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Near a nonresonant, elliptic fixed point, a symplectic map can be transformed into Birkhoff normal
form. In these coordinates, the dynamics is represented entirely by the Lagrangian “frequency map”
that gives the rotation number as a function of the action. The twist matrix, given by the Jacobian
of the rotation number, describes the anharmonicity in the system. When the twist is singular the
frequency map need not be locally one-to-one. Here we investigate the occurrence of fold and cusp
singularities in the frequency map. We show that folds necessarily occur near third order resonances.
We illustrate the results by numerical computations of frequency maps for a quadratic, symplectic
map. © 2003 American Institute of Physic§DOI: 10.1063/1.1529450

The dynamics in the neighborhood of a linearly stable e7Z. The map is symplectic whem ¢’ /A\dJ =d6/\dJ,
periodic orbit of a Hamiltonian flow or fixed point of a which requires thaf) be the gradient of a scalar function,
symplectic map can be elucidated by consideration of Q=DS(J). The “twist” of this map is defined to be thd
their Birkhoff normal forms. The normal form has action x d dimensional matrixr(J)=DQ(J)=D?S. It represents
variables, J, which are formal invariants when the rota-  the anharmonicity of the system.
tion vector, w, of the elliptic orbit is nonresonant. The If the twist atJ=0 is nonsingular and there are no low-
conjugate angle variables@ rotate with a frequency vec-  order resonances, then Moser's twist theorem implies that
tor 2 w2 (J) that depends upon the action. Whernd€Q/dJ the elliptic fixed point is a limit point of a family of invariant
is a nondegenerate matrix, the system has twist. For such tori.»? For the area-preserving case, this implies that the
systems the map from actions to frequencies is locally fixed point is stable. Though det(0))=0 seems special, it
smooth and one-to-one; this is a requirement for the ap-  occurs with codimension-one in the neighborhood of a tri-
plication of KAM theory which implies that sufficiently  pling bifurcation of an elliptic fixed point? That is, if varia-
incommensurate tori persist in the full dynamics. Our  tion of a parameter causes the frequency at the elliptic fixed
goal in this article is to study the simplest degeneracies of point to cross}, the twist at the elliptic fixed point will ge-
the twist, the fold and cusp singularities. The fold has nerically cross zero for a nearby parameter value. Conse-
been extensively studied elsewhere for the case of area- quences of this were observed in Refs. 5-7.
preserving maps. Here we extend these results to higher- Vanishing of the twist for the two-dimensional case leads
dimensional symplectic maps. to a number of phenomena, including instabifify? recon-
nection bifurcations between unstable and stable manifolds
of periodic orbitst®* orbits that can chaotically drift among
multiple island chains with the same frequeftyexotic

For a symplectic map with an elliptic fixed point, the “Meandering” invariant cirgleé? and unusual renoggnaliza—
Birkhoff normal form can be written in terms of ange  tion structure for critical twistless invariant circl&s:** The

I. INTRODUCTION

cT9 and action] € RY coordinates as structures that arise depend upon the number of vanishing
derivatives ofS—if j derivatives vanish, thepisland chains
0'=0+2mQ(J), with the same frequency can arise nearby in parameter
3o (1)  spacée’

Here we begin an investigation of the twist singularities

Here Q(J) is the rotation vector as a function of the action, that occur in the neighborhood of an elliptic fixed point of
and the rotation vector at the elliptic fixed point is denotedfour-dimensional, symplectic maps. We start by studying the

w=Q(0). Thefixed point is said to be nonresonant when form of typical singularities in the frequency map defined by
the equationm-w=n has no solutions fomeZ% and n Q(J). These singularities have been classified by THom
and Arnold?!® The stable singularities fai=2 are the fold

dElectronic mail: h.r.dullin@Iboro.ac.uk and cusp. _ . _
YElectronic mail: james.meiss@colorado.edu We then study a polynomial map in the neighborhood of
1054-1500/2003/13(1)/1/16/$20.00 1 © 2003 American Institute of Physics

Downloaded 10 Nov 2005 to 128.138.249.124. Redistribution subject to AIP license or copyright, see http://chaos.aip.org/chaos/copyright.jsp



2 Chaos, Vol. 13, No. 1, 2003 H. R. Dullin and J. D. Meiss

if its Jacobian,Df(x), has less than maximal rank, i.e., if
rank(Df )<min(m,n). The imagef(x), of a critical point is
el a critical value. A map is said to b&Cf) stable aix if every
map that is sufficiently close tb(in the sense that the firkt
derivatives are clogeis locally diffeomorphic tof. The
equivalence class of maps that are locally diffeomorphit to
is the “germ” of f. If the dimension is low enough, the germ
can be represented by a fixed polynomial map; more gener-
ally “moduli,” which are either parameters or arbitrary func-
tions, are needed to represent the germ. The equivalence
FIG. 1. (Color onling Sketch of the frequency map for=2. The positive  class of maps represented by the germ in the neighborhood
quadrant in action space is mapped to a cone in frequency space. Throughf a critical point is called a “singularity.”
out this article the so]id curves denote the axis or its image and the For example, whem=n=2, there are only two stable
dashed curves th&, axis or its image. The vectors label the columngef . . . o .
as, and the four entries i, asa, , see(6). singular germs; both correspond to singularities for which
rank(Df )=1. These are the “fold,” represented biy(x)
=(x2,x,), and the “cusp,” represented byf(x)=(x}
an elliptic fixed point. If we assume there are no low-order+XiXz,Xz). The case for which the rank @f is 0 is not
resonances, the map can be transformed to Birkhoff form t@table in two dimensions. Since the fold and cusp are Stable,
some finite order in a power series expansion in the actiongvery nearby map has nearby critical points of the same
We compute the twist and show that it generally vanishegorm.
near several resonances. We compare the calculations of the
twist with numerical calculations of the frequency map based
on Laskar's algorithrf??* to observe the folds and cusps. B. Singularities of Lagrangian maps
Finally we use the technique of Mefégo estimate the vol-

ume of the elliptic region in the neighborhood of the fixed A Lagrangian map is defined by the projection of a La-
point. grangian manifold onto a Lagrangian plane. For example, in

geometrical optics the Lagrangian manifold corresponds to a

wave front together with its unit normals, the velocity vec-
Il. VANISHING TWIST tors, and the projection is to physical space. Correspond-

