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We compute the domain of existence of two-dimensional invariant tori with fixed frequency vectors for a four- 
dimensional, complex, symplectic map. The map is a generalization of the semi-standard map studied by Greene and 
Percival; it has three parameters, a, and a, representing the strength of the kicks in each degree of freedom, and E, the 
coupling. The domain of existence of a torus in (a,, a*) is shown to be complete and log-convex for fixed k = ! /a,a,. 
Explicit bounds on the domain for fixed k are obtained. Numerical results show that quadratic irrationals can be more 
robust than the cubic irrational, “the spiral mean”. 

1. Introduction 

Stability of motion in Hamiltonian systems and 
symplectic mappings is of great interest in many 
physical situations such as plasma and ac- 
celerator confinement and stellar and planetary 
dynamics; an understanding of stability is also of 
intrinsic theoretical interest. The primary stabili- 
ty result is the KAM theorem which asserts that 
most of the invariant tori of a nonlinear integra- 
ble Hamiltonian survive upon a small, smooth 
perturbation [l]. The robust tori, according to 
the theorem, are those which have sufficiently 
incommensurate frequency vectors (they satisfy a 
Diophantine condition, see section 3). As a prac- 
tical result, however, the KAM theorem has 
several draw-backs. The first is that estimates of 
the perturbation size for the destruction of tori 
are typically extremely small: much smaller than 
the size indicated by numerical computations for 
specific perturbations on specific tori (of course 
the theorem guarantees the survival of any 
Diophantine torus for any small enough pertur- 

bation). The second is that the theorem guaran- 
tees stability only for systems of two degrees of 
freedom since the invariant tori have half the 
dimension of phase space. None-the-less, com- 
putations indicate that while a system of three 
degrees of freedom may not be rigorously stable, 
it exhibits a “practical stability” since orbits ap- 
pear to remain trapped near invariant tori for 
extremely long periods. To some extent this is 
addressed by the Nekhoroshev theorem [26], 
though this theorem requires extremely small 
perturbation sizes as well. 

For the case of two degrees of freedom, or 
equivalently area preserving mappings, much 
progress has been made in determining the exist- 
ence of invariant tori. Three basic techniques 
have been used. The first is to examine the 
stability of a sequence of periodic orbits whose 
frequencies limit on the irrational frequency of 
interest-this gives rise to the residue criterion 

[9,15]. It yields extremely accurate values for the 
parameters at which invariant circles are de- 
stroyed and can be made rigorous [16]. The 
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second method is a nonexistence criterion for 
twist maps, called converse KAM theory [24,19]. 
The final technique is numerical computation (in 
some cases using interval arithmetic) of the con- 
jugacy to pure rotation [27,6,2,23]. These meth- 
ods can give accurate nonrigorous values for the 
critical parameter for essentially arbitrary 
Diophantine frequencies, and can also given 
reasonable rigorous values. 

Though many have attempted to generalize 
these techniques to Hamiltonian systems with 
more than two degrees of freedom, or equiva- 
lently, symplectic maps of four or more dimen- 
sions, there has been limited success in determin- 
ing the existence of invariant tori. Periodic orbit 
approximations to invariant tori have been ob- 
tained [14,25], and computations reveal that the 
stability domains of periodic orbits limiting on an 
incommensurate frequency vector may be con- 
verging for a volume preserving example [21]. 
However the existence of the limit is difficult to 
prove [3], primarily because the ordering proper- 
ty of periodic orbits on the circle no longer 
applies on the torus. Converse KAM theory can 
be generalized to higher dimensions [18], though 
in this case one must assume that the tori are 
Lagrangian graphs. 

One of the fundamental problems in these 
studies is number theoretic: there is no satisfac- 
tory generalization of the continued fraction 
theory to simultaneous approximation of several 
irrationals (perhaps the most promising is that of 
Brentjes [4]). In the case of the residue criterion, 
it is the best approximants (convergents of a 
continued fraction) whose properties converge to 
those of the invariant circle. Furthermore, quad- 
ratic irrationals play a large role in these studies 
because their continued fraction expansions are 
eventually periodic (these give rise to self-similar 
structures). Finally, the most robust tori appear 
to correspond to the class of quadratic irrationals 
known as the noble numbers; these have a con- 
tinued fraction expansion with a tail of all one’s. 
Roughly speaking, the explanation for this is that 
the noble numbers are the most difficult to ap- 

proximate in the sense of Diophantine. The 
generalization of this class to higher dimensions 
is unknown. 

There has been some speculation that for four- 
dimensional mappings, cubic irrationals will re- 
place the quadratics. One reason for this is that a 
periodic approximation scheme based on a Farey 
tree construction necessarily leads to a frequency 
that is the eigenvalue of a 3 x 3 matrix, and is 
therefore cubic [11,13]. However, even in this 
case it has been difficult to determine if there is 
self-similar behavior near breakup [21], and 
there is no evidence that cubic irrationals are 
more robust than others. 

In this paper we study the four-dimensional, 
complex, symplectic map corresponding to the 
coupling of two semi-standard maps, as intro- 
duced in [lo]. This map is the complex version of 
a mapping introduced by Froeshle [7,14] -we 
call it the semi-Froeshle map. We generalize the 
method of Percival and Greene [lo] to this case 
and find recursion formulae for the Fourier co- 
efficients of an invariant two torus with a fixed 
frequency vector in section 4. Existence of such a 
torus for small enough parameter values is 
guaranteed providing the frequency vector satis- 
fies a Diophantine condition; we discuss this in 
section 3. Because of the simple structure of the 
Fourier series for the semi-Froeshle map, we are 
able to apply some results from the theory of 
holomorphic functions of several complex vari- 
ables in section 5, and show that the domain of 
convergence of the Fourier series has a particular 
form; it is complete and log-convex. Finally in 
section 6 we compute these convergence do- 
mains for several example frequency vectors, 
including quadratic and cubic irrationals. 

