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Abstract 
 We construct an approximate renormalization operator for a two and one half 
degree of freedom Hamiltonian corresponding to an invariant torus with a frequency in 
the cubic field Q(τ), where τ3+τ2–2τ–1=0. This field has irrational vectors that are most 
robust in the sense of supremal Diophantine constant. Our renormalization operator has a 
critical fixed point, but it is not hyperbolic. Instead it has a codimension three stable 
manifold with one unstable eigenvalue, δ≈2.88, and two neutral eigenvalues. 

Introduction 
 A major open problem in the study of Hamiltonian dynamics is the mechanism for 
the break-up of invariant tori in systems with more than two frequencies. The two 
frequency case, though not completely solved has seen many advances in the past 15 
years, including Aubry-Mather theory [1; 2], renormalization theory [3], converse KAM 
theory [4; 5], and the anti-integrable limit [6; 7]. 
 The story has the following plot outline: beginning with an integrable system of 2 
degrees of freedom, KAM theory implies that almost all invariant tori (those with 
Diophantine frequency ratios) are stable to perturbation. However, every invariant two 
torus is eventually destroyed by strong enough perturbation (converse KAM) and is 
replaced by a “cantorus,” a torus with a cantor set cross-section. The tori that are locally 
most robust are the noble irrationals—those whose frequency ratios are equivalent to the 
golden mean under a modular transformation. At a critical point a noble torus exhibits a 
self-similar structure, and this local picture is universal. The destruction of tori of more 
general frequencies can also be described in a local way with a renormalization operator, 
but the picture is not strictly self-similar, though universality is expected to hold except 
possibly for frequencies not of “constant type.” 
 Some of these results can be generalized to more dimensions. KAM theory 
implies that Diophantine tori are stable. Generalizations of converse KAM theory [8] and 
the anti-integrable limit [7] can be developed. However, very little is understood about 
the way in which the torus-to-cantorus transition occurs. In this note, we review our 
attempt to understand this transition by the construction of an approximate 
renormalization theory [9]. 
 We focus on the case of a periodically time dependent Hamiltonian H(x,y,u,v,t). 
where (x,y,u,v) ∈ T2×R2. Here (x,y) is the configuration and (u,v) the momentum. We 
claim there are three essential parameters needed to study such a system, and these can be 
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taken to be amplitudes of potential energy terms. Our model is a point particle in the 
plane acted on by the field of three traveling waves, which has the Hamiltonian 

   
H = 1

2(u,v)⋅ α β
β γ

⋅ u
v + Acos(2πx) + Bcos(2πky) + Ccos(2π (t – x –y))  (1) 

Without loss of generality, the wavenumbers (k,  ) can be taken to be positive and the 
energy can be scaled so that the mass matrix has unit determinant, αγ–β2 = 1 

Tori and Frequencies 
 We study the rotational tori, that is tori homotopic to the constant momentum tori. 
The frequency vector ω is the average direction that an orbit moves around the torus 
(assuming this limit exists). We let ω ∈ R3, where the first component gives the periodic 
time dependence, and the length of the vector is unimportant. A frequency is 
commensurate if there is a nonzero integer vector m such that m⋅ω = 0. Such a relation is 
a resonance condition. If ω has no resonances then it is incommensurate. If ω has d 
independent resonances, then it is proportional to an integer vector. The Diophantine 
constant for ω is defined by   C τ(ω) = liminfm → ∞ ||m|| τ m⋅ω  where ||m|| = max(|mi|). A 
Diophantine frequency has Cd(ω) ≠0. 
 The theory of simultaneous approximation of frequency vectors is not as complete 
as continued fraction theory; see, e.g., [10]. We adopt a Farey approximation technique 
proposed in [11]. Begin with three resonances m1 = (1,0,0), m2 = (0,1,0), m3 = (0,0,1), 
each corresponding to a plane in R3. The set of three resonances delineates a cone (the 
positive octant) denoted by the matrix M = (m1,m2,m3)t. 
 To construct the Farey sequence for an ω in M, divide the cone using the new 
resonance m′ = m1–m2. There is now a right cone MR = (m3,m′,m2)t, and a left cone 
ML = (–m′,m3,m1)t. If ω∈ML, record an L, otherwise permute the first two coordinates 
and record a P. Repetition of this transformation gives a sequence of L and P’s. The 
operations can be represented by linear transformations, MS = S–1M, where  