Since the frequency map is generated ®ythrough ingly, the set of critical values of a Lagrangian map is called

Q(J)=DS, this map is an example of a “Lagrangian map.” @ “caustic.” A Lagrangian manifold can be represented by a
Recall that ad-dimensional submanifold of a symplectic Single, generating functioff;if, as in our case, the Lagrang-
manifold is Lagrangian if the symplectic form vanishes iden-ian manifold is a graph over the action space)Jj
tically for any pair of tangent vectors to the submanifold. =(DS(J),J), the generating function i8(J). The Lagrang-
The submanifoldL={(6,J):6=0} is Lagrangian, and its ian map is the projection of the manifold onto the action
image under the Birkhoff normal forrtl), f(L)={(6,J):6¢  space, i.e.Q:R‘— R defined byd—DS(J). The map has a
—DS(J)}, is therefore also Lagrangian. Since this Lagrang-Ctitical point atJ if 7=D?S(J) is singular.

ian manifold is a graph ovel, we can trivially project out The standard theory of the singularities of Lagrangian
the J direction, defining maps has been formalized by Thom and generalized by

Arnold 2 Whend=1 there is only one stable singularity, the
“fold.” For d=2 the “cusp” singularity is also stable. For
d=3, three new singularities are stable, the “swallowtail”
and two forms of point singularitiegyramids and purses

The fold singularity is denoted,. Whend=2, a La-
grangian map with a fold is locally equivalent to the map
7(J)=DQ(J)=D?S(J) =1+ 11+, generated by

where 7, is a one-form valued matrix. S(J)=J33+33. 2
Since J;=0, the domain of the frequency map is the . i ) _

positive orthant inJ, so that its image is a cone @ with ~ ne critical set, determined by-0det 0°9)=12J, is the

vertex atw (see Fig. 1 (Most of the figures in this article are herizontal axis. The caustic i€.=(1(J;,0), which is the

available in color in the online versionif the twist is non-  @Xis{2;=0. The action of the map is to fold theplane into

singular atJ, then the frequency map is a diffeomorphism the upper halfQ-plane. .

nearJ. Here we discuss the form of the singularities in the ~ There are two cusp singularities, denotsfl, wheree

frequency map that are created as dgbes through zero, =+ Ford=2, the germ of these is represented by the gen-

i.e., of the critical points of Lagrangian maps. erating function

A. Singularities of maps S(3)=(J;+J3)%+ €Js. (3)

Q

1
JHDS(J):(J)‘F ToJ+ E‘Jt’Tl‘J‘F"'

to be the frequency maj). The twist is defined to be the
Jacobian of the frequency map

Here we briefly recall a few facts about the singularitiesHere the critical set is the parabala= —(1+3¢)J3, and
of smooth map%® A map f:R™— R" has a critical point ak  the caustic is the semi-cubical parabola, or cusp:
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33% tation of these vectors, the cone boundaries are curved either
0= —26<433)- toward its interior or its exterior. These then determine
2 whether the frequency map is locally one-to-one wherrglet
In the exterior of the cusp, the map is one-to-one, while inis positive or negative.
the interior it is three-to-one. Finally, the twist could vanish if both elements in one
Generally the set of critical points, det0, is a smooth  column of 7, are zero, i.e., when the kernel e coincides
codimension-one submanifold tspace, i.e., a curve when with a coordinate axis. Since this requires two conditions on

d=2. The caustic is locally smooth whenever the image of7; it is codimension-two. This corresponds to the transition
the tangent vector to the critical set is nonzero. This tangengetween the parallel and antiparallel cases.

v, is determined by @ detn)'v=0, and its imagerv is non- The critical set, det=0, for (6) is a quadratic curve.
zero ifv is not in the kernel ofr. In terms of the generating  When the curve is an ellipse, its caustic contains three cusps,
function, this condition reduces to the equation and when it is a hyperbola one branch of the caustic is a fold

and the other has a single cusp. Since we consider a power
0= 511(38155122~ S115220) — $12(3S125112~ 5225110 #0, (4)  series about the origin, we are most interested in the singu-

5 ) o ) larities when they occur at the image &0 which is )
on the curveS;;S,,=Si,; the subscripts of indicate partial =, From (4), there is a cusp ab when

derivatives. Whers+ 0, the singularity is locally a fold, and

when6=0, the image is a cusp point whenever the image of  50)=a(3bo;—ac,) —b(3bo,—da;)=0.

the unit tangent vector is not continuous. This is generic,

since it happens whenever at least one of the components @ftherwise, the image of the origin is a fold point. We will

TU reverses sign upon crossing the zero. primarily study folds in this article, leaving the study of
_ _ _ cusps to a later work so we assume that(0)+ 0.
C. Twistless bifurcations The fold can crosg=0 in two ways, depending upon

Since the Birkhoff normal form is computed as a powerthe slope of the critical set at the origin:
series aboul=0, and the physical domain corresponds to
J;=0, we now consider singularities that occur at the origin __ doy+aocs—2ba,
for a map whose domain is the positive orthant. The behavior doy,+aoc,—2boy’
of the frequency map at the origin is determined by the rank
of 7,=D2S(0). Whenthis is less thard, the image col- If m is negative, then as dej crosses zero the fold line
lapses to a subspace of dimension ragk( Generally, if a appears to be created or destroyed at the origin, since it
parameter is varied so that goes through rankl—1, the ~ moves through the nonphysical negativguadrants into the
orientation of the image is reversed. If we keep nonlineaffirst quadrant. However, if the fold has positive slope, then

terms inJ, this generally corresponds to the passage of a foldhere will be a nearby fold for both signs of dgt

caustic throughw=Q(0). Since the passage of dgt We show the four possible cases in Figs. 2-5. The col-
through zero results in qualitative changes in the dynamicgymns of 7, pass through the parallel state in Figs. 2 and 3,
we call it a “twistless bifurcation.” and the antiparallel state in Figs. 4 and 5. When the slope of

The critical points in the neighborhood df=0 can be the critical set is positive as in Figs. 2 and 4, the fold curve
studied by expandin® in a series in the actions. Fdr=2, is present on both sides of dgt=0, but it intersects the
this series begins image of thel; axis on one side and thly axis on the other.

