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Abstract

Planar polynomial automorphisms are polynomial maps of the plane whose inverse is also a polynomial map. A map is
reversible if it is conjugate to its inverse. Here we obtain a normal form for automorphisms that are reversible by an involution
that is also in the group of polynomial automorphisms. This form is a composition of a sequence of generalized Hénon maps
together with two simple involutions. We show that the coefficients in the normal form are unique up to finitely many choices.
 2003 Elsevier Science B.V. All rights reserved.

PACS: 05.45.Ac; 45.20.Jj; 47.52.+j

1. Introduction

A diffeomorphism g has a reversing symmetry, or
is “reversible” if it is conjugate to its inverse [1–4], i.e.,
there exists a diffeomorphism R such that

(1)g−1 = RgR−1.
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Reversible maps have a number of special properties
and occur often in applications. For example, if the
phase space of a system consists of configuration
coordinates and momenta, then it is often the case
that reversal of the momenta, R(q,p) = (q,−p),
corresponds to the reversal of time. Note that if R is
a reversor, then it generates a family of reversors gnR,
for any integer n.
Reversibility is often associated with Hamiltonian

systems, and more generally to conservative dynam-
ics. Most representative examples of reversible sys-
tems originate in the study of Hamiltonian dynamics,
and many Hamiltonian systems appearing in applica-
tions are reversible. It is, however, well known that
these properties are independent: Hamiltonian systems
need not be reversible, and reversible systems need not
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be conservative, or even volume-preserving [5] (see
also [4] and references therein).
Often the reversor is an involution, R−1 = R. This

is the case, for example, for the physical reversor
mentioned above. When this is true, a reversible map
can be written as the composition of two involutions

g = (gR)(R),

since gR is also an involution. For example, the
standard [6] and area-preserving Hénon maps [2] have
involutions as reversors.
Orbits of g that intersect the fixed sets of the family

of reversors, gnR, are called “symmetric orbits”.
Since Fix(R) = {z: R(z) = z}, generally has lower
dimension than the phase space, these orbits are
special, and are easier to find than general orbits. Their
bifurcations are also special; for example, in the two-
dimensional case, pitchfork bifurcations are generic in
one-parameter families of reversible maps [7]. From
this point of view, a reversor that is an involution is
particularly interesting, because its fixed set is often
nontrivial. For example, every orientation-reversing
involution of the plane has a one-dimensional fixed
set [5].
Our goal is to classify reversible polynomial auto-

morphisms of the plane. Polynomial maps form one of
the simplest, nontrivial classes of nonlinear dynamical
systems. A polynomial automorphism is a polynomial
diffeomorphism whose inverse is also polynomial.
Such maps can give rise to quite complicated dynam-
ics as exemplified by the renowned Hénon quadratic
map [8]. A larger family of maps consists of the gen-
eralized Hénon maps of the form

(2)h : (x, y) → (
y,p(y) − δx

)
,

where δ = det(Dh) $= 0 is the Jacobian of the map
and p(y) is any polynomial of degree ! 2. These
maps are reversible when they are area and orienta-
tion-preserving, i.e., δ = 1, or area-preserving and
orientation-reversing, δ = −1, providing that p is
an even polynomial. Some of their dynamics has
been studied in [9,10]. In [9] Friedland and Milnor
prove that every polynomial automorphism that is not
dynamically trivial is conjugate to a composition of
generalized Hénon transformations.
A remarkable property of any polynomial automor-

phism is that the determinant of its Jacobian matrix is
a nonzero constant (a famous unsolved question—the

Jacobian conjecture—is to determine if all polynomial
maps with a nonzero, constant Jacobian are polyno-
mial automorphisms [11]). It follows as a simple con-
sequence of (1) that when the Jacobians of g and R

are constant, then g is volume-preserving. Therefore,
polynomial automorphisms possessing polynomial re-
versors must be volume-preserving.
Since the composition of any two polynomial

automorphisms is again a polynomial automorphism,
the set of polynomial automorphisms of R2 or of the
complex plane, C2, is a group, we call it G. We will
make use of the results of Jung on the structure of
G to investigate polynomial automorphisms that are
reversible. Our results also heavily use the normal
form for elements of G in terms of generalized Hénon
maps obtained by Friedland and Milnor [9].
For the purposes of this Letter, we restrict atten-

tion to the case that R is an involution. While this is a
restriction, we will show in a forthcoming paper that
noninvolutory reversors are exceptional in the sense
that additional conditions on the generalized Hénon
transformations are required [12]. It has been previ-
ously shown that all reversible polynomial mappings
in generalized standard form possess involutory rever-
sors [13].
We will classify all maps that are reversible by an

involution in G and obtain unique normal forms for
these maps under conjugacy in G. Just as in [9], these
normal forms involve compositions of generalized
Hénon maps; however, in this case, the reversors
are introduced by including two involutions in this
composition. We will see that reversible maps are
either dynamically trivial, or conjugate to a map of the
form

(3)
(
h−1
1 · · ·h−1

m

)
r1(hm · · ·h1)r0.