2. Coupling of two semi-standard maps 

The semi-standard, area preserving map was 
introduced by Greene and Percival [lo] as a 
numerically simpler model than the standard 
map for the investigation of the analytic prop- 



284 E. M. Bollt, J. D. Meiss I Breakup of invariant tori 

erties of invariant circles. In Lagrangian form, 
the semi-standard map takes {x,_~, x,} H 
{ x,, x,,,} and is defined by 

6*x, = x,, , - 2x, + x,_, = ia e’“’ ; (1) 

this is a map on 6. The notation S2 is reminis- 
cent of the second derivative operator. 

In this paper we study a four-dimensional 
generalization, analogous to the map introduced 
by Froeshle [7,14]. Letting x, EC*, the semi- 
Froeshle map is 

s*x, = x,, , - 2x, + x,-, = F(x,) ) (2) 

where 

( 
i x (‘) +  E e 

F(x) = i ‘i ei,Cl) 
ixC1)+ixC2) 

a 2 e  + e e  
i x (‘)+ i*C 2) >  

There are three parameters, the strength of the 
kicks for each component semi-standard map 
(a,, a,,) and E, the strength of the coupling of the 
two maps. Eq. (2) is symplectic since F is the 
gradient of a scalar potential (see for example 
]141). 

We are looking for solutions x, of eq. (2) that 
lie on an invariant two-torus homotopic to the 
trivial torus defined by the momentum y, = x, - 
x,_~ being constant. In fact we demand that this 
torus be analytically conjugate to a uniform rota- 
tion on the angle variable 8 with a given fre- 
quency vector o. These tori include those found 
by KAM theory. The conjugacy is represented 
by the following commuting diagram: 

x, - x r+1 

1 1 (4) 

x(O)- x(e + 2?Tw) . 

Thus, for a given o, an invariant torus for eq. 
(2) is given by 

x, = x(e + 27TWt) ) (5) 

for 8 E a*. The homotopy condition implies that 

x(e + 2nm) = x(e) + 2nm , Vm E Z2 , 

thus x(0) is coperiodic with 8: 

(6) 

x(e) = fl+ x(e) , (7) 

where x(0) is doubly 27~ periodic. If we suppose 
that x is analytic, it can be expanded in a Fourier 
series 

x(e) = 8 + C x, ein.’ . 
“EB2 

(8) 

Inserting eq. (5) into eq. (2) yields the Perci- 
val form of the mapping 

s%(e) = x(e + 2~0) - 2x(e) + x(e - 2n0) 

= F(x(B)) . (9) 

Inserting the series (8) into eq. (9) will yield 
equations determining the Fourier coefficients 
x,; these will be obtained in section 4. 

3. Incommensurate frequencies 

The convergence of the Fourier series for the 
semi-standard map has been studied extensively 
in [10,27,23]. In particular, rather sophisticated 
techniques for computing convergence of this 
series were developed in [27]; these give accurate 
results for quite general frequencies. In general 
one determines a parameter interval (a( < u”“(w) 
for which there is an analytic invariant circle with 
frequency o. Here ass, the critical function, is 
zero for every rational value and exhibits a maxi- 
mum for 

o=r=$(l+ti). (10) 

The critical function appears to have a local 
maximum at each of the noble frequencies: those 
equivalent to y under a modular transformation, 
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or equivalently which have a continued fraction 
expansion whose elements are all 1 beyond some 
level. 

These results also apply to the semi-Froeshle 
map when E = 0. Thus an invariant torus of 
frequency o = (wl, w2) exists within the rec- 
tangle {(a,, u2, E): la,\ <ass(q), b,I <ass(q), 
E = O}. Furthermore, since the semi-Froeshle 
map is an analytic perturbation of a twist map, 
KAM theory implies that for sufficiently small 
values of the three parameters (a,, u2, E) there 
exists an invariant torus analytically conjugate to 
the rotation 8 H 8 + 27ro providing the fre- 
quency vector satisfies a Diophantine condition. 

For d dimensions, the set of Diophantine vec- 
tors LBP consists of those w E Rd for which there 
exists a C > 0 such that for all (p, q) E Zd+l 

(11) 

where /IpI] = max(Ip,l, . . . ,Ipdl). It is easy to 
see that if p > d, the measure of 6@,, approaches 
one as C-0; however, the measure of 6Sd is 
zero. 

Certainly if o E S,, then it is incommensurate, 

thatislando,,..., od are linearly independent 
over the rationals. For d > 1 one must distin- 
guish between commensurate vectors and reson- 
ant vectors. While the former satisfy some ra- 
tional relation p - w = q, the latter have all 
components rational and correspond to periodic 
orbits. A straightforward generalization of 
Greene’s method [9] to higher dimensions would 
use resonant vectors, e.g. [ll], instead of com- 
mensurate vectors. However, in KAM theory it 
is commensurabilities which cause the problems, 
not just resonances. 

Though there exist many Diophantine vectors, 
a result of Minkowski implies that every o can 
be closely approximated in a certain sense [5]. 