When the slope is negative as in Figs. 3 and 5, the fold is

S =w-J+ 32X +bJp+3dI+ (0133 +30201,  present in the image of the positive quadrant only when

+3053,2+ 0,33). 5  detn=0.
For this generating function, the twist is
a b . ELLIPTIC FIXED POINTS
7(J)=19+ 1(J)= b d
Suppose : R?9—R?? is a symplectic map anz= f(z) is

(6) pliers,” and denote them by;. SinceDf is a symplectic
matrix, its multipliers come in reciprocal paifg ,1/w ,k

The columns ofry, (a,b)™ and (,d)T, are tangent to the =1,...d}, and the corresponding eigenvectors span a two-

images of the positivd axes atw, and so define the opening dimensional symplectic subspace. We define traces in each

angle of the frequency confeecall Fig. 1. Vanishing of the  symplectic subspace as

twist at the origin occurs if the columns ef, are parallel or

antiparallel. If the vectors are parallel, the frequency cone  py = uy+ 1wy,

collapses at the twistless point, and if they are antiparallel, it

opens to 180°. To next order i the boundaries of this and the residué8as

cone are parabolas whose symmetry axes are given by the

vectors ¢1,0,)" and (03,0,4)". Depending upon the orien- Re=3%(2—py). (7)

(01314”7232 o,d1+ 03, a fixed point. We call the eigenvalues Dff (z) its “multi-

02J1+0'3J2 0-3‘Jl+0-4‘]2 '
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FIG. 2. (Color onling A frequency map when the columns epass through the parallel state and the critical curve has positive slopewHgi@,0) and
o=(—1,1-2,0). For the left panet=[(3,1)",(1,0.5)'], and for the right panek=[(0.8,1)',(1,0.5)]. The grid of thin curves is the image of the positive
guadrant which is bounded by the images of Jheaxis (solid), and thel,-axis (dashedl The caustiddotted curve intersects the image of thly-axis when
detr,>0, and thel,-axis when the orientation reverses.

When O0<Ry =<1, the multiplieru, is on the unit circle. We ==1, and the Krein collisiong, = u; . Though a fixed point
assume, more strongly, that<R,<1 and R,#R;, for k may be linearly stable at these resonant points, it is not gen-
#J. In this case the origin is a linearly stable fixed point; it erally so.

is called “strongly-stable” following Arnold: This excludes For an elliptic fixed point, we define the rotation vector
the saddle-center and period-doubling bifurcation values e RY by

02
01 P2
7
gfé‘ﬂ‘-?

0.035 0.1 0.15 0.05 0.1 0.15

FIG. 3. (Color onling A frequency map when the columns epass through the parallel state and the critical curve has negative slopew Héfe0) and
o=(3,—1.5-3,1.5). For the left panet=[(1,1.1)',(1.1,1.55], so that det>>0, and for the right panet=[(0.4,1.1),(1.1.55)7, so that det<0. The
critical set enters the positive quadrant whenaed and intersects both boundaries of the cone, thus the cddstied curvg is only visible in the right
panel.
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FIG. 4. (Color onling A frequency map when the columns efpass through the antiparallel state and the slope of the critical curve is positivewHere

=(0,0) ando=(—0.3,0—0.5,1). For the left panet=[(0.8,1.15},(1.15,0.5)], and for the right panek=[(0.8,1),(1,0.5)']. For positive orientation, the
caustic crosses the image of theaxis; and when the orientation reverses, it crossed thimage.

Mk:ez’”iwk, k=1,...d. (8) A. Kinematics of resonances

Since the multipliers come in reciprocal pairs, we can always  In the neighborhood of an elliptic fixed point, a map can
choosew, e (0,3), for then the reciprocal multiplier corre- be transformed ir_1t9 the Birkhoff normal for(t) to arbitrary
sponds to negative rotation number. With this conventionOfder whenever it is not resonant. Adresonance corresponds
the tracesp,= 2 cos 27w, and the residues, to an integer vectom=(m,,...,my) € Z% such that

R=sir? mo= 7| we—1[%, 9 p= g g t=1 (10

are one-to-one iy . Using 8, this is equivalent to the existencenaf 7 such that

014 S5 LN
Ty 1R
R TR
jfl.h';r ' b
PO
SRR
R T
0241 4}
ok
0 ko "‘ll'--\_l
:
bt
ik
R
b [ =k 14
L : Yoo T“-?'H-.
T - | )
R i e et I
0.1 Lboa o LIS
B e e’ O L
_____ o1 s i et
Ll e Foy
. SIEEEERE
R S \ . I
W e o e o I A e
______________ A___ L] = ! H L] i i i 1
r \ S e T, W = 1 1 AR B I I |
......... PR o G TR LT TR oo s B ok o \
i i i1 ! SR, iy, EEEEEREEN IR
N e e SR H B S oo PN SE0SL SST WP ATV
i ! ! i i i \ i T e o O
S S M S bt it R A R ; i .
----- R T T : = L O O B e e e et
I S St R S ke Sy I E I
i I T S N (R 5t ol oy pty oyl o 1
. P Eg, e S O O 0 TR . W
! il I S o S O O B T i -L-'.--L—hﬂ‘f\
03 x Z : el R iy Fopdmed===1"" 7 0} § | § } i)
0.2 0 02

FIG. 5. (Color online A frequency map when the columns efpass through the antiparallel state and the slope of the critical curve is negativewHere

=(0,0) ando=(—1,—1,—2,0). For the left panet=[(—2.2,1),(1,0.5)'] and the caustic is not visible. For the right pamel[(—0.2,1),(1,—0.5)"] has
negative determinant and a fold is present.
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m-w=n. (11) Tim(X) =Ti(Tm(X)),

Thus, in frequency space, a resonance corresponds tovehich is a simple consequence of the definiti@8). In par-
codimension-one plane, and the set of all resonances is thieular, note that ifm;=km; andm,=km;, then
set of planes with integral normal vectors, and rational B _ B
intercepts with the coordinate axes. Thus, the collection of Tml(x) Tmz(y)_Tk(Tmi(X)) Tk(Tmé(y))‘
7d+1 . . .
resonances can be labeled by vectorsn() e 7 o and since the polynomial equatigix) — p(y) always has a
Since (11) is homogeneous inng,n), we can assume factorx—y, we can write
that the components of this vector are coprime without loss
of generality. However, we need not consider all such vec- lemzzp(Rl*Rz)Rmimé-

tors. Two resonances are equivalent if they can be trans- . . . ., .
formed into one another by’ =w—1, whereleZ%. The whereP is a polynomial of degreek(~1)max{n; my). This

. . T process can be repeated for each common factor in the com-
corresponding action on the resonancenisn’=n—1-m.

