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Abstract. The simplest finite difference approximations for spatial derivatives are centered,
explicit, and applied to “regular” equispaced grids. Well-established generalizations include the use
of implicit (compact) approximations and staggered grids. We find here that the combination of
these two concepts, together with high formal order of accuracy, is very effective for approximating
the first derivatives in space that occur in many wave-type PDEs.
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1. Introduction. Wave equations, especially in two or more dimensions, are
often formulated as first order systems. The primary requirements for numerical
approximations of the first derivatives in space are

i. high accuracy,
ii. low operation count,

and the overall resulting method must also feature
iii. compatibility with curved interfaces and nonreflecting far field boundary con-

ditions.
Several numerical approaches excel in one or sometimes two of these respects (e.g.,

finite elements and periodic pseudospectral (PS) methods). A combination of high-
order interface techniques along material discontinuities and boundaries [3], [4] and
an implicit staggered scheme for remaining areas of the computational domain meets
all three requirements (near-spectral accuracy requiring only about four to five points
per wavelength, about six to eight arithmetic operations for each spatial derivative at
each grid point, with full spectral accuracy maintained at general interfaces). Figure
1 illustrates schematically how a composite method/grid for this approach can be
structured in the case of the coupling of different media in a two-dimensional (2-D)
calculation for Maxwell’s equations.

This paper focuses on the problem of obtaining high accuracy economically on
the “background” (x, y)-grid. At its (usually jagged) edges, this grid overlaps with a
strip that follows the interface. Results on computations with this composite setup
are reported in [4]. (In view of this intended usage, we do not discuss here the
implementation of traditional boundary conditions.) Table 1 gives examples of the
simplest first derivative approximations for each of the four stencil types considered
here, explicit and implicit approximations on regular and staggered grids. The main
topics of the remaining sections 2–9 are as follows:

2. illustrations of grid staggering,
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106 BENGT FORNBERG AND MICHELLE GHRIST

Fig. 1. Schematic illustration of composite grid concept. In this case, we imagine solving
Maxwell’s equations in 2-D in a case where a metallic object (coated with an absorbing (lossy)
medium) is illuminated with a radar source. Around the outer boundary is wrapped a strip-like do-
main which, along its middle, features a perfectly nonreflecting boundary between the main dielectric
(e.g., vacuum) and a strong signal absorber. The grid densities (especially in the strips around the
object and the boundary) would, in general, be considerably higher than shown. Implementation
of strips with media interfaces is described in [4]; the methods in the present study apply to the
Cartesian background grid.

3. simple symbolic algebra code that will calculate the weights for all stencils of
the kinds described,

4. tables of weights and formulas for weights in the limit of increasing orders of
accuracy,

5. observation that in the limit of increasing orders, the implicit and the explicit
formulas become equivalent in terms of how derivative value depends on function
values,

6. comparisons of operation counts,

7. comparisons of accuracies and cost-effectiveness,

8. test example, and

9. summary of our observations.
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On most issues that are covered, additional information (e.g., derivations of most
formulas quoted here) can be found in [9].

2. Illustrations of grid staggering. It is fortunate that most linear wave
equations of general interest—in any number of space dimensions—have only a few
of all possible spatial derivatives present and that these tend to appear in such a way
that grid staggering becomes straightforward. (This is most likely related to how the
equations arise from conservation laws; however, we are unaware of any clear references
supporting this.) Figures 2(a)–(c) illustrate staggering in three representative cases:
one-dimensional (1-D) acoustic, 2-D elastic, and three-dimensional (3-D) Maxwell’s
equations. In each case, we contrast two layouts of spatial grids, regular vs. staggered,
both featuring the same density of grid data. The ease of creating staggered layouts
for all major linear wave equations makes the present analysis widely applicable.

One can also stagger in time, as is done (using leap-frog), e.g., in the Yee scheme
for time-domain computational electrodynamics [16], [20], [22]. A follow-up study to
this one [10] discusses higher order time staggering.