Here the maps ri are involutions that can be con-
structed from “elementary” involutions (see Proposi-
tion 5) and the simple permutation

(4)t : (x, y) → (y, x).

Conversely, any map of the form (3) is reversible when
the ri are involutions.
Specifically our main result shows that there are

three classes of reversible automorphisms:

Theorem 1. Let g be a nontrivial reversible automor-
phism. Then g is conjugate to one of the following
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classes of maps

(AA)
(
h−1
1 · · ·h−1

m

)
t (hm · · ·h1)t;

(EA)
(
h−1
1 · · ·h−1

m

)
em+1(hm · · ·h1)t;

(EE)
(
th−1
1 · · ·h−1

m

)
em+1(hm · · ·h1t)e0;

where hi represents a Hénon transformation in the
form (2) and e0, em+1 are elementary involutions, i.e.,
maps of the form

e : (x, y) →
(
p(y) − δx, εy

)
.

Here δ and ε ∈ {−1,+1} and p(εy) = δp(y) (see
Proposition 5). Furthermore it can be required that the
Hénon transformations hi = tei , i = 1, . . . ,m, as well
as the involutions e0, em+1 be normalized by choosing
the leading coefficients of the polynomialspi to be+1,
and their centers of mass (the sum of their roots) to
be 0. In this case the resulting composition is unique
up to a finite number of choices.

Here the terminology (AA), etc., refers to the
cases that the two involutions are both affine or
elementary or one of each. We prove this result in
Section 4. Although Theorem 1 refers to polynomial
automorphisms of the complex plane it is not difficult
to specialize the result to the real case, as we stipulate
next.

Remark. For real polynomial automorphisms, a slight
modification of the arguments in the proof of Theo-
rem 1 allows us to obtain real normal forms. To do
this, we might need to allow the leading coefficient of
one of the polynomials in the normal Hénon transfor-
mations to be−1 instead of 1. This occurs because, as
we will see in Section 4, the equations that we need to
solve to normalize the maps otherwise may not have
real solutions.

2. Background

For future reference we include some basic termi-
nology and results (see, e.g., [9] for more details).
We will study polynomial maps of the complex

plane, C2, occasionally specializing to the real case.
We let G denote the group of polynomial automor-
phisms of the complex plane, i.e., the set of bijective

maps

g : (x, y) →
(
X(x,y),Y (x, y)

)
, X,Y ∈ C[x, y],

having a polynomial inverse. Here C[x, y] is the
ring of polynomials in the variables x and y , with
coefficients in C. The degree of g is defined as the
largest of the degrees of X and Y .
The subgroup E ⊂ G of elementary maps consists

of maps of the form

(5)e : (x, y) →
(
αx + p(y),βy + η

)
,

where αβ $= 0 and p(y) is any polynomial. The
subgroup of affine automorphisms is denoted by A.
The affine maps that are also elementary will be
denoted by S = A ∩ E , while Ŝ will denote the group
of diagonal affine automorphisms,

(6)ŝ : (x, y) → (αx + ξ,βy + η).

It is worthwhile to note that Ŝ is the largest
subgroup of S normalized by t : (x, y) → (y, x), i.e.,
such that tŜt = Ŝ . On the other hand a map s ∈ S
commutes with t if it is a diagonal automorphism (6)
with α = β and ξ = η. This subgroup of Ŝ is the
centralizer of t in S ,

CS (t) = {
s ∈ S: sts−1 = t

}
.

Finally, conjugacy by t will be denoted by φ,

(7)φ(g) = tgt.

Thus if s ∈ CS (t), then φ(s) = s.
According to Jung’s theorem [14] every polynomial

automorphism g /∈ S , can be written as

g = gmgm−1 · · ·g2g1,
(8)gi ∈ (E ∪A) \ S, i = 1, . . . ,m,

with consecutive terms belonging to different sub-
groupsA or E . An expression of the form (8) is called
a reduced word of length m. An important property of
a map written in this form is that its degree is the prod-
uct of the degrees of the terms in the composition [9,
Theorem 2.1]. As a consequence of this fact it can be
seen that the identity cannot be expressed as a reduced
word [9, Corollary 2.1]. This fact in turn means that G
is the free product of E and A amalgamated along S .
The structure of G as an amalgamated free product de-
termines the way in which reduced words correspond-
ing to the same polynomial automorphism are related.
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Theorem 2 (cf. [9, Corollary 2.3] or [15, Theo-
rem 4.4]). Two reduced words gm · · ·g1 and g̃n · · · g̃1
represent the same polynomial automorphism g if and
only if n = m and there exist maps si ∈ S , i = 0, . . . ,m
such that s0 = sm = id and g̃i = sigis

−1
i−1.

