
SYMPLECTIC MAPS
First used mathematically by Hermann Weyl, the
term symplectic arises from a Greek word that means
“twining or plaiting together.” This is apt, as symplectic
systems always involve a pair of n-dimensional
variables, the configuration q, and momentum p, which
are intertwined by the symplectic two form

ω = dp ∧ dq. (1)

This antisymmetric, bilinear form acts on a pair
of tangent vectors and computes the sum of the
areas of the parallelograms formed by projecting the
vectors onto the planes defined by each canonical pair
(qi, pi), i = 1, . . . , n, giving

ω(v, w) =
n∑

i=1

(vpi
wqi

− vqi
wpi

).

A diffeomorphism f : X → X on a 2n-dimensional
manifold X with coordinates z = (q, p) is symplectic
if it preserves the symplectic form, that is, if f ∗ω = ω

(Arnold, 1989; McDuff & Salamon, 1995). If we
write z′ = (q ′, p′) = f (q, p), the symplectic condition
becomes

Df tJDf = J, where J =
(

0 I

−I 0

)
. (2)

Here Dfij = ∂fi/∂zj is the Jacobian matrix of f , J is
the Poisson matrix, and I is the n × n identity matrix.
Equivalently, Stokes’ theorem can be used to show that
the loop action, A[γ ] = ∮

γ
pdq, is preserved by f for

any contractible loop γ on X. If f preserves the loop
action for all loops, even those that are not contractible,
then it is exact symplectic.

When n = 1, the symplectic condition is equivalent
to det(Df ) = 1, so that the map is area- and
orientation-preserving. Examples include the much
studied standard map and the area-preserving Hénon
quadratic map f (q, p) = (p + a − q2, − q) (Meiss,
1992). When n > 1, the symplectic condition implies
volume and orientation preservation, but as we will see,
is stronger than this. A generalization of the standard
map to higher dimensions is the map

q ′ = q + p − ∇V (q),

p′ = p − ∇V (q) , (3)

where q ∈ Tn is an angle, p ∈ Rn is its conjugate
momentum, and V (q) is a periodic potential. This
map is exact symplectic for any V . Beginning in
1972, Claude Froeschlé studied the case n = 2 and
V (q) = a cos q1 + b cos q2 + c cos(q1 + q2). Similarly,

the natural generalization of the Hénon map is the
quadratic symplectic map whose normal form has been
given by Moser (1994).

Applications

Symplectic maps arise from Hamiltonian dynamics,
because these preserve the loop action. Thus, for
example, the time t map of any Hamiltonian flow is
symplectic, as is a Poincaré return map defined on a
cross section. It is often easier to study the Poincaré
map instead of the flow, because the dimension is
reduced. Even though explicit construction of the map
is typically impossible, approximation methods often
suffice.

For example, the time T map of a periodically
forced system H(q, p, t) = H(q, p, t + T ), such as a
pendulum with an oscillating support, is symplectic
(See Hamiltonian systems). An extreme example is
H = 1

2p2 − k cos(q)δ̄(t), where δ̄ is the periodic Dirac
delta function; the corresponding map is the standard
map.

As Birkhoff showed, an ideal billiard (a free particle
moving inside a rigid, convex table) is naturally written
as a symplectic map. The canonical coordinates are the
position and the tangential momentum at a collision
point. Symplectic maps also arise naturally in systems
where the forces are localized in time or space. For
example, a circular particle accelerator or storage ring
has a sequence of accelerating and focusing elements
that can be modeled by a composition of symplectic
maps, providing the damping effects of radiation can
be neglected (Forest, 1998).

Area-preserving maps also arise in the study of the
motion of Lagrangian tracers in incompressible fluids
or of particles tightly gyrating around magnetic field
lines. In particular, when one component of the field is
particularly strong, such as in the plasma device called
a tokamak, the transverse dynamics reduces to an area-
preserving map.

