1].

When using for example splines or finite elements, one can increase local resolution
in areas of steep gradients by local insertion of additional nodes. Given that RBF
also allow for arbitrary node locations, one might then attempt a similar strategy
As Figure 4.8 shows, this can trigger oscillations away from the gradient area, that

12
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F��. 4.6. The Gibbs oscillations around a jump, and further out to the right, in the cases of
(a) TPS, (b) IQ, ε=1, and (c) GA, ε=1.

even might grow (rather than decay) with increasing distance. The issue is discussed
in some detail in [15]. It is found there that the effect is better seen as an analog to
the polynomial Runge phenomenon, and that care in selecting node locations or use
of spatially variable shape parameter ε (using εk at node xk) can not only overcome
the oscillations, but in fact offer spectacular accuracies. This is illustrated in Figure
4.9. Bringing the nodes more smoothly towards the center (with the two center ones
very close), together with a larger value of ε, reduces the error by two orders of
magnitude. The new error pattern would appear to be related to the (surprising)
one-sided Gibbs oscillation pattern that emerged from our analysis, and which was
notable in the top two rows of subplots in Figure 4.7. Nearly two further orders of
magnitude can be gained when allowing spatially variable ε. It can easily be verified
that Chebyshev interpolation (polynomial interpolation at the locations of Chebyshev
polynomial extrema; a standard procedure for non-periodic pseudospectral methods)
will require n = 170 nodes to achieve the same 3 · 10−5 accuracy as MQ RBF here
did with n = 10 nodes.

The optimizations used to generate the data for Figure 4.9 were carried out using
Matlab’s ga (genetic algorithm) tool box. While this is not certain to give the true
optima, nor is practical to use on a routine basis, it suffices very well for finding
simple principles that characterize particularly accurate RBF approximations (such
as choosing εk large where the nodes are close together).

The examples shown in Figure 4.9 were designed to illustrate how RBF can pro-
vide very high accuracy also in steep gradient situations. Several aspects of the
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F��. 4.8. MQ ε = 2 interpolants to f(x) = arctan 20x over [−1, 1]: (a) 14 equispaced nodes,
(b) with two extra nodes inserted near the center, and (c) with still two more nodes inserted.

equispaced infinite lattice analysis for the Gibbs phenomenon can be observed, such
as oscillations in some cases emanating from the ‘jump’, and in some cases the one-
sided oscillation pattern. This simple example illustrates that opportunities exist -
mostly still unexplored - to ‘overcome’ both Gibbs phenomena and related Runge
phenomena.

5. Conclusions. There is much in common between the Gibbs phenomenon for
RBF interpolation and for other interpolation types (such as splines and trigonometric
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F��. 4.9. Ten-node MQ interpolations of f(x) = arctan 20x. Top row: Equispaced nodes, ε
(same at all nodes) optimized. Middle row: Node locations xk and ε (same at all nodes) optimized.
Bottom row: Both xk and εk optimized.

functions), but there are also significant differences, especially in terms of how the
oscillations decay away from the jump. In RBF cases, both exponential and algebraic
decays can be present and, if so, they will dominate at different distances from the
jump discontinuity. Furthermore, oscillations without sign changes have not been
seen previously in connection with the Gibbs phenomenon. The possibility of using
a spatially variable shape parameter in RBF interpolation, as explored in [15], offers
excellent opportunities for eliminating the adverse effects of the Gibbs phenomenon.
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Appendix A
This appendix consists of three parts:

1. Derivation of (4.2)
2. Derivation of (4.3)
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3. Verifying that the cardinal interpolant sC(x), as given by (4.3), indeed satis-
fies

sC(n) =

{
1 n = 0
0 n = ±1,±2, . . .

. (0.1)

1. Derivation of (4.2)
In terms of the 2π-periodic function

Λ(ξ) =
∞∑

k=−∞
λk e

i k ξ, (0.2)

and Ξ(ξ), as defined in (4.1), the cardinal coefficient relationship

∞∑

k=−∞
λk φ(n− k) =

{
1 n = 0
0 n �= 0, n ∈ Z

can be expressed as Λ(ξ) · Ξ(ξ) = 1. Therefore, Λ(ξ) = 1/Ξ(ξ). According to (0.2),
the Fourier coefficients of this function are the expansion coefficients λk. Therefore,
we obtain (4.2).
2. Derivation of (4.3)

The RBF cardinal interpolant becomes

sC(x) =
∞∑

k=−∞
λk φ(x− k)

=
1

(2π)2

∞∑

k=−∞




π∫

−π

ei k ξ1

Ξ(ξ1)
dξ1






∞∫

−∞

φ̂(ξ2) ei x ξ2−i k ξ2dξ2




=
1

(2π)2

∞∫

−∞




π∫

−π

( ∞∑

k=−∞
ei k (ξ1−ξ2)

)

︸ ︷︷ ︸

dξ1
Ξ(ξ1)


 φ̂(ξ2) e

i x ξ2dξ2

2π δ(ξ1 − ξ2)

=
1

2π

∞∫

−∞

∞∫

−∞

δ(ξ1 − ξ2)
φ̂(ξ2)

Ξ(ξ1)
ei x ξ2dξ1dξ2 =

1

2π

∞∫
−∞

φ̂(ξ)

Ξ(ξ)
ei x ξdξ

3. Direct verification that sC(x) satisfies (0.1)
With n ∈ Z, we get

sC(n) =
1

2π

∞∫

−∞

φ̂(ξ) ei n ξ
∑∞
j=−∞ φ̂(ξ + 2πj)

dξ =
1

2π

∞∑

k=−∞

π∫

−π

φ̂(ξ + 2πk)
∑∞
j=−∞ φ̂(ξ + 2πj)

ei n ξdξ

=
1

2π

π∫

−π

(∑∞
k=−∞ φ̂(ξ + 2πk)

∑∞
j=−∞ φ̂(ξ + 2πj)

)

︸ ︷︷ ︸
ei n ξdξ

= 1

=
1

2π

π∫

−π

ei n ξdξ =

{
1 n = 0
0 n = ±1,±2, . . .

.
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