Theorem 1. For any o E Rd there are infinitely 
many integer vectors (p, q) such that when 
K=l 

(12) 

If d = 1 then K can be replaced by l/a but 
nothing smaller. 

To our knowledge, the minimal value of K for 
d > 1 is not known. 

One class of frequency vectors that are 
Diophantine are those constructed from alge- 
braic irrationals [5]. 

Theorem 2. If the components of o are incom- 
mensurate and elements of a real algebraic field 
of degree d+l, then ZEBU. 

Recall that an algebraic field generated by 5 E R 
of degree n is defined as the set of numbers of 
the form 

P(S) -- R(5)- Q(6) 7 

where P and Q are polynomials with integer 
coefficients and 5 is an algebraic number of 
degree n. 

One would expect that a frequency vector o 
which is more incommensurate, in the sense of 
having a larger Diophantine constant C and 
smaller exponent p would tend to persist for 
higher perturbations. This is numerically verified 
for the standard and semi-standard maps where 
the noble numbers give local maxima of a”“, and 
are also the “most” irrational in the sense of 
Diophantine. Unfortunately, to our knowledge, 
there are no results in the theory of simultaneous 
approximations that determine a class of fre- 
quency vectors analogous to the noble numbers. 
Indeed one of the main reasons for our numeri- 
cal investigation is to attempt to develop a tech- 
nique for determining this class. 

We will choose several simple frequency vec- 
tors as examples for our study. In addition to the 
golden mean, we will use the quadratic irra- 
tionals 
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(13) 

The expressions on the right hand sides above 
give the continued fraction expansions. Setting 
or) = (y, cr) or (y, l) yields two incommensurate 
frequency vectors since j/$ is irrational. Further- 
more by theorem 2, both of these vectors are in 
9,, since they are elements of the algebraic field 
of degree four generated by 5 = ti + fi. This is 
easy to see, since 5” - 145* + g=O and any 
polynomial in 5 has the form P( 6) = a + bl/Z + 

cfi + cffl for a, b, c, d E Z. Thus y, a; and f 
are all in R( 8). 

Finally we consider a cubic irrational, the real 
solution of 

T3=7+l, 

r== 
1.32471795724474602596090885447809734 

= [l, 3,12,1,1,3,2,3,2,4,2,141,80,2, 

5,1,2,8,2,1,1,3,1, . . .] . (14) 

This so called “spiral mean” frequency was in- 
troduced in [13] as a possible analogue of the 
golden mean since in the Ostlund-Kim version 
of the Farey tree, 7 has a simple periodic con- 
struction. The number T is Diophantine since 
according to a theorem of Roth, every algebraic 
irrational is in L@l+sVS > 0. Thus the critical 
function U”“(T) # 0; however, determining its 
value is difficult because the continued fraction 
elements appear unbounded [22]. None-the-less, 
for the four-dimensional case we will study the 
vector (7, T’) which is in the cubic field gener- 
ated by 7, and so an element of $,. Furthermore 
7 is the smallest of the “PV numbers”, which 
implies that the rational vectors on the Farey 
sequence approaching (7, T’) converge more 
slowly than any other algebraic pair [13]. 

that is, the nth Fourier coefficient of x(e) is 
divided by D,. For Diophantine frequency vec- 
tors, D, is bounded from below; in fact eq. (11) 
implies that if o E %*, then l/D,< 6’(\ln114). 
Unfortunately, ihere is no theory analogous to 
the continued fraction theory that provides the 
values of IZ for which there are large peaks in 
1 /D,. In fig. 1 we show a plot of the values of n 
for which (D,(y, CT)~~~~~“)-’ > 1.0 x low2 and 
5.0 x lo-? As this figure shows, these peaks are 
quite isolated and rare. Thus, following the re- 
sults for the semi-standard map, one would ex- 
pect the Fourier coefficients to have similar iso- 
lated peaks, and for the convergence determina- 
tion of the Fourier series to be quite delicate. 
However, as we will see in section 6, this is 
fortuitously not the case. 

4. Recursion relation 

As we will see in section 6, the frequencies In this section we will derive recursion rela- 
enter the Fourier expansion for x(0) solely in tions for the Fourier coefficients of x(e), the 

0 200 400 600 800 1000 

m 
Fig. 1. Peaks in the inverse of the small denominator where 
w = (7, u). Values of (D,,,,,(y, a)ll(m, n)114) > 1.0 x 10e2 
are displayed as bold dots and those >S.O X 10m5 as light 
dots. 

terms of the small denominators 

D, = 4 sin*(Tn f 0) ; (15) 

James Meiss
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solution to eq. (9). For the semi-standard map it 
was possible to find a solution analytic in the 
upper half 6~ plane. In this case only the positive 
Fourier coefficients are nonzero. This is one 
advantage over the series for real mappings 
where all the Fourier coefficients must be consid- 
ered. In the case at hand, since the force, eq. 
(3), has only positive imaginary exponentials, we 
can also find solutions analytic in the domain 
{(f3,, 19,): Im(0,) 2 0, Im(0,) 2 0}, so that only 
positive Fourier coefficients are needed. 