From this theorem it follows that the length of a
reduced word (8) as well as the degrees of its terms are
uniquely determined by g. The sequence of degrees
(l1, . . . , ln) corresponding to the maps (g1, . . . , gm),
after eliminating the 1’s coming from affine terms, is
called the polydegree of g.
A map is said to be cyclically-reduced in the trivial

case that it belongs to A ∪ E or in the case that it can
be written as a reduced word (8) with the additional
conditionsm ! 2 and gm, g1 not in the same subgroup
E or A.
Two maps g, g̃ ∈ G are conjugate in G if there exists

f ∈ G such that g = f g̃f −1. If f belongs to some
subgroupF of G we say that g and g̃ are F -conjugate.
It can be seen that every g ∈ G is conjugate to a
cyclically-reduced map. It can also be proved that
every affine map a can be written as a = st s̃ , with
t : (x, y) → (y, x) and s, s̃ affine elementary maps.
From these facts it follows that every polynomial
automorphism that is not conjugate to an elementary
or an affine map is conjugate to a reduced word of the
form,

g = tem · · · te2te1,
(9)ei ∈ E \ S, i = 1, . . . ,m, m ! 1.

Moreover this representative of the conjugacy class
is unique up to modifications of the maps ei by
diagonal affine automorphisms and cyclic reordering.
More precisely we have the following theorem (cf.
[15, Theorem 4.6]).

Theorem 3. Two nontrivial, cyclically-reduced words
g = gm · · ·g1 and g̃ = g̃n · · · g̃1 are conjugate if and
only if they have the same length and there exist
automorphisms si ∈ S , i = 0, . . . ,m, with sm = s0,
and a cyclic permutation,

(ĝm, . . . , ĝ1) = (g̃k, . . . , g̃1, g̃m, . . . , g̃k+1)

such that ĝi = sigis
−1
i−1. In that case,

s0gs−1
0 = ĝm · · · ĝ1.

In particular, if g = tem · · · te1 and g̃ = t ẽm · · · t ẽ1
are conjugate, there exist diagonal automorphisms
si ∈ Ŝ, sm = s0, and a cyclic reordering,

(êm, . . . , ê1) = (ẽk, . . . , ẽ1, ẽm, . . . , ẽk+1),

such that t êi = si teis
−1
i−1 and

s0gs−1
0 = t êm · · · t ê1.

Proof. Let us consider g = gm · · ·g1 and g̃ = g̃n · · · g̃1,
two nontrivial, cyclically-reduced, conjugate words.
By assumption, there is a reducedword f = fk · · ·f1 ∈
G, such that g = f g̃f −1. Then,

(10)gm · · ·g1 = fk · · ·f1g̃n · · · g̃1f −1
1 · · ·f −1

k .

However, the word on the right-hand side of (10) is
not reduced. Since g̃ is cyclically-reduced, we can
suppose, with no loss of generality, that f1 and g̃n

belong to the same subgroup A or E, so that f −1
1

and g̃1 lie in different subgroups. Taking into account
Theorem 2 and that (10) represents a cyclically-
reduced map, we can reduce to obtain

(11)fk · · ·f1g̃n · · · g̃1 =
{

skg̃n−k · · · g̃1, if n ! k,

fk · · ·fn+1sn, if n < k,

where sn, sk ∈ S . Moreover there exist si ∈ S, s0 = id,
such that fisi−1g̃n−i+1 = si for i = 1, . . . ,min(n, k).
For the case n ! k,

gm · · ·g1 = skg̃n−k · · · g̃1f −1
1 · · ·f −1

k

= (skg̃n−k)g̃n−k−1 · · · g̃1g̃n · · ·
◦ g̃n−k+2

(
g̃n−k+1s−1

k

)
,

and applying Theorem 2 we have the result. The case
n < k follows analogously.
To prove the second statement of this theorem it is

enough to recall that given s ∈ S , tst stays in S if and
only if s is diagonal. !

It can be noted from the previous theorem that the
length of a cyclically-reduced word is an invariant
of the conjugacy class. Since a nontrivial, cyclically-
reduced word has the same number of elementary
and affine terms, we refer to this number as the
semilength of the word. Theorem 3 also implies that
two cyclically-reduced maps that are conjugate have
the same polydegree up to cyclic permutations. We
will call this sequence the polydegree of the conjugacy
class.
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3. Involutory reversing symmetries

As was noted in the introduction, a map has an
involutory reversing symmetry if and only if it can
be expressed as the composition of two involutions. In
this section we make use of this property to describe
the class of polynomial automorphisms that possess
involutory reversors. We start by studying involutions.