Autonomous canonical transformations are sym-
plectic maps. For example, if F(q, q ′) is a generating
function for a canonical transformation, then it gener-
ates a symplectic map. In particular, the Froeschlé map
(3) is generated by F(q, q ′) = 1

2 (q ′ − q)2 − V (q).
An algorithm that respects the symplectic nature

of Hamiltonian dynamics is called a symplectic
integrator. A first-order symplectic algorithm with
time step �t for the Hamiltonian H(q, p) is
generated by F(q, p′) = qp′ + �tH(q, p′) where
dF = q ′dp′ + pdq, giving the map

q ′ = q + �t
∂H

∂p′ (q, p′), p′ = p − �t
∂H

∂q
(q, p′). (4)
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Note that the map is implicit since H is evaluated
at p′. However, for the case that H = K(p) + V (q)

this becomes a leap-frog Euler scheme, an example
of a “splitting” method. Symplectic versions of many
standard algorithms—such as Runge–Kutta—can be
obtained (Marsden et al., 1996). While there is still
some controversy on the utility of symplectic methods
versus methods that, for example, conserve energy and
other invariants or have variable time-stepping, they are
superior for stability properties since they respect the
spectral properties of the symplectic group.

The Symplectic Group

The stability of an orbit {...zt , zt + 1, ...} where
zt + 1 = f (zt ) is governed by the Jacobian matrix
of f evaluated along the orbit, M = ∏

t Df (zt ).
When f is symplectic, M obeys (2), MtJM = J .
The set of all such 2n × 2n matrices form the
symplectic group Sp(2n). This group is an n(2n + 1)-
dimensional Lie group, whose Lie algebra is the
set of Hamiltonian matrices—matrices of the form
JS where S is symmetric. Thus, every near-identity
symplectic matrix can be obtained as the exponential
of a Hamiltonian matrix and corresponds to the time t-
map of a linear Hamiltonian flow. There are symplectic
matrices, however, that are not the exponentials of
Hamiltonian matrices; for example, − I .As a manifold,
the symplectic group has a single nontrivial loop
(its fundamental group is the integers). The winding
number of a loop in the symplectic group is called
the Maslov index (McDuff & Salamon, 1995); it is
especially important for semi-classical quantization.

If M is a symplectic matrix and λ is an eigenvalue
of M with multiplicity k, then so is λ− 1. Moreover
det(M) = 1, so M is volume and orientation preserving.
A consequence of this spectral theorem is that orbits of a
symplectic map cannot be asymptotically stable. There
are four basic stability types for symplectic maps: an
eigenvalue pair (λ, λ− 1) is

• hyperbolic, if λ is real and larger than one;
• hyperbolic with reflection, if λ is real and less than

minus one;
• elliptic, if λ = e2π iω has magnitude one;
• part of a Krein quartet if λ is complex and has

magnitude different from one, for then there is a
quartet of related eigenvalues (λ, λ− 1, λ̄, λ̄− 1).

Thus, a periodic orbit can be linearly stable only when
all of its eigenvalue pairs are elliptic. For this case,
the linearized motion corresponds to rotation with n

rotation numbers ωi .

Symplectic Geometry

Every symplectic map is volume- and orientation-
preserving, but the group Symp(X) of symplectic
diffeomorphisms on X is significantly smaller than that
of the volume-preserving ones. This was first shown in
1985 by Gromov in his celebrated “nonsqueezing” (or
symplectic camel) theorem. Let B(r) be the closed ball
of radius r in R2n and C1(R) = {(q, p) : q2

1 + p2
1 ≤ R2}

be a cylinder of radius R whose circular cross section is
a symplectic plane. Since the volume of C1 is infinite,
it is easy to construct a volume-preserving map that
takes B(r) into C1(R) regardless of their radii. What
Gromov showed is that it is impossible to do this
symplectically whenever r > R. This is one example
of a symplectic capacity, and is leading to a theory of
symplectic topology (McDuff & Salamon, 1995).

Another focus of this theory is to characterize
the number of fixed points of a symplectic map,
that is, to generalize the classical Poincaré–Birkhoff
theorem for area-preserving maps on an annulus.
Arnold conjectured in the 1960s that any Hamiltonian
diffeomorphism on a compact manifold X must have
at least as many fixed points as a function on X must
have critical points. A Hamiltonian map is a symplectic
map that can be written as a composition of maps of the
form (4). Conley and Zender proved this in 1985 for the
case that X is the 2n-torus: f must have at least 2n + 1
fixed points (at least 22n if they are all nondegenerate)
(Golé, 2001).