It is convenient to define u E @* as 

(16) 

The advantage of this definition, is that the 
parameters a, and a2 will not appear in any of 
our expansions. Further, using eq. (7) we define 

g(u) = i[x(e) - 0]= ix(O). (17) 

Since by ansatz, only the positive coefficients will 
be needed in the Fourier expansion of x(e), g(u) 
has a Taylor expansion 

(18) 

Here we use standard multi-index notation for 
the vector exponentiation: while u E @* and R E 
@, U” = u~‘u;* E @. In addition to the expansion 
of g, we will need the expansions of its exponen- 
tial as well: 

(19) 

where i = 1,2. In terms of the new variables, the 
map eq. (9) takes the form 

6*d4 = -( ;: $;:I:) 
-k( u1*2 e 

L?l(u)+g2(u) 

w2 e 
> g,(u)+&T*(u) ’ (20) 

where 

,+E 
ala2 

(21) 

is the coupling parameter. Note that these equa- 
tions depend upon the three parameters a,, a2 
and E solely through k. 

Substituting eqs. (18), (19) into eq. (20) and 
noting that for a term in the Fourier series the 
operator 6* becomes -D,, as defined by eq. 
(15), yields the recursion relation for b,: 

If w is incommensurate, then D, is nonzero, so 
that eq. (22) defines b,. In fact b, is a convolu- 
tion sum of {cm} for those m -C n where we 
define the partial order i on integer vectors by 
m < n if mi I ni, and m # II. 

A simple derivative identity allows us to find 
the c, coefficients. 

(23) 

which upon substitution of eqs. (18), (19) yields 

(24) 

Note that eq. (24) allows the two forms, j = 1 or 
2, for n off the axis (these are equivalent), but 
for n on the axis, only one is valid because of a 
required division by a zero value of nj. 

Examining eq. (24) reveals that c, is a function 
of strictly previous c,, but up to current b,, 
therefore the process must be started by generat- 
ing b,. Since the choice of initial phase 0 is 
arbitrary, we can set 

b,=O. (25) 



288 E.M. Bollt, J.D. Meiss I Breakup of invariant tori 

Examination of the mapping eq. (20) yields in 
addition 

b(2) = 0 ) b(l) 
(n,.O) (0.Q = . 0 (26) 

Similarly, eq. (25) and eq. (19) imply that c0 = 1, 
and eq. (24) yields 

c;,z!.o) = 0 > c& = 0 . (27) 

Finally, the recursion (22) implies that the values 
b(l) (n,.O) and $‘.,, are identical to those for the 
semi-standard map with frequencies w1 and 02, 
respectively. 

This completes the recursion algorithm which 
allows 6, to be built as an explicit function of 
previous b, coefficients. Note that if k > 0 then 
b, is positive and real, a big advantage in their 
computation. Since eq. (18) actually represents 
two series, one in each component of the vector 
g, the domain of convergence of g(u) is the 
intersection of the domains of convergence of 
each component’s series. 

5. The domain of convergence 

In this section, we review some relevant re- 
sults on the domain of convergence for power 
series in several complex variables. Let z = 
(z,, . . . , zd) E Cd, and for m E Nd, define zm = 
z~‘z~2 . . . Z’;d E C. We consider a power series, 

s = c b,z” , 
##IENd 

(28) 

similar to the series obtained in the previous 
section. We denote the radii by rj = ]zj(. The 
projection onto the radius space is denoted II: 
n(z) = (rl, rZ, . . . , rd). The subset Cd* = {z: 
zj # 0} excludes points for which any component 
of z is zero. 

Several types of subsets of Cd are of interest. 
The domain of convergence of a series is the 

interior of the set of points for which it con- 
verges absolutely. A polydisk is the appropriate 
generalization of a disk: P(a) = {z: ]zj( < /ail, i = 
1 > . . . 9 d}. A Reinhardt domain is a domain R 
such that R = II-‘(II(R)); that is, if it contains a 
point with radii rj, then it must contain every 
point with those same radii, regardless of phases. 
Reinhardt domains are conveniently pictured in 
the radius space n(@“) = Rd. A Reinhardt do- 
main is complete if for every z E R, the polydisk 
P(z) < R; thus a complete domain contains all 
points with smaller radii. Finally a domain D is 
log-convex if the set 

logW(D)) E {(lois( lo&,), . . . , 1og(rd)): 
zECd*fl D} (29) 

is a convex subset of Rd. 
We will use the following theorem [28,12]: 

Theorem 3. If S converges for all orderings of its 
terms at a point z then it converges absolutely to 
a holomorphic function. The domain of conver- 
gence, D, of S is the interior of the set for which 
1 b,z”( is bounded. Furthermore D is a log- 
convex, complete Reinhardt domain. Converse- 
ly, if Ib,,,z”( is unbounded then there is an order- 
ing of the terms in S for which it diverges. 

The proof of this theorem is straightforward. 
Its most unusual aspect is that the domain of 
convergence is log-convex, which we will discuss 
in more detail. Suppose z, x E Cd* fl D. Then for 
(Y + p = 1 let u be any point in Cd* such that 

(30) 

where rj and sj are the radii of z and X, respec- 
tively. Then, since S converges at both z and 
X, B = sup(]b,z”‘], Ibrnxml) exists, and 

Ib,um( = lb,,,[,fi rmfosmiP s Bn+B = B (31) 

is bounded as well. Thus S converges at U. Now 
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since 

log&Yu)) = a log(H(z)) + P log(n(x)) 9 

we have shown that D is log-convex. 

(32) 

The application of theorem 3 to our system is 
straightforward since the series eq. (18) has the 
desired form; it yields the interesting result. 

Corollary 1. For fixed k defined by eq. (21), an 
analytic invariant torus with Diophantine fre- 
quency o of the semi-Froeshle map exists in a 
parameter domain in (a,, u2) that is complete 
and log-convex. 