3.1. Polynomial involutions

To begin, we show that all polynomial involutions
are dynamically trivial, i.e., are conjugate to affine or
elementary maps.

Proposition 4. A map g ∈ G is an involution if and
only if g is conjugate to an affine or to an elementary
involution.

Proof. Assume that g is an involution conjugate in
G to a cyclically-reduced map with semilength m:
g̃ = amem · · ·a1e1, m ! 1. As the involution condition
is preserved under conjugacy we have,

g̃2 = amem · · ·a1e1amem · · ·a1e1 = id.

But this is a contradiction since the identity cannot
be written as a reduced word. It follows that g must
be conjugate to either an affine or to an elementary
map. !

We investigate next the affine and elementary invo-
lutions. For later use, we also find their normal forms
corresponding to conjugacy by elements in CS (t).

Proposition 5. In addition to the identity, elementary
involutions correspond to the following classes and
normal forms under CS (t)-conjugacy.

(1) (x, y) → (−x + p(y), y), p(y) any polynomial.
Normal form: (x, y) → (−x + p(y), y), p(y) =
yl + O(yl−2).

(2) (x, y) → (x +p(y),−y +η), p(y) odd around η
2 .

Normal form: (x, y) → (x +p(y),−y), p(y) odd
with leading coefficient 1.

(3) (x, y) → (−x +p(y),−y +η), p(y) even around
η
2 .
Normal form: (x, y) → (−x + p(y),−y), p(y)

even with leading coefficient 1.

These normal forms are unique up to replacing p(y)

by ζp(y/ζ ), where ζ is any root of unity of order l − 1
and l is the degree of p(y).

Proof. For an elementary automorphism (5) we have

e2(x, y) =
(
α2x + αp(y) + p(βy + η),

β2y + βη + η
)
.

Setting e2 = id it is easy to see that if e $= id, e has
to be of one of the three classes in the proposition.
Now, defining coordinates u = ax + b, v = ay + b,
a simple calculation shows that e can be written in the
corresponding normal form. Moreover the values of
a and b yielding that normal form are unique up to
(l − 1)th roots of unity. !

Remark. It can be proved that every elementary
involution is E-conjugate to one of the affine maps,
(x, y) → (±x,±y), where the coefficients of x and
y are conjugacy invariants. However for the purposes
of this Letter we will only normalize the involutions
by using conjugacy in CS (t). Normal forms for
elementary maps are fully discussed in [9].

Proposition 6. Let a be an affine, nonelementary
automorphism,

(12)a : (x, y) → â(x, y) + (ξ, η),

with â linear. Then a is an involution if and only if
the eigenvalues of â are 1 and −1 and (ξ, η) is in the
eigenspace of −1.
Furthermore, all affine nonelementary involutions

are S-conjugate to t .

Proof. Let be a given by (12). This map is an
involution if for every (x, y),

â2(x, y) + (â + id)(ξ, η) = (x, y).

The above identity holds if and only if â is an
involution and has −1 as eigenvalue, with associated
eigenvector (ξ, η). Taking into account that â is not
elementary, the condition â2 = id means that the
eigenvalues of â must be 1 and −1. Besides, it can
be noted that the eigenspace of −1 is generated by
(â − id)(1,0). This follows from â2 − id = (â +
id)(â − id) = 0 and the assumption that a /∈ S .
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To prove the second part of the proposition, con-
sider first a linear, nonelementary involution â(x, y).
In that case, taking s(x, y) = x(1,0) + yâ(1,0), we
see that â = sts−1.
Next, we show that every affine, nonelementary

involution (12) is S-conjugate to its linear part â. We
know that (ξ, η) = (â − id)(c,0) for some scalar c.
Taking s(x, y) = (x + c, y) it follows that sas−1 = â
and the proof is complete. !

3.2. Normal forms

We intend to describe polynomial automorphisms
that are reversible by involutions. Let g be one such
automorphism. In that case g = R1R0, where R1 and
R0 are involutions. According to Proposition 4, Ri =
girig

−1
i , i = 0,1, where ri is an elementary or an

affine involution and gi ∈ G. Then g is conjugate to
r1f r0f −1 with f = g−1

1 g0. If f ∈ S , g is conjugate
to the composition of a pair of involutions in A ∪ E .
Let us consider f /∈ S so that it can be written as a
reduced word, f = fn · · ·f1, n ! 1. However,

(13)f r0f
−1 = fn · · ·f1r0f −1

1 · · ·f −1
n ,

is not reduced if r0 and f1 are in the same subgroup
A or E . After reducing (13), we obtain either a map
s0 ∈ S conjugate to r0, or a reduced word

fn · · ·fkr̃0f
−1
k · · ·f −1

n ,

where r̃0 is an affine or an elementary involution,
conjugate to r0. In the last case we see that g is
conjugate to

f −1
k · · ·f −1

n r1fn · · ·fkr̃0.