3. Algorithm for FD weights. The weights in any of the stencils we discuss
in this paper can be calculated by the two-line Mathematica algorithm,

t=Pade[x∧s*Log[x]∧m,{x,1,n,d}];
{CoefficientList[Denominator[t],x],CoefficientList[Numerator[t],x]/h∧m}

or in Maple,

t:=pade (x∧s*ln(x)∧m,x=1,[n,d]):
coeff (expand (denom(t)),x,i) $i=0..d;

coeff (expand (numer(t)),x,i)/h∧m $i=0..n;

In both cases, a Padé package must first be loaded; this is done with the commands
<<Calculus‘Pade‘ or with (numapprox):, respectively. In these lines of code, m

denotes what order derivative we want to approximate. (This will be one in all
cases considered in this paper but may be any nonnegative integer; the case m=0 will
generate interpolation formulas.) The remaining three input parameters s, d, and n

describe the shape of the stencil, as illustrated in Figure 3. The parameter s may be
any real number (of either sign); d and n must be nonnegative integers.

For the first derivative (i.e., m=1) and with the stencil shown in Figure 3, the
Mathematica output becomes{{

9

80
,

31

40
,

9

80

}
,

{
− 17

240h
,− 63

80h
,

63

80h
,

17

240h
,

}}
(1)

(cf. the case n = 2 in Table 6). We conclude this section by explaining why the
Padé algorithm works in the special case above (following the argument in [8], this
generalizes immediately to other values of m, s, d, and n).

We search for coefficients bi and ci so that

b0f
′(x− h) + b1f

′(x) + b2f
′(x+ h) ≈ c0f

(
x− 3

2
h

)
+ c1f

(
x− 1

2
h

)
(2)

+ c2f

(
x+

1

2
h

)
+ c3f

(
x+

3

2
h

)
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Fig. 2. Illustrations of staggering for some linear wave equations.
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Fig. 3. Schematic illustration of the notation used in the Padé weight algorithm in a staggered
case; here s = 1

2
, d = 2, and n = 3. (All distances s, d, n are in units of the step length h.)

The notation in this and subsequent illustrations of stencils follows the convention (as adopted, e.g.,
in [7]):

◦/• derivative entry,

�/� function entry.

The symbols are unfilled or filled, depending on whether the corresponding derivative or function
value would be unknown (i.e., to be solved for) or known in the anticipated application of the stencil.

becomes exact for polynomials f(x) of as high degree as possible. Substituting f(x) =
eiωx into (2) gives

iω[b0e
−iωh + b1 + b2e

iωh]eiωx ≈ [c0e
−iω 3

2h + c1e
−iω 1

2h + c2e
iω 1

2h + c3e
iω 3

2h]eiωx

with the new goal being to make the relation as accurate as possible if locally expanded
around ω = 0 (cf. [21, pp. 24–26]). After canceling out the factor eiωx and substituting
eiωh = ξ (i.e., iωh = ln ξ), we get

ξ
1
2

ln ξ

h
≈ c0 + c1ξ + c2ξ

2 + c3ξ
3

b0 + b1ξ + b2ξ2
.(3)

This needs to be as accurate as possible around ξ = 1. Padé expansions of the
left-hand side (LHS) around ξ = 1 to order [3, 2] produces the desired coefficients:

ξ
1
2

ln ξ

h
≈ 1

h

(x− 1) + (x− 1)2 + 17
240 (x− 1)3

1 + (x− 1) + 9
80 (x− 1)2

=

(− 17
240 − 63

80x+ 63
80x

2 + 17
240x

3
)

1
h(

9
80 + 31

40x+ 9
80x

2
) .

The notation above in the description of the weights algorithm was chosen to agree
with [8]. It is noted there that the explicit case (d = 0) can be handled even more
easily by substituting a Taylor expansion for the Padé expansion used here (since the
denominator in (3) is then one). Hereafter in this paper, we consider only first deriva-
tive approximations, and we use m, n, and k to denote stencil entries as illustrated
in Figure 4.