In particular for hxed k, completeness implies 
that the domain of convergence is simply con- 
nected, and its boundary projected onto the 
radius space can be expressed as a graph of a 
function r1(r2) or r2(rl). 

As we will see in the next section, the calcula- 
tion of these domains is possible with reasonable 
accuracy using the requirement that the terms in 
the series must be bounded. 

6. Numerical results 

Determination of the sequence of {b,} of 
Fourier coefficients of x(6) using the recursion 
algorithm of section 4 is straightforward, since 
they are real and positive for k 20. The next 
issue is to numerically find the domain of abso- 
lute convergence, which from section 5, is the set 
of u E C* for which Ib,uml is bounded. We begin 
by noting that the series (18) 

g(u) = r: 5 b, ,&‘u; 
n=O m=O ’ 

(33) 

converges absolutely in the polydisk P(U) if the 
reordered series 

b,,,ryr,” = 5 ryB,(s) 
n=O (34) 

converges. Here we define the slope s = r2/r1, 
and the diagonal coefficient, 

B,(s)= i: b,-,.,,p” , (35) 
m=O 

which, most importantly, is expressed as a finite 
sum. It follows that the radius of convergence for 
the ith component is 

log(ry)(s)) = -!i_i 
log P’(s) 

n” 

for each fixed s. Since the domain of conver- 
gence is complete according to theorem 3, rl(s) 
is a single valued function. 

To avoid numerical overflow for large P, we 
use eq. (35) when s 5 1, and use a corresponding 
formula with the slope defined as r1/r2 otherwise. 
Furthermore, we can take advantage of defini- 
tion (35) by computing the coefficients b,,, in a 
triangular domain m + n I N. This saves about a 
factor of ten in computing time over using the 
square domain. Computer memory constraints 
lead us to choose N = 255 as our matrix di- 
mension. 

The efficacy of this method depends upon 
estimating eq. (36), the asymptotic growth rate 
of the Fourier coefficients. We first consider 
w = (y, a) where the components were defined 
by eqs. (10) and (13). Fig. 2 is a logarithmic 
contour plot of b, . (‘I It can be seen that b, grows 
rapidly as m grows, indeed the maximal values of 
b, in the figure are 8‘(10i5’). This is a result of 
the recursion algorithm, which shows that b, is a 
combination of all the previous c,. When k 2 0, 
the c, coefficients are positive and c, > c, for 
m > R. Whenever there is a near commen- 
surability, D, is small, and b, takes a sudden 
jump. This can be seen in the contour plot as a 
serrating of the contour lines. The neighboring 
coefficients for greater m are influenced by this 
jump, but the recursion algorithm serves to 
spread and dissipate the extra height. In other 
words, the coupling serves to dampen the com- 
mensurabilities. This partly accounts for the 
stepping up nature of the contour plot. 
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0 50 100 150 200 250 JO0 

n 

Fig. 2. Logarithmic contour plot of the Fourier coefficients 
b:,$, where w = (-y, CT) and k = 0.2. Here 0 I biz,n, 5 lO? 
The coefficients are computed only in the triangle m + n 5 
255. 

Fortunately, the limit (36) is not as difficult to 
evaluate for this problem as it could be in gener- 
al. It turns out that log B, behaves quite linearly 
as a function of n; this can be seen clearly in fig. 
3. The small spikes visible on a given “line” of 
(log[B, Ml T 4 are due to near commen- 
surabilities. 

By contrast, the Fourier coefficients for the 
semi-standard map, b, , depend only on the small 
denominator and the single previous coefficient 
c, _ , (which is in turn implicitly a function of the 

60 

log B$,‘) ho 

20 I 

0 

i 
-20 I., I ,.,, I ,,,. I ,.,, I ,,., I ,.,, 

0 50 100 150 200 250 300 

n 

Fig. 3. log By’(s) versus n for various values of the slope s, 
where s has the range 1~ tan-’ s 5 83 and every odd degree 
angle is displayed. 

coefficients b,, . . . , b,_,). Resonances are ex- 
tremely important, and primary, secondary, and 
even tertiary prominences can be observed, so 
that the Fourier coefficients have an extremely 
spiked profile. In the four-dimensional case the 
coupling between the frequencies o appears to 
play the dominant role. Resonances gain and 
lose prominence in a delicate balancing of the 
coupling between frequencies, which can be seen 
as shadows of vertical lines in fig. 3. 

To determine the radius in eq. (36) we per- 
formed a least squares fit of variable data sets. 
The top and bottom ends of the fit were allowed 
to float by y1= 10 points each, and the fit with the 
lowest residual was automatically chosen. This 
eliminates the problem of a given fit falling just 
above or below a resonance spike. RMS errors 
in the slope fit are typically a, = 0.003? 0.001, 
which leads us to expect at least 2 decimal 
accuracy in the ri values. 

Using the three frequency pairs, w = (y, (+), 
( y, f ), and (7, T’), we generate the respective 
(I,, rz) = (a,, a2) curves for various coupling 
constants k, and for each of the Bz’ components. 
These domains of convergence are displayed in 
figs. 4-6. By’ is represented as solid curves, and 
B(*) as dashed curves. n 

Fig. 7 displays the (a,, u2) curves for o = 
(y, g) on a log-log scale. This example shows 
that D is log-convex in accord with theorem 3. 
The sharp bends seen in some of the curves are 
due to the regular spacing of angles on a grid, 
which the log scale makes especially prevalent 
near the axes. 