Dynamics

In general, the dynamics of a symplectic map consists
of a complicated mixture of regular and chaotic
motion (Meiss, 1992). Numerical studies indicate that
the chaotic orbits have positive Lyapunov exponents
and fill sets of positive measure that are fractal in
nature. Regular orbits include periodic and quasi-
periodic orbits. The latter densely cover invariant tori
whose dimensions range from 1 to n. Near elliptic
periodic orbits, the phase space is foliated by a
positive-measure cantor set of n-dimensional invariant
tori. There are chaotic regions in the resonant gaps
between the tori, but the chaos becomes exponentially
slow and exponentially small close to the periodic
orbit. Some of these observations, but not all, can be
proved.

The simplest case is that of an integrable symplectic
map, which can be written in Birkhoff normal form:
f (θ, J ) = (θ + ∇S(J ), J ). Here (θ, J ) are angle-
action coordinates (each n-dimensional) and 	 = ∇S is
the rotation vector. Orbits for this system lie on invariant
tori; thus the structure is identical to that for integrable
Hamiltonian systems.
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The Birkhoff normal form is also an asymptotically
valid description of the dynamics in the neighborhood
of a nonresonant elliptic fixed point, one for which
m · 	(0) �= n for any integer vector m and integer n.
However, the series for the normal form is not generally
convergent. Nevertheless, KAM theory implies that tori
with Diophantine rotation vectors do exist near enough
to the elliptic point, providing the map is more than
C3 and that the twist, det D	(0), is nonzero. Each
of these tori is also a Lagrangian submanifold (an n-
dimensional surface on which the restriction of the
symplectic form (1) vanishes). The relative measure of
these tori approaches one at the fixed point.

Nevertheless, the stability of a generic, elliptic
fixed point is an open question. Arnold showed by
example in 1963 that lower-dimensional tori can have
unstable manifolds that intersect the stable manifolds
of nearby tori and thereby allow nearby trajectories to
drift “around" the n-dimensional tori; this phenomenon
is called Arnold diffusion (Lochak, 1993). When
the map is analytic, the intersection angles become
exponentially small in the neighborhood of the fixed
point, and the existence of connections becomes a
problem in perturbation theory beyond all orders.

Aubry–Mather theory gives a nonperturbative
generalization of KAM theory for the case of
monotone twist maps when n = 1. These are symplectic
diffeomorphisms on the cylinder S × R (or on the
annulus) such that ∂q ′/∂p ≥ c > 0. For this case,
Aubry–Mather theory implies that there exist orbits for
all rotation numbersω.Whenω is irrational, these orbits
lie on a Lipschitz graph, p = P(q), and their iterates are
ordered on the graph just as the iterates of the uniform
rotation by ω. They are either dense on an invariant
circle or an invariant Cantor set (called a cantorus when
discovered by Percival). These orbits are found using
a Lagrangian variational principle, and turn out to be
global minima of the action.

Aubry–Mather theory can be partially generalized
to higher dimensions, for example to the case of ratio-
nal rotation vectors, where the orbit is periodic (Golé,
2001). Moreover, Mather (1991) has shown that action-
minimizing invariant measures exist for each rotation
vector, though they are not necessarily dynamically

minimal. The existence of invariant cantor sets with any
incommensurate rotation vector can also be proven for
symplectic maps near an anti-integrable limit (MacKay
& Meiss, 1992). Finally, converse KAM theory, which
gives parameter domains where there are no invariant
circles for the standard map, implies that, for example,
the Froeschlé map has no Lagrangian invariant tori
outside a closed ball in the space of its parameters
(a, b, c) (MacKay et al., 1989).

JAMES D MEISS

See also Aubry–Mather theory; Cat map; Chaotic
dynamics; Constants of motion and conservation
laws; Ergodic theory; Fermi acceleration and
Fermi map; Hamiltonian systems; Hénon map;
Horseshoes and hyperbolicity in dynamical systems;
Lyapunov exponents; Maps; Measures; Melnikov
method; Phase space; Standard map
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