Now, f −1
k · · ·f −1

n r1fn · · ·fk is not necessarily a re-
duced word. This expression reduces either to a
map s1 ∈ S conjugate to r1, or to a reduced word,
f −1

k · · ·f −1
k+l r̃1fk+l · · ·fk , where r̃1 is an affine or an

elementary involution, conjugate to r1. Therefore a
polynomial automorphism is reversible if and only if it
is conjugate to a cyclically-reduced map of one of the
following types:

(R1) (trivial case) g = r̃1r̃0 ∈ A∪ E , where r̃0, and r̃1
are both affine or both elementary involutions;

(R2) a reduced word,

(14)g = f −1
1 · · ·f −1

m r̃1fm · · ·f1r̃0,

where r̃0, r̃1 are involutions. Note that this in-
cludes g of the form r̃1r̃0 with r̃0, r̃1 not in the
same subgroupA or E .

An immediate consequence of this structure is that
the possible polydegrees for conjugacy classes of
reversible maps are restricted to be of the form
([l0], l1, . . . , lm, [lm+1], lm, . . . , l1), the terms in brack-
ets being optional.
Friedland andMilnor [9] obtained normal forms for

conjugacy classes in G using generalized Hénon trans-
formations (2). Note that (2) is of the form te with e

an elementary map. If the polynomial p(y) in (2), has
leading coefficient equal to 1 and center of mass at 0,
i.e., if p(y) = yl + O(yl−2), we say that the Hénon
transformation is normal. When restricted to the real
case we say the transformation is normal if the center
of mass of p(y) is 0 and the leading coefficient is ±1.
Now, according to [9, Theorem 2.6], every cyclically
reduced map that is not elementary or affine is con-
jugate to a composition of generalized Hénon trans-
formations.Moreover, with the additional requirement
that the Hénon transformations be normal, that compo-
sition is unique, up to finitely many choices. It can be
noted that the number of Hénon transformations in a
Hénon normal form equals the semilength of the word.
For the case of reversible maps, Hénon normal

forms do not reflect the specific structure of the word.
Our next goal is thus to find normal forms better
adapted to reversible automorphisms. Maps of type
(R1) are dynamically trivial, thus we study conjugacy
classes for maps of type (R2). Our goal is Theorem 1,
which discusses normal forms for reversible automor-
phisms. The following is a preliminary result.

Lemma 7.Given a cyclically-reduced map of the form
(9), there exist diagonal affine automorphisms sm, s0 ∈
CS (t), such that smgs−1

0 is a composition of normal
Hénon transformations. In other words,

smgs−1
0 = t êm · · · t ê1,

where each of the terms t êi is a normal Hénon trans-
formation. Additionally the terms in the composition
are unique up to a finite number of choices.

Proof. The proof of this result follows closely the
methods of [9], so we omit it.
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Table 1
Conditions for a Hénon normal form map with semilength m = 2,3, or 4, to be reversible by polynomial involutions

Semilength Normal form and polydegree Conditions on δi Conditions on pi

2 (AA) (l1, l1) δ1δ2 = 1 p2(y) = cδ2p1(cy),
where cl1+1 = δ1

2 (EE) (l1, l2) δ1 = δ2 = 1 None
δ1 = δ2 = −1 p1(y) odd

p1(y),p2(y) even
δ1 = 1, δ2 = −1 p1(y) even

p1(y) odd, p2(y) even

3 (EA) (l1, l2, l1) δ1δ2δ3 = 1, δ3 = δ
l1
2 p3(y) = δ3p1

( y
δ2

)

δ1δ2δ3 = 1, δ3 = −(−δ2)
l1 p2(y) odd,

p3(y) = −δ3p1
(− y

δ2

)

δ1δ2δ3 = −1, δ3 = −δ
l1
2 p2(y) even,

p3(y) = −δ3p1
( y
δ2

)

4 (AA) (l1, l2, l2, l1) δ1δ2δ3δ4 = 1, p3(y) = cδ3p2(cy),
cl2+1 = 1

δ3
and cl1+1 = δ

l1
1 δ

l1+1
4 p4(y) = δ4

c p1
( δ1δ4

c y
)

for some common c

4 (EE) (l1, l2, l3, l2) δ1δ3 = 1, δ2δ4 = 1, δ2 = δ
l2
1 p4(y) = δ4p2(δ1y)