Here we will discuss the behavior of the curves 
for the first component, Br’ (solid curves). 
When a2 + 0, rl must approach uSS(ol) since the 
map eq. (20) becomes uncoupled in this limit, 
and B, (I) becomes the coefficients of the semi- 
standard map with frequency wl. We call the rl 

axis the “dominant axis” for By’; similarly, the 
r2 axis will be the dominant axis for Br' . This 
behavior can be seen in figs. 4-6 as all the 
various curves intersect the dominant axis at 
uSS(ol). For reference, table 1 gives the critical 
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I.0 

0.6 

r1 
0.6 

0.4 

0.2 

0.0 
0.0 0.2 0.4 0.6 0.8 1.0 I.2 

T2 

Fig. 4. Boundary of the domain of convergence for w = 
(y, u) and various fixed values of k. The boundaries for 
x”‘(8) are solid, and for xc2)(8) are dashed. Values of k are 
lo-‘, 10-4, 10e3, 10m2, lo-‘, 0.2, 1.0, 10.0. The vertical axis 
corresponds to the frequency w, = y, and the horizontal to 
o* = (T. 

values of the semi-standard map for the various 
frequencies. Note that the curves in figs. 4 and 6 
actually overestimate the correct values on the 
axis; for example in fig. 4, the intersection with 
the r2 axis occurs near 0.985, while table 1 
implies that the correct value is 0.966. This 
overestimate is due to the fact that we compute 
the coefficients only out to the 255th Fourier 

rl 

0.8 

0.6 

0.4 

0.2 

0.0 

0.0 0.2 0.4 06 0.8 l.0 1.2 

7-2 

Fig. 5. Same as fig. 4 with w = (y, 5). 

Tl 
0.6 

0.4 

0.2 

0.0 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 

r2 

Fig. 6. Same as fig. 4 with w = (7, r’), 

lo’2 

1 o-5 
10-S 10-4 10-3 1o-2 10-J 100 IO' 

Fig. 7. Same as fig. 4 except on a log-log scale. 

Table 1 
Critical values for the semi-standard map. 

0 a 
65 

0.979 661 
0.966 165 
0.833 726 
0.657 
0.660 
0.09 
0.66 
0.33 
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coefficient, and that near the axes the spikes in 
the B, curves become more prominent (see fur- 
ther discussion of this below). For the semi- 
standard mapping more sophisticated fitting 
techniques (e.g. [27]) are required for an accur- 
ate evaluation of the critical function. For our 
mapping we believe that, away from the axes, 
the radius curves are actually more accurate than 
this indicates. In fig. 5, the intersection with the 
rl axis appears to be much lower than the value 
rl = 0.979 given in table 1; however these curves 
actually rise rapidly to the correct (actually over- 
estimated) value as r2 + 0. It is interesting that 
in this case even through the values on axis are 
quite different, the convergence boundary has 
adjusted itself to be nearly square for small k. 

Finally, this rapid rise - approaching uSs(wl) at a 
sharp angle, does not violate log-convexity, as 
required by theorem 3. 

The figures also show that the solid curves 
limit to usS(w2) on the r2 axis, which we call the 
“subdominant” axis for Br ’ . This phenomena 
requires some explanation. When E “0, the 
boundary of domain of convergence for By’ is 
r!‘) = uss(wl), independent of r2; the numerical 
results for nonzero E, however, imply that r2 
limits to asS(w2) on the r2 axis. This also occurs 
for the domain of convergence of the second 
component Bff’: rl + uss(oI) as r2+ 0. To ex- 
plain this phenomena, consider for example the 
small slope limit of B?‘(s). Eq. (35) implies that 

(37) 

where the so term vanishes according to eq. (26). 
Using the recursion relation (22) implies 

4 0) By’(s) = sk e b (1) 

(n.0) . 
(n.1) 

Thus using eq. (36) the radius of convergence is 

4bO) log(rl*)) = log[u”“(o,)J - ,lim_ i log - 
( > 

Dhl) 

(39) 

The last limit in fact is zero, since by the 
Diophantine condition eq. (ll), the ratio of the 
denominators is bounded by 6’(n”). A similar 
result holds for the first component of the map- 
ping along the r2 axis, so we have shown that 

lii r?)(s) = uSS(wl) , 

,ll% r:)(s) = uSS(w2) . (40) 

Furthermore eq. (40), together with complete- 
ness implies that the domain of convergence is 
bounded by the rectangle 

a, 5 uSS(q) ) u2 5 uSS(w2) . (41) 

In fact the figures show that as k * 0 the domain 
of convergence approaches this rectangle. Our 
interpretation of this is that for small but non- 
zero k, the singularity corresponding to r2 = 
usS(w2) is still present, though weakened (the 
“residue” of this singularity, limits to zero as 
k- 0, but it is still present for any nonzero k). 
This causes a difficulty with our numerical 
scheme for finding r1(r2) when k is small; we 
discuss this further below. 

Fig. 8 displays the coefficients BF’ and By’ for 
s Z 10-25 and o = ( y, m). In the limit of small 
slope Br’ = b:fb which are the Fourier coeffic- 
ients for the semi-standard map [lo]. Thus the 
upper plot is indistinguishable from that for the 
semi-standard map. The lower half of fig. 8 
shows Bc2) for small slope. The profile exhibits 
spikes aIfd valleys corresponding to a compli- 
cated coupling between (+ resonances and the 
still important y resonances, as shown in eq. 
(38). Furthermore, eq. (38) implies that the 
profile approaches a limiting form as s * 0, even 
though the magnitude of By) approaches zero. 
Likewise, By’ near the r2 axis yields the semi- 
standard coefficients for w2 = V, while Br) goes 
to zero, while similarly converging to a fixed 
profile. 