4. Tables for some weights and formulas for limits of infinite order.
Tables 2–7 provide numerical values for the weights in the cases that are of main
interest. Closed-form expressions for the entries in all these tables (in terms of n
and k) are given in [9]. From these follow the quoted limits for k fixed and n → ∞.
Table 8 gives a more general integral formulation of these limits and shows that these
integrals can be evaluated explicitly.
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Fig. 4. Notation used to index entries in regular and staggered stencils.

The following is a very brief heuristic argument that leads to the limit expressions
in Table 8. Again, one case suffices to illustrate the general argument. We consider
the following tridiagonal (3-diagonal) regular grid case:

(4)
a−1 a0 a1◦ ◦ ◦

. . . . . . � � � � � � � � � � � � � � � . . . . . .
← b−7 b−6 b−5 b−4 b−3 b−2 b−1 b0 b1 b2 b3 b4 b5 b6 b7 →

As their widths increase, the finite-sized stencils are exact for polynomials of in-
creasingly high orders. The infinite-width limit stencil will also then be exact for all
trigonometric modes sinωx (for which the derivative is ω cosωx). When applied at
x = 0 and with step size h = 1, this gives

(5)

ω(a−1 cos(−ω) + a0 cos(0ω) + a1 cos(ω)) = 2(b1 sinω + b2 sin 2ω + b3 sin 3ω + · · ·)
(holding for all ω). We next make the very reasonable assumptions that

i. the desired limit represents the most accurate derivative approximation avail-
able of the form (4), and

ii. the derivative, being a local property of a function, is best approximated when
the coefficients bk decay to zero as fast as possible (subject to (5) holding true).
The LHS of (5) is a product of the step function ω (which jumps at ω = ±π when
periodically extended) and a periodic function a0 + 2a1 cosω (since by symmetry
a−1 = a1). The decay rate of the Fourier coefficients of this product is maximal if the
LHS is as smooth as possible at ω = ±π, i.e., when a0 +2a1 cosω has a zero there of as
high degree as possible. This occurs for a0 = 1

2 , a1 = 1
4 , and a0 +2a1 cosω = (cos ω2 )2.

We can thus (in the tridiagonal (m = 1)-case) obtain the coefficients as

ak =
1

π

∫ π

0

cosωk
(

cos
ω

2

)2

dω and

bk =
1

π

∫ π

0

ω sinωk
(

cos
ω

2

)2

dω.

The case of general m follows completely analogously.
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Table 3
Weights for implicit 3-diagonal, regular grid FD formulas.

Accuracy Weights a1
n,k for f ′ Weights b1n,k for f

n = order k = −1 0 1 −5 −4 −3 −2 −1 0 1 2 3 4 5

1 4 1
6

2
3

1
6

− 1
2

0 1
2

2 6 1
5

3
5

1
5

− 1
60

− 7
15

0 7
15

1
60

3 8 3
14

4
7

3
14

1
840

− 1
35

− 25
56

0 25
56

1
35

− 1
840

4 10 2
9

5
9

2
9

− 1
7560

1
378

− 1
27

− 13
30

0 13
30

1
27

− 1
378

1
7560

5 12 5
22

6
11

5
22

1
55440

− 1
2772

5
1232

− 10
231

− 14
33

0 14
33

10
231

− 5
1232

1
2772

− 1
55440· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Limit as n→∞:

a1
∞,k =

{
1
2

k = 0

1
4

k = ±1
; b1∞,k =


0 k = 0

3
8

sign(k) k = ±1

1
2

(−1)k

(k−1)(k)(k+1)
|k| ≥ 2
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Table 4
Weights for implicit 5-diagonal, regular grid FD formulas.