Similarly, resonances are equivalent if they can be transE)Onents ofm. When this is completed, each of the factors

formed into one another by’ = — w, which induces the correspon(_:is to ap'artlcular.valuemfsmce they will appear
. , 7. as denominators in the Birkhoff normal form, we denote
action n—n’=-n. A well known lemma&’ implies that

there exists an integer vectdreZ® such that G<n’ these byDim,myn- Wh_enm 'S goprlme, t_h(_amzo _SO that )
<ged(m). In particular, if the components af are coprime, Dmo* R, but we adjust fche sign and divide out inessential
thenn can always be chosen to be 0, since g 1. constants. Here are the first few cases:

Since p;=2 cos(2rw;), the resonance condition can be Dyo=1—Ry;
written in terms of the traces as

g Dop=1-Ry;

E m; arccosp;/2) =2mn. (12 D3p1=4R;—3;

- Do31=4R,—3; (15
Generally this equation can be transformed into a polynomial 03172 =
in the traces by using Chebyshev polynomials Dy15=4R1(Ri—1)+Ry:

Tm(p/2)=cogmarccosp/2)). (13 Dyoo=4Ro(R,— 1) +R;.
Sincep e[—2,2] when the fixed point is elliptic, this poly- To plot the resonance curves in the trace or residue
nomial is real.

space, we can use parametric curves. For example, if
#0, the (m,n) resonance is the curve

B. Resonances for four-dimensional maps

n
, =tm,, =—tmg+ —.
Ford=2, we can convert the resonance condiiid® to @1 2 @2 Y m,

polynomial form simply by moving the second term to the
right-hand side and taking the cosine of both sides. Thi
gives the polynomial p1(t)=2 cog2mm,t),

lemzz Tml(Pllz) - Tmz(lez) )

whose zeros correspond to thma,(,m,,n) resonances. Note

thatn has vanished from this form, as it must, sinceloes  Therefore the resonant curves in the space of traces or resi-

not appear in10). Moreover, it is clear from this form that dues are Lissajous figures.

the signs of then; are irrelevant sincé&,,(x)=T_,(x). This In the left panel of Fig. 6 we show the resonance curves

can also be seen by noting that the traces involve the multiap to order four. The right panel of the figure shows reso-

plier and its reciprocal symmetrically and so do not depenchances up to order 9. While this picture may seem similar to

upon whetheru or x~* is involved in the condition10).  the familiar “Arnold web” of resonances in action spaiCat

The first few resonance polynomials, written as functions ofrepresents resonances at the fixed point in the parameter

the residues, are space of a family of maps and not resonances in the space of
Rio=—2Ry, initial conditions(e.g., actionsof one map.

SUsing the definition of the traces, this gives the curves

n
po(t)=2 cos( 2mmt— 277—) .
my

R11= —2(R1—Ry),
Ro0=8R;(R;1—1), (14 IV. QUADRATIC SYMPLECTIC MAPS

R21=8R;(R;—1)+ 2Ry, Here we will illustrate the formation of twist singulari-
2 ties by studying a four-dimensional quadratic, symplectic
Rs0=~2R1(4R; = 3)". map that has a strongly-stable, elliptic fixed point. The gen-
If the vectorm is reducible, i.e., gcd,,m,)#1, then  eral form for quadratic symplectic maps has been found by
the polynomialsR,, can be factored. This follows from the Moser?® generalizing Haon’s quadratic mafj to higher di-
relation mensions. Since this map does not necessarily have fixed
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FIG. 6. (Color online Resonances curves up to ordefl@ft pane) and order 9right panel in the space of residues.

points, we start with that assumption to construct our ex-This is easily seen to be equivalent to the more common
ample. In the Appendix we will show how to obtain our map rotation matrix form? The matrixM can be written asvl

from Moser’s general quadratic map. =B M’'B whereM’ is the symplectic rotation with diag-
We will use a Lagrangian generating function to write onal blocks
our map in “standard” form, .
COS 2wy S, SIN 27wy
AN r_ _ M,: .
L(x,x")=K(X"=x)=V(x), (16) K| —ssin2mwy oS 2ray

whereK is the “kinetic” and V is the “potential” energy.  5,4B is symplectic with the blocks
The map is generated via the one foydx’ —ydx=dL,
giving B_ 1 ( 0 1 )
AL KTsin2mw) | —sin2rwy)  25Ry)
y=——=DK(x'—x)+DV(x),

IX Now we want to consider nonlinear perturbations of this
(17) strongly-stable fixed point. We represent the quadratic non-
,_dL DK (X’ —X) linear terms in the map by adding a cubic potential to the

Y=~ generating function,

If this map has a fixed point, then we can shift it to the 3 -
origin. The new generating function then has no linear terms v (X):i+12=3 ajjX1X35 - (20
in V.

First we consider the quadratic Lagrangian when there ighe standard map generated @) with V(x) = =2sRyx¢
a strongly-stable fixed point at the origin. In this case coor-+V®(x) andK(v)=Sswi/2 is
dinates in phase space can be chosen so that the map is in
real block diagonal normal forntsee, e.g., Ref.)2 Such a
map is generated by a quadratic Lagrangian of the form Vi =Y— 4Rsix— DV (x).

d

X=Xkt SV »
(21)

5 Sk, 5 ) A special case of this system is the “natural map” ob-
L )(X:X')ZKZI 7 L= %) "~ 4RiXil]. (18 tained when the Krein signatureg are equal. In this case,

- the definiteness of the kinetic energy imposes some restric-
Here theR, are the residues of the fixed point, and e  tions on the behavior of the systét.
=*1 are signs that determine the Krein signature—  Note that the inverse of the md@1l) is easy to obtain:
effectively the direction of rotation in each canonical plane. ,
The quadratic Lagrangiafi8) generates the linear map with X=Xk SiYko

matrix Yi=Yr+4Rsxp+ DV (X').
M = di 1-4R s k— Thus(21) is a polynomial diffeomorphism and has a polyno-
=diag | k=1,..d]|. (19 S
AR 1 mial inverse of the same degree.
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FIG. 7. (Color) Estimated size of the island of quasiperiodic motion around the elliptic fixed point of the cubic natural map as a function of the residues using
the area of trapped orbits on the symmetry plane. We chepss,, and for the left panel set;=0.1 while for the rightagy=a,,=0. The trapped area is
indicated with the hue on the color wheel, with red (0°) corresponding to the smallest island, through green to blue to magenta (359°) as the largest.