As the domain of convergence plots show, the 
rectangular domain for small k contains the do- 
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-10 

log B$,‘) 
-12 

Fig. 8. Logarithmic plot of B,(s) versus n where s = 10-*S 
and w = (y, (r). The upper plot displays BP’(s) versus n; 
since s 4 1, y is the dominant frequency, and so BF’ ap- 
proaches the semi-standard map coefficients from w = y. The 
lower plot displays By’ versus n; since sel, By’-+0 in 
accord with eq. (38). 

main for any finite k. This follows from the 
completeness of the domain of convergence, and 
the fact that the curves limit to the semi-standard 
values on the axes. This fact can be used as an 
upper-bound when discussing the question of 
which torus is “last”. 

We also computed r1(r2) curves for negative 
values of k. By the same argument as above, the 
negative k curves intersect the axis at ass(q) and 
a”( 02). Otherwise the curves are qualitatively 
similar to those shown in figs. 4-6, so we omit 
the plots. Since the domain of convergence de- 
pends only on k, these curves provide the bound- 
ary of existence in four of the octants in 
(a,, a2, E) space, the other four being deter- 
mined by the positive k results. 

As k increases all of the boundaries in figs. 
4-6 become hyperbolic in shape. This can be 
seen most clearly in fig. 5, for w = ( y, l). The 

large k limit corresponds to 

eB(a,,a,). (42) 

Taking this to the extreme, we set a, = a2 = 0, 

then eqs. (2), (3) have the form 

6’~ = ie 
eix1+ix2 

( > eiX1+ix2 ’ (43) 

Defining the new variables 

51 = x1 + x2 7 (44) 

52 = Xl - x1 3 (45) 

and adding and subtracting the components of 
eq. (43) yields a new map: 

S2c1 = 2ie eiC1 , S2c2 = 0. (46) 

Thus, there exists an invariant torus for 
( E1, 6,) up to some critical value 

2E = aSS(q + 02) . (47) 

Now eq. (43) is approximately valid for small a, 

and a2, so we expect that as k+ 03, using E = 
ka,a,, the fixed k boundary will limit to 

r*r2 = 
aSS(q + w2) 

2k ’ (48) 

which defines a hyperbola. 
Thus we have three analytic bounds on the 

domain of existence of a torus: 

a, -=I ass(q) ) a2 < aye*) ) 

(49) 
E ‘C o.5ass(wl + w2) ) 

though the last equation is not rigorously de- 
rived. As a confirmation, table 1 shows that 
ass(y + u) is much smaller than ass(y + 5) and 
a”(~ + T’). Thus, eq. (48) predicts that the 
curves for o = (y, (T) should become hyperbolae 
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more quickly than for other o curves, as we do 
in fact observe. 

As mentioned earlier, the scheme (34)-(36) 
for finding r,(s) has numerical problems when 
k -G 1. For such small k, the singularity on one 
axis is dominant over the singularity on the other 
axis. To illustrate the problem, consider a simple 
example which as a similar imbalance in the 
prominence of its singularities. Let 

qr,, r2) = -e- + -_!!!_ = 2 b, ,,ryri . 
a - r, p - r2 m,n 3 

(50) 

Here small values of S simulate small values of k; 

however, for any nonzero 6, the domain of 
convergence of this series is the rectangle 
{(r ,, r2): rl < a, rz < PI. 

We examine the behavior of eqs. (34)-(36) 
when applied to eq. (50) by a perturbation anal- 
ysis near s = 0. For a finite II, the algorithm gives 
an error in rl of 

(51) 

Thus the method works well provided s < plcr, 
but fails drastically for larger S. In our computa- 
tions, the slope is never larger than one; we 
switch to the inverse of the slope when s = 1. 
Thus, supposing p < CY the method fails in a cone 
P/CX < s < 1. So for the Froeshle mapping, we 
also expect that slopes within a similar cone will 
give bad results if k is too small. That this is true 
can be seen as a slight loss of convexity for the 
smallest values of k along the subdominant axis 
in figs. 4-6. In practice we are unable to lower k 

below 10e5 in the computations 
Finally, our r1(r2) data can be displayed in 

terms of the coupling parameter E, instead of k. 

Figs. 5 and 6 are converted via eq. (21) to the 
three dimensional graphs seen in figs. 9 and 10. 
Here we see in a new way the importance of the 
sum frequency or + w2 through eq. (49). Nu- 
merical overflow for large k prevents us from 

‘do 0.s m.- 
_. “A._ 0 - I_ ,* 

Fig. 9. Radii of convergence curves in (a,, az, E) space for 
x”‘(0) and o = (T, 7’) where r, corresponds to the frequency 
T, and rz to 7’. 

calculating the curves for E too close to its maxi- 
mum value. 

In many ways, it is these three-dimensional 
plots which are most useful to find a partial order 

Fig. 10. Same as fig. 9 with w = (7, [). 
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to determine the “last invariant torus”. One 
concept of ordering of the domains of conver- 
gence is to choose a directed curve in (a,, a*, c) 
beginning at the origin. One could linearly order 
the domains of convergence in terms of the order 
of intersection of the domain boundaries with 
this curve. This motivates the following local 
definition of order. 

Curve based order. An (I) torus persists longer 
than a /.L torus along a curve g(t) for which 
g(O) = 0, if c(t) intersects the boundary of the 
domain of convergence of the p torus first. 