Accuracy Weights a2
n,k for f ′ Weights b2n,k for f

n order k = −2 −1 0 1 2 −5 −4 −3 −2 −1 0 1 2 3 4 5

1 6 − 1
180

17
90

19
30

17
90

− 1
180

− 1
2

0 1
2

2 8 1
70

8
35

18
35

8
35

1
70

− 5
84

− 8
21

0 8
21

5
84

3 10 1
42

5
21

10
21

5
21

1
42

− 1
1260

− 101
1260

− 85
252

0 85
252

101
1260

1
1260

4 12 1
33

8
33

5
11

8
33

1
33

1
27720

− 2
1155

− 91
990

− 14
45

0 14
45

91
990

2
1155

− 1
27720

5 14 5
143

35
143

63
143

35
143

5
143

− 1
360360

1
10296

− 3
1144

− 199
2002

− 42
143

0 42
143

199
2002

3
1144

− 1
10296

1
360360· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Limit as n→∞:

a2
∞,k =


3
8

k = 0

1
4

k = ±1

1
16

k = ±2

; b2∞,k =


0 k = 0

5
24

sign(k) k = ±1

25
192

sign(k) k = ±2

3
2

(−1)k+1

(k−2)(k−1)(k)(k+1)(k+2)
|k| > 2
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Table 8
Limits of weights as n→∞ for schemes with 2m+ 1 diagonals, m = 0, 1, 2, . . . .

Limit Integral form Explicit form
Regular grid (k integer)

am∞,k =
1

π

∫ π

0

cos(kx)

(
cos

(
x

2

))2m

dx =

{
1

22m
(2m)!

(m−k)!(m+k)!
|k| ≤ m

0 |k| > m

bm∞,k =
1

π

∫ π

0

x sin(kx)

(
cos

(
x

2

))2m

dx =


0 k = 0

(signk)(2m)!
∑|k|

j=1−|k| 1/(j+m)

22m(m−k)!(m+k)!
0 < |k| ≤ m

(−1)k+m+1(2m)!

22m
∏m

j=−m(k+j)
|k| > m

Staggered grid, same as above except as follows:
- For the bm∞,k-coefficients, k is not an integer but a “half-integer.”

- In the bm∞,k-explicit form, the formula above for 0 < |k| ≤ m applies in all cases. The sum runs over half-integers,

and (m− k)!(m+ k)! needs to be interpreted as Γ(m− k + 1)Γ(m+ k + 1).
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The literature on both regular and staggered explicit finite difference schemes
is very extensive. (This also includes some schemes that have been designed with
the goal of enhancing the accuracy for certain frequencies rather than maximizing
formal order of accuracy [13], [14], [18].) Implicit regular schemes have been derived
and studied on numerous occasions, e.g., [1], [2], [11], [12], [17], and [19]. Kopal [15]
presents tables which allow easy calculation of weights in numerous schemes, including
cases that combine staggering with implicitness (compactness). However, we are not
aware of any references which test and analyze such combined schemes.

5. Equivalence between implicit and explicit formulas. An explicit FD
stencil directly expresses how the approximation of a derivative is influenced by
changes of function values at different locations. For regular grids—as the order

of accuracy increases (i.e., n→∞)—the weights approach b0∞,k = (−1)k+1

k (k 6= 0; cf.
Table 2, [5], and [7, pp. 20–22]). The derivative approximation depends significantly
on function values quite far away (in contrast with the exact derivative being a strictly
local property of a function). For the tridiagonal implicit stencil, the decay of the

weights is much faster: b1∞,k = 1
2

(−1)k

(k−1)k(k+1) (|k| ≥ 2; cf. Table 3). Superficially, it

might appear that these approximations remain more “local.” However, to actually
obtain derivative approximations, we need to solve a tridiagonal system. The equiv-
alent explicit scheme (obtained through multiplying with the inverse of this infinite
tridiagonal matrix) will turn out to be equally globally coupled as the original explicit
scheme. The same will hold true if we have five or more diagonals; in the limit of
increasing order, these schemes all become identical.