A. Island size “counting pixels” that contain trapped initial conditiori$ or

The map(21) has rich dynamical behavior which has b_y t'he 'morg efficient and precise method of exit time
only been partially explored. One experiment that illustratedlistributions” _ _
some of the phenomena is the computation of the size of the The quadratic maji21) does have reversing symmetry
stable island around the elliptic fixed point. For the two-With a fixed se{x=0}. Thus, by analogy with Heon's work
dimensional case this experiment was first performed byve can estimate the trapped volume by looking only at initial
Henon2° Those calculations clearly showed the strong deconditions starting on this symmetry plane and estimating
pendence of the size of the island on the residue, and ithe area for which the trajectories are bounded. In Fig. 7 the
particular that it shrinks to zero at the=3 resonance. results are shown for two different set of parameters. To
Henon used the length of the portion of the symmetry linedetermine the trapped island area in the symmetry plane we
that contains bounded orbits as an estimate for the area of tlessume that the region is star convex and calculate its area by
island. The actual area of the island can also be computed Wjissecting it into 100 equal sectors. For each ray bounding a

FIG. 8. (Color) Estimated volume of bounded orbits in the island of quasiperiodic motion around the elliptic fixed point of the cubic natural map as a function
of the residues using the average exit time. Parameters are the same as in Fig. 7.
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sector the boundary of the island is estimated by consideringhe normalization ofy, is arbitrary; because the nonlinear

an orbit as trapped if it does not leave the cube of boundeterms in the map are only functions gf, we choose it so

orbits for 1000 iterations. The transition point on each ray ishat the relatiorx, = (1/f,) (zx+z¢) is simple, i.e., so that,

found by bisection. This is much more efficient than count-is real and positive. Since the Poisson brackets of the old and

ing pixels would be, particularly for large islands, though it new variables are related by=¥x,y\}=vXv\{z«,z},

does rely on the assumption of star convexity. this means that the cross product of the eigenvectors must be
We observe that the island size is strongly influenced bymaginary and depends upon the Krein signature. We choose

the low order resonances. In the left panel, the area shrinks thhe normalization so that

zero near and outside th801) and (031) resonances, while — .

in the right panel the(210) resonance is most effective. {z.2d =2is,

Many of the resonances shown in Fig. 6 are visible in parwhich implies thatv, Xv,=— (i/2) s, and gives

ticular in the right picture. The fact that tH@10 resonance . 1a
increases the island sizistead of decreasing)its related fi=2sin 27w, =2vV2(Ri(1-Ry)) ™. (23)

to the fact that under the strong-stability assumption, ouNote thatf, is real and nonzero because of the convention

map is diagonalizable when; — w»; generically, this would  that 0< w< 3. The inverse of the transformati@f2) can be
not be the case, and tli&10) resonance might have a strong \yritten

effect in the opposite way.

For four-dimensional maps an explicit volume calcula-
tion by counting “voxels” is prohibitively expensive; how-
ever, the exit time distribution technictfds much more ef- In these coordinate@1) is transformed into
ficient and can still be carried out. To do this, we choose a
hypercubeC={|x|,|y|<2} that appears to contain all of the , Z+Z
bounded orbits. Mosé&t gives a larger box that contains all 2= Mk Tj
bounded orbits, but from our numerical experiments we see ) i )
that for our parametei@is sufficient. The incoming set fat ~ together with t?e corresponding complex conjugate equa-
is the portion of the cube that is not in its imagé, tons. HereDjV( )(x) denotes the derivative of the nonlinear
—Q\f(C). The exit time,t* (2) for a pointze Z, is the num- terms in the potential with respect to thth argument, i.e.,
ber of iterations until it leave€, and the average exit time, Xj- ) o
(t")7, is the average over all points i If we compute this It is interesting that the sole effect of the Krein sigha-

average, then the volume of the accessible region is given biy'res in(25) is to modify the signs of the terms in the gra-
(t*);u(Z). Thus the volume of trapped orbits ig(C) dient of the potential. Of course, when we transform back to

—(t");u(Z), wherep is the measure of the respective sets feal variables(24) shows that the direction of rotation de-
The exit time computation is realized as a Monte CarloP€nds uporg) as well. . _ .
simulation. First pick a random point in the cuBe If its SinceV'*’ is a polynomial, each nonlinear term in the

preimage is inC, then it is not inZ, and it is discarded; COMPlex map(25) has the form of a constant timesd

otherwise, determine the exit time of the point. The averagezngzlzf(k?kk where the exponents are all non-negative inte-

over all such points i¢t ). The probabilityP, of a pointto  gers. The degree of the termJds=S%_j,+ . In its sim-

be inl givesu(Z)~P,u(C). In this Monte Carlo realization, pjest form, the Birkhoff normalization dB5) proceeds itera-

statistical fluctuations can give an accessible volume sllghtI){i\,e|y to attempt to remove each term of degieel in the

larger thanu(C)=4*. In this case the trapped area is set Omap using a coordinate transformation of the fotm z

be 0. o +2(z,z), whereZ is a vector of homogeneous polynomials
Typical results are shown in Fig. 8, for the same paramyf gegreeJ. We start withJ=2 to remove the quadratic

eters as in Fig. 7. The results are qualitatively similar to theerms and then proceed successively to remove cubic terms
previous one, though the volume drops more dramaticallyynq so forth.