The simplest example of a parameterized family 
is a line emanating from the origin. Another 
example is a parabolic ray a, = t, a2 = st, E = kst2 

for fixed s and k. Figs. 4-6 order domains in this 
sense. 

In general, one wants to do more than com- 
pare two surfaces using a single point from each 
surface, which is all a curve based order allows. 
In some sense, one may want to incorporate the 
information of the entire surface in a com- 
parison. This motivates the definitions of the 
following global comparisons. 

Metric based order. For a given metric, an w 
torus persists longer than a p torus if the in- 
fimum of the distance from the origin over all 
points on the boundary of the domain for the ,U 
torus is smaller than the infimum for the w torus. 

This definition for ordering is limited in that it 
requires the choice of a metric. 

If one surface is completely contained inside 
another, then that torus is more persistent than 
the other according to a ly definition, since con- 
tainment is a topologica notion. Thus we define 
the partial ordering 

Topological order. An o torus persists longer 
than a p torus if the domain for o contains that 
of p. 

Of course, the surfaces for two different fre- 
quencies will intersect in general, and then the 
topological ordering does not apply. In our ex- 

amples, the surface for (7, r2) is completely con- 
tained inside that of (7, [), and therefore the 
(7, l) torus is more persistent. The complete 
containment of the (y, 5) surface is partly due to 
the fact that each of (a”“(y), ass(S), ass(y + 5)) 
are greater than their counterparts (ass(~), 
u~~(~~), a”(~ + 7’)). On the other hand in order 
to compare the ( y, (+) and (y, 5) tori, note that 
though a=( cr) > a=( S), aSS( y + (+) < a=( y + J). 

Thus the surfaces must intersect, and therefore 
there can only be parametrized comparisons. 

7. Conclusions 

We have determined the domain of existence 
of invariant two-tori analytically conjugate to a 
rotation for the semi-Froeshle mapping by ex- 
panding the conjugacy function in a Fourier 
series in the angle variables. The semi-Froeshle 
mapping has the advantage that two of the pa- 
rameters can be eliminated in the Fourier series, 
so that the boundary of existence of the tori in 
all three parameters can be obtained with a 
single parameter sweep. We have studied the 
boundary of the domain for several frequency 
vectors, all of which are elements of an algebraic 
field, and therefore satisfy Diophantine condi- 
tions. The boundary of these domains appears to 
be smooth; rather surprisingly, it appears smooth 
even when the parameters have opposite signs 
( i.e., negative values of k). We have shown that 
when projected on the parameters (a,, aI) for 
fixed k = e/ala2, the boundary is log-convex and 
complete, and that as k --, 0 the domain limits to 
the rectangle corresponding to the domain for 
the uncoupled mappings. Furthermore, numeri- 
cal results imply that the domain is bounded by 
the critical function for the sum frequency, as 
shown by eq. (47). 

The methods and theorems of this paper are 
not restricted to the four-dimensional version of 
eq. (2). They also apply to the 2d-dimensional 
complex semi-Froeshle map, providing only that 
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each occurrence of x(j) in an exponential, ex- 
p(imx”‘), in the force has the same sign. The 
main bottleneck is computing the Fourier co- 
efficients recursively which involves a (d - l)- 
degree iterated convolution sum, where d is the 
dimension. Computing the md coefficients would 
take O(mzd) steps, making computer time a 
major problem in practice. In the same vein, 
more complicated forcing terms in eq. (3) could 
also be considered, but similar time constraints 
may be a problem. 

There are a number of open questions left by 
our study. 

(1) When the Fourier series does not con- 
verge, does there exist an invariant Cantor set 
for the mapping (a cantorus)? Results for twist 
mappings near the anti-integrable limit show the 
existence of cantori for all frequencies [17]. 
What is the nature of the invariant set when the 
Fourier coefficients for xc2) converge, but those 
for x ‘I) do not, as seen especially in fig. 6? One is 
tempted to think it is a Cantor set of circles. 

(2) Are all invariant tori for the semi-Froeshle 
mapping analytically conjugate to a rotation? 
Perhaps all tori with Diophantine frequency 
vectors? 

(3) Is there an extension of the converse 
KAM theory of [lS] to complex mappings? 

(4) Is there an extension of some of the re- 
sults of theorem 3 to real valued four-dimension- 
al mappings of some class? It is possible that 
such a map may also have a log-convex domain 
in the proper coordinates. 

(5) Can one use similar techniques to study 
the existence of invariant circles for a four- 
dimensional mapping? In [18] it was suggested 
that circles may last longer than any tori. 

(6) Which class of frequency vectors corre- 
spond to the most persistent invariant tori? In 
this paper we compare several likely candidates, 
but do not present evidence that there are not 
more persistent tori. In searching for a particu- 
larly persistent torus, a first step might be to 
maximize the values of uss(wl), uss(w2), and 
uss(w, + w,). Which class of frequency vectors 

does this? Of course since denominators contain- 
ing all m - to occur, the most persistent class of 
frequencies may be that the maximal Diophan- 
tine constant C in eq. (11). Since incommensu- 
rate algebraic frequency vectors form a field, any 
elements of such a field will have the same C. 
Moreover, since a degree three algebraic field 
has the minimal exponent p in eq. (ll), it seems 
reasonable that it is such a field which will be 
most persistent. Of course the definition of per- 
sistence will depend on the choice of a partial 
ordering, and even then it is not clear how 
dependent upon the specific model the results 
would be. An enlightening discussion of these 
issues is given by Lochak [29]. 
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