δ1δ3 = 1, δ2δ4 = 1, p1(y),p3(y) odd,
δ2 = −(−δ1)

l2 p4(y) = −δ4p2(−δ1y)

δ1δ3 = 1, δ2δ4 = 1, p1(y),p3(y) even,
δ2 = −δ

l2
1 p4(y) = −δ4p2(δ1y)

δ1δ3 = 1, δ2δ4 = −1, p3(y) even,
δ2 = δ

l2
1 p4(y) = −δ4p2(δ1y)

δ1δ3 = −1, δ2δ4 = 1, p1(y) odd, p3(y) even,
δ2 = −(−δ1)

l2 p4(y) = −δ4p2(−δ1y)

δ1δ3 = −1, δ2δ4 = −1, p3(y) odd,
δ2 = δ

l2
1 p4(y) = −δ4p2(δ1y)

As in their arguments, the normal form is unique
up to scaling the polynomials and the parameters δi by
lth roots of unity, where l = l1 · · · lm−1(lm − 1) and li
is the degree of ei . !
With these results, we can recall our main theorem

Theorem 1, which is proved in Section 4. The normal
forms developed in this theorem give a description
of all conjugacy classes for reversible polynomial
automorphism. They provide also a way to verify if
a given polynomial automorphism is reversible, by
checking if it is possible to carry it into any of the
normal forms described in the theorem. It would be
desirable however to obtain a more direct criteria to
distinguish reversible automorphisms. Although that
seems difficult in general, we can develop conditions
for the shorter words. It is clear, for example, that a
normal Hénon transformation h = te is reversible if
and only if δ = 1, so that e is a normal involution, or

if δ = −1 and p(y) is an even polynomial. These are
then the only reversible maps of semilength 1, written
as composition of normal Hénon transformations.
In Table 1 we summarize the criteria for words of
semilength m = 2,3 and 4 when they are given in
normal Hénon form, i.e., written as composition of
normal Hénon transformations, g = hm · · ·h1,

hi = tei : (x, y) → (y,pi(y) − δix),

i = 1, . . . ,m.

The corresponding polydegree is assumed to be
(l1, . . . , lm). The conditions in Table 1 should be un-
derstood up to cyclic reorderings of the indexes.

4. Proof of Theorem 1

We now proceed to the proof of Theorem 1.
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Proof. Consider g given by the reduced word (14).
We can replace all affine terms in that expression by
st s̃ , for some s, s̃ ∈ S . In particular, if either r̃0 or r̃1
are affine we replace them by si ts

−1
i for some si ∈ S ,

i = 0,1. This allows us to see that g is conjugate to a
word of the form

(15)te−1
1 · · · te−1

m [tem+1]tem · · · te1[te0],
where e0, em+1 are elementary involutions. The brack-
ets around te0 and tem+1 indicate that those terms
may not appear, depending on what kind of in-
volutions, affine or elementary, are represented by
r̃0 and r̃1. Now, this expression can be written as
tf −1t[tem+1]f [te0], with f = tem · · · te1. Lemma 7
allows us to replace f by s−1

m têm · · · t ê1s0, with
each t êi a normal Hénon transformation and sm, s0 ∈
CS (t). If f −1 is similarly replaced, we observe that
g is conjugate to a map of the form (15), where the
terms tei are now normal Hénon transformations, for
i = 1, . . . ,m, and e0, em+1 are any elementary invo-
lutions. Now, if r̃0 and r̃1 are affine, so that te0 and
tem+1 are omitted in (15), this proves g is conjugate
to the normal form (AA). However, if either of these
involutions are elementary it is possible to make an ad-
ditional simplification. It should be noted that in such
cases the conditions s0, sm ∈ CS (t) may be unneces-
sary.
Let us consider the case (EA), that is when only

one of r̃0, r̃1 is an elementary involution. We can
assume that only tem+1 appears in (15), the other
case being equivalent after a cyclic reordering. We
can also assume that the terms tei , i = 1, . . . ,m are
already normal Hénon transformations, but em+1 is an
arbitrary involution of any of the classes described in
Proposition 5. For i = 0, . . . ,m, we introduce diagonal
affine automorphisms

(16)si (xi, xi+1) = (ui, ui+1), ui = aixi + bi,

and replace each term tei , i = 1, . . . ,m by t êi =
si teis

−1
i−1. Now, if on the one hand s0 ∈ CS (t), and

on the other te−1
i is replaced by φ(si−1)te−1

i φ(s−1
i )

for i = 1, . . . ,m, with φ as given by (7), while tem+1
becomes replaced by φ(sm)tem+1s−1

m , we preserve the
conjugacy class and the structure of the word.
For t êi , i = 1, . . . ,m, to remain normal, it is

necessary that bi = 0 and ai+1 = a
li
i , i = 1, . . . ,m. We

also need a0 = a1 and b0 = b1 in order to have s0 ∈

CS (t). Finally the condition that êm+1 be in normal
form yields additional equations,