In the staggered case, all implicit schemes similarly have the equivalent explicit

scheme limit of b∞,k = (−1)k−1/2

πk2 . In all cases—regular and staggered grids and of any
order—equivalent explicit schemes can be found as illustrated in (6):

(6)

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .

amn,−m · · · amn,0 · · · amn,m
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .



−1 

...

...

0
×
×
×
×
×
×
0
..
.
...



=



...

...

×
×
×
×
×
×
×
×
..
.
...



.

⇑ ⇑ ⇑
Equivalent

Weights
Symmetric banded Toeplitz matrix explicit

bn,k weights

The inverse of the matrix can be written down in closed form (as follows from a
consideration of the Fourier convolution theorem); it is again symmetric and Toeplitz
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Fig. 5(a). Equivalent weights for regular grid case. For the legend, see Figure 5(c). Note that
in the explicit case, the weights are 0 for n < k.

Fig. 5(b). Equivalent weights for staggered grid case. For the legend, see Figure 5(c). Note
that in the explicit case, the weights are 0 for n < k.

with the entries along diagonal k

dk =
1

2π

∫ π

−π

cos kx

amn,0 + 2
∑m
j=1 a

m
n,j cos jx

dx.(7)

For example, in the regular grid tridiagonal case (m = 1) we have

a1
n,k =


n+ 1

2n+ 1
, k = 0,

n

2(2n+ 1)
, k = ±1,

and (7) then gives

dk =
√

2n+ 1 ·
{
−1 +

1

n
(
√

2n+ 1− 1)

}|k|
.
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Fig. 5(c). Detailed legend for Figures 5(a) and 5(b), as illustrated by the (k = 1)-case of
Figure 5(a).

Figure 5 graphically illustrates how the equivalent weights compare for the different
schemes. From the point of locality, we find little advantage in using implicit schemes.
Grid staggering is seen as more important in this respect.

The limits as n → ∞ for both regular and staggered grids, if implemented on
periodic data, become identical to the respective periodic PS methods [6], [7].

6. Comparison between operation counts. Regarding the number of arith-
metic operations required to obtain the derivative at a grid point, we can note the
following:

• There is no need to make any distinction between regular and staggered
grids; their operation counts are identical (when expressed in n and number
of diagonals).
• In the implicit cases, the LU factorization can be prestored. The entries in

these matrices do not depend on the system size; i.e., one copy suffices even if
the domain geometry is such that we have to solve systems of different sizes.
• One example of an operation count suffices to illustrate the general counting

process. Consider the 3-diagonal regular grid (n = 1)-case with weights[
1

6

2

3

1

6

]
f ′ =

[
−1

2
0

1

2

]
f.

Table 9
Operation count to calculate f ′ at one grid point when using the different schemes. (There is

no difference here between regular and staggered grids.)

n = 1 2 3 4 · · · General n
Explicit 2 5 8 11 · · · 3n− 1
3-diag. 6 9 12 15 · · · 3n+ 3
5-diag. 10 13 16 19 · · · 3n+ 7
· · · · · · · · · · · · · · · · · · · · ·
k-diag. 2k 2k + 3 2k + 6 2k + 9 · · · 2k + 3n− 3
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Table 11
Ratio of error coefficients; staggered/regular grid.

Accuracy order
p = 2 4 6 8 10 12 14 16

Explicit 0.2500 0.1406 .0.0977 0.0748 0.0606 0.0509 0.0439 0.0386
3-diag. 0.5313 0.3574 0.2625 0.2065 0.1701 0.1445 0.1256
5-diag. 0.5734 0.4958 0.3915 0.3172 0.2656 0.2281
7-diag. 0.5914 0.5356 0.4831 0.4083 0.3483
9-diag. 0.6014 0.5575 0.5165 0.4766
11-diag. 0.6078 0.5715 0.5375
13-diag. 0.6122 0.5813
15-diag. 0.6155

After writing this in the form [1 4 1]f ′ = [−3 0 3]f (to get ones at the edge
of the f ′-stencil), the LU factorization takes the form

α1

1 α2

1
. . .