near higher order resonances than the area on the symmetry |, order to remove a particular tersh of degreel in the

plane does, presumably because volume has sampled NéWap forz/ , we require a term iiZ; with coefficient propor-

regions of phase space. o _
g P P tional to (IT§_; ui¥ut*— ;) 1. Sincew=1/u the transfor-

mation exists as long as

2i
Zk:f—k[(l—ﬂk)xk_skyk]- (29

2is
Ze+ =D VEe

3 , (25)

B. Normal form

d
To transform(21) to Birkhoff normal form it is conve- kUl r“i<k et i
nient to use complex coordinates that diagonalize the linear-
ization. Each block of19) has eigenvalueg, andu,, and  Thus, for the casel=2 and a resonancg™=1, the trans-
eigenvectors = (1/f}) (sk(l—lﬁk)) andvy, for some normal- formation does not exist for the component when
ization given byf,. Complex coordinatesz(z) can be in- i—1 T—1, T

Snm=ji—ji— nNMm=j,—jo,
troduced so that the new system is diagonal by defining SEEERRE 2=l 2 (26)

=2 nmy=j;—j;, nm=j,—j,—1,

with some nonzero integer.

X R
k) =UZ T UZ - (22)
Yk
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For certain terms this will givan;=m,=0, in which

H. R. Dullin and J. D. Meiss

The truncated nonresonant normal form has the two ac-

case the corresponding term can never be removed by a cfionsJ, = ¢, /2 as integrals. Transforming back to the origi-

ordinate transformation. The coefficients of these irremovnal coordinatex andy gives cubic approximations for the
able terms are called the twists. In the present case up f@tegrals

degree 3 they are given ke, z,(z,z,), z,(z,2,) for thez;
equation and by,, z,(z,z;), z,(z,2,) for the z; equation.

The transformation to normal form has to remove all the 2
quadratic termgif nonresonant There are ten of them, so

the transformation has ten corresponding terms to remove
them. Assuming that all the other terms of degree 3 can be
removed(i.e., assuming there is no resonance up to including

order 49, the map takes the form

d
&=l 1+i775k]_21 Tkj|§j|2) (27)
plus terms of degree 4 or higher in
Introducing action-angle variables J,0) by ¢

= \2J,e'% gives the standard form of a twist map
Je=Jk,
(28)

d
0((: 0k+2’7T Skwk-l—E Tijj),
=1

plus terms of degree 2 or higher dnand periodic ind. The

twist matrix is symmetric because the map is symplectic.

The three entries of the symmetric twist-matrix for
the cubic map are given by

1
"7 647R, Doy

0at 5, 55
3L R D3y

le
+a ,
(o)

S
212RD
257211

1 (9 , 578R, ., N )
Tor—————( 9a a ,
22 64 RyDoo1 03%2 RyDo31 1251 R1D1yo 29

T1o= ! (az s M +afs N
12 167T\R1R2D201D021 21 1D210 ! 2Z)].ZO

3 3
—ajpxazesy 2_R1 — 8035 2_R2

where the resonance denominators are giveflt and the
numerators by

/\/ijSRj(l_R]‘)_3Rk,

Nk:].—ZRk.

3sia

1 2 2 30
5f131=4R X1 (X1 —S1y1) +Y1— D X1(2X1—S1Y1)
301
S1a21
X(X1—S1Y1) — D—(2R1(2X2_ S2Y2)Xs
210

— (4R Xy~ SpY2) X1Y1 + (2R — 1)X,y3)

S1812 2
+ D ((Ry—2R2)(2X1—51Y1)X5+ S»(2(2R;
120
—R1)X;—$1(2R;— 1)y1)Xoyo+ (Ry — 1)X1y3)
+0(4). (30)

The first three terms contain the expression from a cubic,
two-dimensional map while the remaining terms give the
result of the coupling proportional ta,; anda;, (the term

ag3 does not enter to this ordefThe analogous equation for
J, is obtained by exchanging the indices 1 and 2 and also 0
and 3.

V. FOLD SINGULARITIES NEAR AN ELLIPTIC
FIXED POINT

The twist coefficients of the Birkhoff normal form can
be used to find singularities of the frequency map. When
detr, is zero, there is a singularity at the fixed point that we
call a twistless bifurcation. Since we are not able to deter-
mine whether this bifurcation is a fold or a cusp without
calculatingr,, we will focus on the fold case. We show in
this section that a fold singularity necessarily occurs in one-
parameter families of maps, if the family crosses a tripling
resonance line in a certain way.

A. Twistless curves

As we discussed in Sec. Il C, the type of twistless bifur-
cation obtained when a fold crosses the origin depends upon
whether the columns of, are parallel or antiparallel. To
visualize this, consider the two direction fields given by the
normalized column vectors of,. We show these fields in
Fig. 9 for two sets of values for the nonlinear parametgrs
since the components af are homogeneous quadratic poly-
nomials in these parameters, their overall scale is unimpor-
tant and there are only three independent parameters that
determine this direction field in residue space. Thus we can

It is of course no acci_dent that the resonance polynomialgpecify only the ratios of the values of tiag to define the
appear as the denominators of the corresponding resonapicture. In the figure, the first column vector of,

terms.

The relation between the exponerjt;s,ﬁ, the reso-
nancesm and the resonance curves in residue spaeeall

corresponds to the black vectors and the second to the gray
vectors.
Notice that the twist vectors in the figure appear to be

Fig. 6 is interesting. On the one hand, starting with giveneither nearly aligned or antialigned over a large region near
exponents, there can be more than dbet finitely many  R;=R,~0.5, but that their behavior varies rapidly near the
resonances corresponding to them. Whether the resonancerésonance lines. Since dgt=0 is a single condition, we ex-
important depends of course on its amplitude. On the othepect it to vanish on curves in the residue space. It is easy to
hand, a given resonance curve accounts for a number of resobtain these curves numerically using a contour plotting al-
nances and an infinite number of corresponding exponentsgorithm; the plots are more easily constructed if we compute
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FIG. 9. Unit vector fields given by the columns af as a function of the residues. The black and gray arrows represent the imagelof #mel J,-axes,
respectively. We setf; =s,, for the left panel we choos®;y=a,,= a;,=ayz and for the right panedzy=a,,= —2a,,= — 2ay3. Resonance curves up to order
three are also shown. When the columns are parallel or antiparalle danishes.

the numerator of the rational expression for tigrom (29)  helpful in understanding the behavior, just as they were help-
and set it to zero, since this eliminates infinities which areful in the two-dimensional caseWe will first obtain an el-
unimportant in drawing the zeros. We show examples ofmentary lemma about these poles, and then use it to prove a
these curves in Fig. 10 for the same parameter valuetheorem about the necessity of twistless bifurcations in cer-
as Fig. 9. tain one-parameter families.