κm+1am = a
lm+1
m+1, lm+1κm+1bm+1 = λm+1am+1,

where pm+1(y) = κm+1ylm+1 +λm+1ylm+1−1+ (lower
order terms), is the polynomial associated to em+1. It
is not difficult to see that this system of equations gives
a0 up to lth roots of unity, for l = l1 · · · lm−1(lmlm+1−
1). All other ai and bi are then uniquely determined.
The remaining case, when both involutions are

elementary, follows in a similar way.
We have proved existence of normal forms as

promised. Uniqueness of those forms is a consequence
of Theorem 3. However, some details deserve further
discussion. Note that to preserve the structure of the
word as a reversible automorphism, we chose to apply
to te−1

i the images under the isomorphism φ of the
maps si, si−1 that modify tei . To discuss uniqueness
we have to check if it is possible to apply other
diagonal automorphisms to te−1

i , and still preserve
the structure of the word as well as the normalizing
conditions.
Suppose that (15) is in normal form, and for i =

1, . . . ,m, we replace tei by t êi = si teis
−1
i−1, si given

by (16). Consider also diagonal affine automorphisms
s̃i (x̃i+1, x̃i) = (ũi+1, ũi ), with ũi = ãi x̃i + b̃i , and
replace te−1

i by t ẽi = s̃i−1te−1
i s̃−1

i , i = 1, . . . ,m. It
should be noted that when te0 appears it has to be
replaced by s0te0s̃

−1
0 , otherwise s̃0 must be equal

to s0; similar considerations follow with respect to
tem+1. If after these changes the word is still in normal
form, with no need of cyclic reordering, it would
be necessary that t ẽi = t ê−1

i for i = 1, . . . ,m. This
condition is equivalent to

(17)σi tei = teiσi−1,

where σi = s−1
i φ(s̃i ),

σi(x, y) = (Aix + Bi,Ai+1y + Bi+1), i = 0, . . . ,m,

Ai = ãi

ai
, Bi = b̃i − bi

ai
, i = 0, . . . ,m + 1.

Then (17) reduces to

Ai+1 = Ai−1,

Ai+1pi(y) + Bi+1 = pi(Aiy + Bi) − δiBi−1,

for i = 1, . . . ,m. It is not difficult to see that the above
equations, together with the requirement that the terms
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in the composition be in their normal form, imply
Bi = 0 for all i = 0, . . . ,m + 1. It also follows that
all Ai = 1 (so that σi = id and s̃i = φ(si)) unless the
subgroup of roots of unity,

(18)
K =

{
ω ∈ C: pi(y) = ωpi(ωy), i = 0, . . . ,m + 1

}

is not trivial. Moreover, for normal forms (EA) and
(EE) we also obtain that all Ai = 1 when the order of
K is odd while if the order of K is even either Ai = 1
or Ai = −1 for every i .
If for the moment we disregard reorderings, the

above discussion allows us to see that the normal
forms we have obtained are unique up to the modi-
fications we describe next. Let us consider again that
(15) is in normal form and denote by k the order of the
group K and by l the number

l = l0 · · · lm−1(lmlm+1 − 1),
with l0 and lm+1 taken equal to 1 if the corresponding
involutions do not appear. Let ζ be any lth root of
unity when k is odd, and any 2lth root of unity when
k even. For i = 1, . . . ,m + 2 define ai = ζ l0···li−1 and
set a0 = ζ 1−l . Then all possible normal forms can be
obtained by the following modifications:

(1) For i = 1, . . . ,m+1 replace the polynomial pi(y)

related to the elementary map ei , by ai+1pi(y/ai)
and the coefficient δi by ai+1δi/ai−1.

(2) If either of the involutions ei(x, y) = (pi(y) −
δix, εiy), i = 0 or i = m + 1 appears, εi must be
replaced by ζ lεi . Besides p0(y) has to be replaced
by a1p0(y/ζ ) and the coefficient δ0 by ζ lδ0.