. . .
. . .

1 αs





1 β1

1 β2

. . .
. . .

. . . βs−1

1



 f ′



=



3
−3 3

−3
. . .

. . . 3
−3



 f

 .

The cost for each entry becomes (with “−,” “×,” and “/” denoting the type
of operation)

for right-hand side (RHS) 1−, 1×,
for U back subst. 1−, 1×,
for L back. subst. 1−, 1/.

By storing 1/αi instead of αi, the divide also becomes a multiply. The total
operation count becomes six in this case, made up of equally as many subtrac-
tions and multiplications. This case is seen in the 3-diagonal, (n = 1)-entry
in Table 9. The other entries in this table are obtained similarly.

7. Comparison of accuracies and cost-effectiveness. The leading error co-
efficient in a finite difference formula does not give a very good impression of the
formula’s accuracy or of its utility. In particular, for higher order methods, it may
not dominate further terms. Also, it offers little help in comparing methods of differ-
ent formal orders. Nevertheless, it may be of interest to note from Tables 10 and 11
that staggering is always beneficial. The advantage is seen to increase with order but
decrease with the number of diagonals used.

A frequently used alternative error comparison approach (e.g., [5], [17]) consists of
inspecting how the different derivative approximations treat a pure Fourier mode eiωx

on a grid over, say, [−1, 1] with grid spacing h. The modes that can be represented
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Fig. 6. Fourier multiplication factors for different methods, displayed against ωh. The curves
are labeled according to the order of accuracy p of the methods.
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Fig. 7. Deviation of the Fourier multiplication factors from the ideal straight line for all
the cases shown in Figure 5. The horizontal axis is labeled in both frequency ωh and in points per
wavelength (PPW). The vertical axis in each subplot extends to 0.01. All curves are labeled according
to the operation count per grid point, as given in Table 9. The “boxed” numbers mark schemes that
are particularly advantageous in their respective accuracy ranges.

on the grid will satisfy −π < ωh < π; higher modes will appear equivalent to a lower
one on the grid by aliasing. The derivative of eiωx is

d

dx
eiωx = iωeiωx = (ωh)

i

h
eiωx,

whereas the explicit, regular grid, second order FD approximation would give[
1

2
eiω(x+h) − 1

2
e−iω(x−h)

]
/h = (sinωh)

i

h
eiωx.

These factors (ωh and sinωh) are seen as the diagonal straight line and the bottom
curve, respectively, in the top left subplot of Figure 6. The sin(ωh)-curve is seen to
be approximately correct only for a small fraction of the Fourier mode the grid can
represent; using it is extremely wasteful on data storage (as well as on computational
efficiency). As the order of accuracy p is increased, the coverage over ωh = [0, π]
clearly improves.

The other five subplots in Figure 6 show how coverage is gained both by adding
diagonals (i.e., turning to implicit approximations) and by using staggering. The fact
that the curves for staggered approximations are not forced to zero at ωh = π (but
instead have zero slope there) allows them to provide a better coverage across the
spectrum.

A major advantage of this spectral comparison method (as opposed to looking
at error coefficients) is that we can directly compare methods of different orders of
accuracy. To better see the differences between the methods, we show in Figure 7 how
the different curves in Figure 6 deviate from the exact results. In this figure, the curves
are not labeled according to their accuracy but according to the computational cost
per grid point, as displayed in Table 9. We note that for either type of grid, there is a
significant improvement in going from explicit to 3-diagonal schemes, but to proceed
further to 5-diagonal does not improve efficiency much (if at all). Staggering is again
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Fig. 8. Regular grid solutions at t = 100 using different spatial approximations. The grid sizes
(shown in the bottom-left corner of each subplot) were selected to make each case equally costly in
computer time (assuming 1-D).

seen as clearly advantageous in all cases. The three schemes that are highlighted as
particularly effective in Figure 7 are all staggered, and they have the stencils

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
� � � � � � � � � � � �

order 2 order 6 order 10
,

where “�” denotes a (known) function value entry and “◦” denotes an (unknown)
derivative value entry.