In general the expression for the twistless bifurcation  Lemma 1: If all of the quadratic coefficients of the poly-
curves in parameter space are quite complicated. Howevenomial map (21) do not vanish, then the determinant of its
the poles in det, that occur at low-order resonances aretwist has poles of order three at tH&00) and (010 reso-

(021} (0213

|I . S,
I ""'--.-..._“ , o _,__,_\__LH“'""'\-'\- \ "."'\ =
- - £ e
| -"J. - 2 f ] et b =
4 — B o =
08| | /4 . 08 | il (=
’ d 03l N ’ \ 031 "~ T =
‘-.._H\ -.H{;‘?ﬂ
= F s k 5 |
0.6 06 | i N
= 7 \ \
fi x\ \ Y
Ry Ry ) \ \ AW
0.4 0.4 ] A 2\
/] 1 — 1\
! \ J »
i \ \
R i |
02 0.2 L
y W
= v
===y ] !
" o - _ _—=" (010 o
0 0.2 0.4 P (.6 (L5 | 0 0.2 0.4 " 0.6 0.8 1

1

FIG. 10. (Color online Resonance curves of orders 1, 2, and 3, and zeros af, déashed curvesn the residue space. Parameters are the same as Fig. 9.
The dots indicate places where a columnrgfvanishes.
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nances, poles of order two at tlf210 and(120) resonances
and poles of order one at th01), (021), (301) and (031)
resonances. The coefficients of the second and third orde
poles are always negative

Proof. A straightforward expansion of dej near the
(100 and (210 resonances gives

3 (azed2) 2

~ -2
detro~~ &3 50872 Ry1— Ry T ORL ),
d : : ( o 2+(’) D,k (T
e~ = 57 1024 | Ry(1-Ry) (D219)- ! )

SRR NN

This gives the promised results for these resonances, sinc | -

the denominator&; and D, have first order zeros on the ) S B 7~ A e
resonance curves. The expressions for (D) and (120 N - R '
resonances are obtained by exchanging coefficients3 0

and 12 as usual. A similar calculation gives the expres-F'G- 11. (Color onling Enlargement of the left panel of Fig. 10 near the
. . . . . rossing of th€210) and(120) resonance curvegshick lines. The twistless

sions _for the coefficients Of_the first order poles; these ,aréurves(dasheoishowa loop extending from this crossing point that was not

complicated and not especially useful, so we do not givé&isible in the previous figure. Also shown are the curédstted along

them explicitly. O which individual components of the twist matrix vanish and dots at the

Since the second order poles have negative coefficient§odimension-two points.

twistless bifurcations are forced by the first order pole at the

(301 and (031) resonances. However, which side of these

resonance curves has the twistless curve depends upon thgint below. A similar argument cannot be given fBr

sign of the coefficient of the pole. Nevertheless we can con-_(g %), since here the four low-order resonance curves
=39, .

clude that there must be twistless bifurcations “near” the(210) (120, (310, and (130 all cross in such a way that

(301 and (310 .resonances: . small loops encircling this point do not cross the curves in
Theorem_z. Suppose the map (21) has al! of |ts_ U3 the correct order to force twistless points.

dratic cor(]afflmentz g_ntonzero. LetP Obe a fgéh in residue As we move along a twistless curve in parameter space,

space w %Se E.n hp?m s are oIn @40 or ( 'th) resc;réance it is possible for the twistless bifurcation to change from one

curves and which transversely Crosses ertner @ .) or — of parallel type to one of antiparallel type. This can only

(301 curve exactly once. Then there is a twistless blfurcatlonOCClJr when a column of the twist matrix vanishes. since the

at some point orp. column vectors correspond to the tangent vectors of the im-

h ProgttrS|chP begnlg and enc(jjs og resolnant;:]e curvtesages of the) axes(recall Fig. 1. Since vanishing of a col-
where detp has a negalive second order pole, enrge umn of 7 requires two conditions, we expect this to occur at
<0 on P for points sufficiently close to its endpoints. Since ;

isolated points in the residue space: it is a codimension-two
there are poles of order 1 at tf@10 and(031) resonances, P b

it that det>0 when P h ide of bifurcation. In Fig. 10 this occurs, for example, near the
Itis necessary that deg>0 when’> approaches one side o crossing of thg210) and(120) curves, corresponding to the
these resonance curves. Thus glatrosses zero o?. [J

(L2
In Fig. 10, the twistless bifurcation that is forced by this double-resonance = (5, 5). We show an enlargement of the

mechanism is the curve that lies between @1 line and left panel of Fig. 10 in Fig. 11. To show that a columngf
the (210) parabola for smalR,, then crosses th@01) reso- vanishes along the twistless curves, we also plot the zero
nance neaR,=0.6, finally ending up between 631 and level sets of the three entries of the twist matrix in Fig. 11.

(120) curves for smalR, . There may be other points where |Ner€ aré wo points on which a columnovanishes in this
the twist vanishes as well—indeed in the figure several sucf9ure;: the first column vanishes e~ (0.3536,0.8874) and

curves occur—but the regions where they occur depend i€ second aR~(0.3478,0.8965). Along the lower twistless

detail on the parameter values as can be seen by comparifg"Ve in Fig. 11, the bifurcation is of antiparallel type to the
the two cases shown in Fig. 10 right of the codimension-two point, and parallel to its left.