It may be noted that for normal form (AA) ζ could
be any klth root of unity, although in that case a0 =
ζ 1−(−1)ml . However, some further analysis shows that,
depending on the parity of k, it suffices to consider lth
or 2lth roots of unity.
Finally we discuss reorderings. Suppose that g =

g2m · · ·g1 is a nontrivial, cyclically-reduced, reversible
map. Then it is possible to factor g as the composition
of two involutions,

g =
(
g2m · · ·

(
g2ks

−1))((sg2k−1) · · ·g1
)

=
(
f −1

k+1 · · ·f −1
m r1fm · · ·fk+1

)

(19)◦
(
fk−1 · · ·f1r0f −1

1 · · ·f −1
k−1

)
,

with s ∈ S and r0, r1 involutions. It should be noted
that to obtain normal formswe considered a reordering
of the terms that makes the last factor in the reduced
word (19) of length 1. For any conjugacy class
giving rise to normal forms (AA) or (EE), there are
two different reorderings of the terms having such
structure, therefore yielding two families of normal
forms. For (EA) maps we also required that the last
factor corresponds to the affine involution, therefore in
the general case there is only one possible reordering.
Nevertheless, it is possible that (19) can be factored in
more than one way as composition of involutions. In
other words, the map can have more than two centers
of symmetry, reflecting the existence of different
families of reversing symmetries. Then other families
of normal forms may arise, corresponding to different
choices of symmetry centers. !

5. Conclusions

Though every polynomial automorphism is conju-
gate to a composition of generalized Hénon maps, we
have argued that reversible automorphisms are more
appropriately written in the normal forms given in
Theorem 1. There are three classes of normal forms
depending upon whether the basic involutory reversors
are both elementary (EE) both affine (AA) or one of
each (EA).
This is not a complete classification of reversible

automorphisms however, because we have assumed
that the reversors are involutions. Since the techniques
for studying the noninvolutory case are considerably
different and add complexity to the arguments that
are not needed in the more common involutory case
treated here, we plan to treat the more general case in
a forthcoming paper [12].
There are a number of interesting questions that

we have not investigated. The automorphisms with
polydegree (l1, . . . , ln) form a manifold of dimension∑

li + 6 [9]. What about the subset of reversible
automorphisms?We have investigated automorphisms
that are reversible in G. What can one say about
reversible automorphisms that do not have reversors
in G?
We also have not yet investigated general properties

of the dynamics of reversible maps. The normal forms
of Theorem 1 are useful (just as those of Friedland
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and Milnor for the nonreversible case) because the
number of parameters is considerably smaller. For
example, it is easy to see that the number of symmetric
fixed points for a reversible map given in normal form
(AA), (EA) or (EE) is bounded by the product of
the degrees of the polynomials pi , i = 0, . . . ,m + 1,
while on the other hand (see [9, Theorem 3.1]), the
number of fixed points is bounded by the degree
of the map. Moreover, normal forms are useful for
the study of bifurcations since this structure holds
as well for families of involutory reversible maps.
Apart from symmetric orbits and their bifurcations,
are there other dynamical properties that distinguish
the reversible automorphisms? Are there dynamical
differences between the three classes of reversible
maps?

References

[1] R. deVogelaere, On the structure of symmetric periodic solu-
tions of conservative systems, with applications, in: S. Lef-
schetz (Ed.), Contributions to the Theory of Nonlinear Oscil-
lations, Vol. 4, Princeton Univ. Press, Princeton, 1958, pp. 53–
84.

[2] R.L. Devaney, Trans. Am. Math. Soc. 218 (1976) 89.
[3] M.B. Sevryuk, Reversible Systems, in: Lecture Notes in

Mathematics, Vol. 1211, Springer-Verlag, New York, 1986.
[4] J.S.W. Lamb, J.A.G. Roberts, Physica D 112 (1998) 1.
[5] R.S. MacKay, Renormalisation in Area-Preserving Maps,

in: Advanced Series in Nonlinear Dynamics, Vol. 6, World
Scientific, Singapore, 1993.

[6] J.M. Greene, J. Math. Phys. 20 (1979) 1183.
[7] R. Rimmer, J. Diff. Equations 29 (1978) 329.
[8] M. Hénon, Quart. Appl. Math. 27 (1969) 291.
[9] S. Friedland, J. Milnor, Ergodic Theory Dynamical Systems 9

(1989) 67.
[10] H.R. Dullin, J.D. Meiss, Physica D 143 (1–4) (2000) 265.
[11] A. van den Essen, Seven lectures on polynomial automor-

phisms, in: A. van den Essen (Ed.), Automorphisms of Affine
Spaces, Kluwer Academic, Dordrecht, 1995, pp. 3–40.

[12] A. Gómez, J.D. Meiss, Reversible polynomial automorphisms,
University of Colorado report, 2003.

[13] J.A.G. Roberts, M. Baake, Symmetries and reversing symme-
tries of area preserving mappings in generalised standard form,
Technical report, LaTrobe University, Melbourne, 2001.

[14] H.W.E. Jung, J. Reine Angew. Math. 184 (1942) 161.
[15] W. Magnus, A. Karras, D. Solitar, Combinatorial Group The-

ory, in: Pure and Applied Mathematics, Vol. 13, Interscience
Publishers, New York, 1966.