 
  

S = P if (m1–m2)⋅ ω > 0
L if (m1–m2) ⋅ ω ≤ 0, P =

0 1 0
1 0 0
0 0 1

, L =
0 0 1
1 0 1
0 1 0

 (2) 

Note that det(P) = det(L) = 1 so det(MS) = 1. We can think of ω as the sequence S1S2S3... 
If ω is an integer vector (with no common factors) then this sequence eventually 
terminates [12]. 
 The “simplest” incommensurate frequency vectors have periodic Farey sequences. 
When the period is q, ω is the eigenvector with largest eigenvalue of the nonnegative 
matrix S1...Sq. This implies that the components of ω are elements of a (possibly 
reducible) cubic field. The simplest of these is the eigenvector of L, (1,σ2,σ), where σ≈ 
1.324717957 is the real solution of σ3 = σ + 1, called the spiral mean. This vector is an 
integral basis for the cubic field, Q(σ), generated by σ. 
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 If we look at products of the matrices L and P, the next periodic sequence that 
gives an irreducible cubic irrational is of period four, containing three L factors and one 
P. Each of these sequences generates a frequency in the cubic field, Q(τ), where τ = 
2cos(2π/7) ≈ 1.2469796 is a solution of τ3+τ2–2τ–1=0. One such matrix is 

 
  

LPL2 =
1 0 1
1 1 2
0 1 0

, λ = 1 + τ, ω = (1,τ2 +τ,τ)  (3) 

where λ≈2.246979604 is the only eigenvalue of LPL2 bigger than one. The cubic field 
Q(τ) is the totally real cubic field with minimal discriminant (Δ = 43) and ω is an integral 
basis for Q(τ). Numbers in this cubic field appear to be the generalization of the golden 
mean—in the sense of having the largest possible Diophantine constant. It is known that 

  sup
ω

C2 (ω) ≥ 2 72 7  and numerical evidence indicates that 2/7 is indeed the supremum [13]. 
Using a reasonable conjecture about the continued fraction of τ, Cusick has shown that 
there are integral bases in Q(τ) whose Diophantine constants limit on 2/7 [14]. If τ is the 
correct generalization of the golden mean, we would expect some equivalence class of 
frequencies in Q(τ) to give the most robust tori [15]. The set of frequencies with a given 
tail can be thought of as equivalent under the operation of stripping off the head of the 
sequence. All such frequencies will have the same renormalization behavior. 
 Preliminary investigations of Q(τ) show that it contains frequencies with two 
distinct periodic Farey tails, LPL2 as above and (LP)6L. In addition there appear to be 
elements of the cubic field with aperiodic Farey sequences. We do not understand the 
significance of these. As a final remark, Arnold’s simplicial generalization of the 
continued fraction [16; 17] also points to the field Q(τ) as the “simplest” (Arnold, private 
communication). 

Renormalization Transformation 
 The renormalization focuses on a region of phase space in which orbits of a given 
frequency ratio are expected. We define two such transformations corresponding to the L 
and P Farey steps. These are obtained by formally assuming that each of the parameters 
A,B,C = O(ε), obtaining a canonical transformation to eliminate one of the resonances to 
O(ε2), and then transform the new Hamiltonian back to its original form [9].  
 For the L transformation, we eliminate the m2 = (010) resonance by a near identity 
canonical transformation. The final transformation consists of the maps 

 
   L : k′ = k , ′ = 1

1+k  (4) 

 
   

L:
α′
β′
γ′

= 1
1+k

1/k –2 k
1 1–k –k
k 2k k

α
β
γ

 (5) 
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L: A′ = (1+k)3β
2k2 AB, B′ = 1+k

k C, C′ = 1+k
k A  (6) 

