Differential Dynamical Systems — Revised Edition (1st Printing)

J.D. Meiss

April 17, 2019

Errors are listed by page and line number. The symbol \(\Rightarrow \) means “replace with”. A negative line number means count from the bottom of the page. Each equation line is counted as one line and footnotes are not counted.

The first printing (Jan 2017) of the revised edition has 10 9 8 7 6 5 4 3 2 1 on the copyright page.

<table>
<thead>
<tr>
<th>Ch.</th>
<th>Page</th>
<th>Line</th>
<th>Change</th>
<th>Thanks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>65</td>
<td>14</td>
<td>The matrices (C) and (D) in Ex. 2.12(b) should be transposed. Thus (\sum_{j=1}^{n_k} c_{ij}v_j \Rightarrow \sum_{j=1}^{n_k} v_jc_{ji}) (\sum_{j=1}^{n_k} d_{ij}v_j \Rightarrow \sum_{j=1}^{n_k} v_jd_{ji})</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>77</td>
<td>14</td>
<td>for all (n > N) (\Rightarrow) for all (n \geq N)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>79</td>
<td>18</td>
<td>(\delta + \frac{r_i}{2} + \Rightarrow \delta + \frac{r_i}{2})</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>104</td>
<td>9</td>
<td>(S^1 \rightarrow \mathbb{R}^n \Rightarrow S^1 \rightarrow M)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>105</td>
<td>17</td>
<td>(x_1 = u(s, x_o) \Rightarrow x_1 = u(s; x_o))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>117</td>
<td>-9</td>
<td>since (\alpha - K\varepsilon < 0 \Rightarrow) since (\alpha - K\varepsilon > 0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>118</td>
<td>-3</td>
<td>a (\delta < \varepsilon) such that (L(x) \leq m \Rightarrow) a (\delta < \varepsilon) such that (L(x) < m)</td>
<td>MS</td>
</tr>
<tr>
<td></td>
<td>118</td>
<td>-1</td>
<td>beyond the (\Rightarrow) to the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>121</td>
<td>5</td>
<td>(see Exercise 4.23) (\Rightarrow) (see Exercise 8)</td>
<td>MS</td>
</tr>
<tr>
<td></td>
<td>136</td>
<td>5-6</td>
<td>extra line feed after “does not”</td>
<td></td>
</tr>
<tr>
<td></td>
<td>137</td>
<td>12</td>
<td>Theorem 4.6 (\Rightarrow) Theorem 4.19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>141</td>
<td>9</td>
<td>((-1,0) \Rightarrow (1,0))</td>
<td></td>
</tr>
<tr>
<td>Ch.</td>
<td>Page</td>
<td>Line</td>
<td>Change</td>
<td>Thanks</td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>8</td>
<td>270</td>
<td>-8</td>
<td>the map $\nu = p(\mu) = m(\mu)c(\mu)$ \Rightarrow the map $\nu = p(\mu) = \frac{1}{2}m(\mu)c(\mu)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>288</td>
<td>12</td>
<td>“and stable if $Re(\lambda) > 0$ and” \Rightarrow and, in the two-dimensional center subspace, is stable if $Re(\lambda) > 0$ and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>314</td>
<td>17</td>
<td>“ways of putting n identical balls into m boxes” \Rightarrow ways of choosing n objects from a set of m objects.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>315</td>
<td>8</td>
<td>“Verify that this system has the form (8.40) and satisfies” \Rightarrow “Verify that when $\lambda = 0$, this system can be transformed to the form (8.40). Then show it satisfies”</td>
<td></td>
</tr>
</tbody>
</table>