8. Test problem. As a simple test problem, we consider

ut + ux = 0; periodic over [−1, 1],

initial condition u(x, 0) =

{ [
1 + cos

(
πx

0.15

)]2 |x| < 0.15,
0 |x| > 0.15.

This equation is discretized in space, and its solution advanced analytically in time
(i.e., the displays in Figures 8–11 show only spatial errors). Figure 8 shows the
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Fig. 9. Same as Figure 8, but using staggered approximations for the spatial derivative. The
reductions in the amplitudes of the dispersive wave trains (compared to the regular grid cases in
Figure 8) are particularly noticeable if one compares the wave trains as they leave the left edge of
the domains and, because of the periodicity, reappears in the right half of the subplots.

numerical and exact solutions for a regular grid with different methods at time t = 100,
i.e., after the pulse has traversed the period 50 times. The number shown in the
bottom left of each subplot tells the number of spatial grid points used—this was
selected so that, based on the operations count in Table 9, all cases would be equally
costly if run in 1-D. Figure 9 shows the equivalent data for staggered grids. As
expected from our analysis, staggering is advantageous in all the cases (but much less
so for the most implicit scheme).

Higher dimensions (2-D and 3-D) and also longer time integration strongly favor
higher order methods over lower order ones. Figure 10 shows the same test run to
time t = 2000 using grid sizes (in each spatial direction) which provide equal cost in
2-D. In Figure 11, we refine the Explicit (n = 1)-scheme successively. The additional
number within each subplot shows the relative computer time required (with “1”
corresponding to the cost of each of the cases in Figure 10). It is clear that to achieve
acceptable—say about 1%—accuracy requires exorbitant computational costs (scaling
the same in both time and memory). The bottom-left subplot in Figure 11 shows
comparable accuracy to the bottom-right one in Figure 9—at about a 4000 times
larger cost (in 3-D, this factor increases to about 260,000). The staggered second
order scheme in this comparison corresponds to the Yee scheme, which when first
proposed in 1966 was pioneering for time-dependent computational electromagnetics
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Fig. 10. Solutions for staggered grid at t = 2000 with grid sizes selected to make computations
equally time consuming in 2-D. (The memory requirements scale with the square of the numbers are
given in the bottom left corners.)

(Maxwell’s equations) [22]. It has since enjoyed a long-lasting popularity (e.g., [16],
[20]) in spite of its low order of accuracy.

9. Conclusions. Combining

• high orders of accuracy (i.e., wider stencils),
• implicitness, and
• staggering

leads to a class of computationally very cost-effective finite difference schemes. As
their orders of accuracy are increasing, these schemes approach in accuracy the well-
known spectral accuracy of periodic, explicit PS schemes. The schemes are defined on
equispaced Cartesian grids. When combined with the idea of overlapping subdomains,
the relatively narrow stencil widths make the schemes well-suited for computations
in media with curvilinear material interfaces. The schemes can be applied to most
wave-type PDEs of broad interest. In the particular application of time-domain com-
putational electromagnetics (TDCEM), the classical Yee scheme satisfies only the last
of the three conditions above—we find that major improvements in efficiency can be
achieved by also accommodating the other two conditions.

This paper quotes a large number of results, often with few hints about their
derivations. More details in that respect are found in [9].
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Fig. 11. Solutions at t = 2000 for the staggered explicit n = 1 (Yee-type) scheme for increasingly
fine grids. The numbers in the bottom-left corners denote—as before—the number of grid points
across the period. The numbers in the bottom-right corners give the relative cost in both computer
time and memory, if implemented in 2-D, compared to the unit (1) cost of all the cases in Figure 10.
The top-left subplot of Figures 10 and 11 are identical—we see here how costly it is to achieve high
accuracy by refining the grid in this scheme.
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