This is the approximate renormalization operator. The permutation P corresponds to the 
involution 

    P : k, ,α,β,γ,A,B,C → 1
k ,k,γ,β,α ,B,A,C  (7) 

Renormalization for Q(τ) 
 For the frequency (4) we construct the map LPL2. For the wavenumbers this gives 

     LPL2: (k, )→ k
k+ , k

+k + k  (8) 

It has a unique fixed point, (k,  ) = (τ2–1, 2–τ2), in the positive quadrant. This fixed point 
is a stable node with eigenvalues λ=0.247 and –0.357, and is a global attractor for the 
positive quadrant. 
 Since the wavenumber map is contracting, the wavenumber dynamics is non-
essential, and we therefore evaluate the mass map at the fixed point k = τ2-1 giving the 
linear map 

 

   
LPL2: 1

τ(τ+ 1)

1 2 1
1 + τ– 1 – τ– 1 – 1
2 + τ – 2( 1 + τ– 1) 1

 

Recall that this operator preserves the subspace αγ –β2 = 1. In fact this matrix is a square 
root of the identity; it has eigenvalues (–1,1,1) and is diagonalizable. Therefore this map 
is not contracting—in general the mass matrix oscillates with period two, unless the 
component along the first eigenvector is zero, i.e., when the mass is chosen such that (1–
τ–τ2)α+2β+ γ = 0. Otherwise the general orbit of β is of the form  

 βn = c0 +(–1)nc1 (9) 

This violates the notion of “universality”: asymptotics of the orbit under the 
renormalization depend on the parameters of the initial Hamiltonian. 
 The parameter map depends on the wavenumber k and the mass matrix through β. 
Consider first the case when c1 = 0, so that β is fixed: 

 
    

LPL2 : (A,B,C) → τ24

8(τ2 – 1)9β
3 A2 BC, τ10

2(τ2 – 1)4βAB, τ6

( τ2 – 1)3 A  (10) 

There are two fixed points, A=B=C = 0—the KAM fixed point, and the critical fixed 
point: 
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    Ac = Bc = 2(τ2 – 1)4

τ10β , Cc = 2(τ2 – 1)
τ4β  (11) 

The KAM fixed point is attracting. The critical point can be studied by taking the log of 
the amplitude map to give, in terms of a = log(A), b= log(B), c = log(C), the affine map 

 
  a′

b′
c′

=
2 1 1
1 1 0
1 0 0

a
b
c

+ v0  (12) 

Thus stability is governed by the linear matrix above. This matrix has the characteristic 
polynomial λ3–3λ2+1 = 0 (not related to τ), so that 

 λ1 = δ ≈ 2.8793852, λ2 ≈ .65270365, λ3 ≈ –.53208888 (13) 

Thus there is a one dimensional unstable manifold, and a two dimensional stable set.  
 For the general case, β is not fixed, and the amplitude map is periodically forced. 
However, for the amplitude dynamics, there is still a two dimensional center-stable 
manifold that has a one dimensional unstable manifold. 

Conclusion 
  The approximate renormalization for the cubic τ is qualitatively quite similar to 
that we found for the spiral mean, σ. The only real difference is that the mass matrix for σ 
undergoes an irrational rotation, while for τ we found period two orbits. However, both of 
these are structurally unstable, and we would expect the dynamics of the exact 
renormalization to be more complicated. What should be preserved is the codimension 
one critical surface containing a fixed point and a 2D normally hyperbolic invariant 
manifold, with 1 unstable normal direction with eigenvalue δ ≈2.88, the remaining 
normal directions being attracting. 
 As for the spiral mean case, we find that a typical one parameter system is not 
“self-similar” at criticality. Instead properties of the system such as the stability 
parameters of periodic orbits (i.e., the residues) are predicted to oscillate  
 It will be interesting to investigate the question of “robustness” of tori with 
various frequencies by examining the relation between the critical surfaces for various 
frequencies.  
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