Note that since thé210) resonance curve transversely All of the codimension-two points are indicated by the dots

. . in Fig. 10.
crosses th¢031) curve ?tlthe poinR=(3,3), corresponding All of the twistless curves in Fig. 10 correspond to the

to the frequencies»=(5,3), the corollary implies that any yanishing of a single eigenvalue of. In order that both
small circle enclosing this point must contain at least twogjgenvalues of the symmetric twist matrix vanish, all three of
twistless points. Thus there must be a curve of twistless pahe element$29) must vanish simultaneously; thus this is a
rameter Values tha.t g0eS through thIS double resonance. %dimension_three phenomenon_ We Cou|d achieve th|s by
symmetry, this is also true at the poiRt=(3,%). We will choice of one of the nonlinear terms in addition to the two
investigate the structure of the frequency maps near thisesidues. An easy place to search for this phenomenon is
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close to the two neighboring codimension-two points corre-extent that a finite time series can be used to compute the
sponding to vanishing of each column &f, e.g.,, neaR  frequencies. Of course there will be many chaotic trajecto-
=(0.35,0.89) in Fig. 11. For example, if we alloasy to  ries, and for these the frequencies are not well-defined. Cha-
vary from our standard choice of equal parameters, we finatic trajectories typically result in the frequencies not con-
that the matrix 7o vanishes identically whenR  verging as the number of iterations is increased, and visually
~(0.34841,0.896 33) andi3p=1.5266%,,. This corre- result in wild behavior of the frequency map.
sponds to a simultaneous “crossing” of the three curves of  Specifically, we iterate a grid of initial conditions using
zero twist matrix entries; this is not a persistent crossing—ithe quadratic approximation to the actions, i.e., the first two
corresponds to the vertex of the cone defined by the vanistierms in(30). We arbitrarily fix the conjugate angles to 0 and
ing of the determinant of a symmetric matrix. take a grid of initial conditions in thes@pproximaté ac-
tions. For each point the corresponding coordinakeg)(are
calculated and then the orbit is iterateN2 1 times and the
frequencies are calculated using a weighted Fourier transfor-
In this section we will obtain some frequency maps formation. As a weight function we use+icosmt/(N+1),
(21) using Laskar’s metho#f: The basic idea is to approxi- wheret e[ —N,N], the so-called Hann window. We take the
mately compute the frequencies for a particular initial con-sum over the four coordinates as the signarom the orbit.
dition by iterating for some fixed, finite time and extracting The Fourier transform is defined by
the frequencies in the resulting time series by computing
their dominant spectral peaks. The frequency map can be ,
computed by choosing a two-dimensional grid of initial con- Foi)= 5o > €™
2(N+1) =y
ditions on a surface of fixed angles, by varying the actions. If
each trajectory actually lies on an invariant torus, then thisThe maximum of the modulus of(v;{)) as a function of}
gives a numerical representation of the frequency map to thdetermines the first frequenc§),. Note that we cannot use

B. Frequency maps

N
1+cosLt
N+1

Ut'

027 T T T T T T

Q

1

L. 266

364

FIG. 12. (Color online Frequency map near the twist-
less curve fora;j=0.1 ands;s,=1. In the top panel
(R:1,R,)=(0.80,0.56) so thab=(0.3524,0.2691). The
twist is 7o=(1/1007) [ (—6.82,1.13Y,(1.13-.514)"],
which is orientation preserving. In the bottom panel the
first residue is nowR;=0.82 so thatw,;=0.3605 and
70=(1/100m) [ (—3.37,5.66),(5.66,-0.469) ] which

is orientation reversing. In both figures the image of the
J,-axis intersects th€),-axis.

037 b

{LI6H
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T T T T
AT 1
AT R S 1
Q, |
108 1
; FIG. 13. (Color online Frequency maps near a twist-
E 1 less curve fora;;=0.1 ands;s,=1. In the top panel
(R1,R,)=(0.626,0.13) so thatw=(0.2905,0.1174).
04 - 1 The twist matrix is7o=(1/1007) [ (—0.929;- 3.59)",
- L (—3.59,-16.5)"], so detr,>0. In the bottom panel the
; T L i first residue is nowr;=0.636 so thatv;=0.2938, and
. . . . . . . 7o = (1/100r) [(—0.769,—3.68)",(—3.68,— 16.5)']
which is now orientation reversing. Because the twist
vectors are so nearly parallel we have applied a shear
O1ts T transformation to the figures to make the sector more
visible, thus the units of the horizontal axis are arbi-
L 4 trary. In the top figure the image of tlig-axis is on the
left, while in the bottom figure it is on the right.
0112 .
a. | i
L1 = -
0,104 - .

a FFT for this because we need very high accurady4inTo  the largest peak appears at a different linear combination. To
find the second frequency),, we remove the first fre- avoid such discontinuities in the frequency map we use a
quency from the signal by forming w,=uv; continuation method that tries to find local maxima near the
—e ?2mMMUH(y;0,). Then FAw;Q,) is maximized. Fre- previously found maxima.

quencies are only defined up to unimodular transformations. In Fig. 12 parameters are chosen for the two panels on
When changing the parameters it is therefore possible thaipposite sides of the dej=0 curve. Here the top panel

LI1T |

FIG. 14. (Color onling Frequency map for;;=0.1
and s;5,=1, and R;,R,)=(0.640,0.13) so thaiw
=(0.2952,0.1174). The twist matrix is 7y
=(1/1007) [(—0.698-3.71)",(—3.71~16.4)"], so
det7p<<0. As in Fig. 13 the horizontal axis has been
sheared and has arbitrary units. The image of the
J;-axis is eventually on the right.

[INTER o
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shows that the twist columns are nearly antiparallel, and iARCKNOWLEDGMENTS
the bottom panel, a fold singularity appears. Evidently, the

i'r‘;‘;fegf;thtehes':‘Vgizlt?ésgué‘i’firfatri‘;rgeig‘l’le#iso Bthﬁottgetgg'td 'SGRIR44911/01, DFG Grant No. Du 302/2, and the European
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cated by it oscllations. Also, chaotc orbs resul in the  D:M: WA SUpported in part by NSF Grant No. DMS-
. ) ! 0202032 and the NSF-VIGRE Grant No. DMS-9810751.
breakup of the grid as the actions reach the outer boundary o
the island.
In Fig. 13 parameters are chosen on opposite sides of t®PPENDIX: MOSER’S NORMAL FORM FOR
twistless bifurcation curve for the parallel case. A fold sin- QUADRATIC MAPS

gularity is present in the top panel, and it disappears on the Mosep®:33
bottom. Ewdently, the slope of the smgular curve is negat'vesymplectic map can be transformed by an affine coordinate
so that the fold is created at the twistless bifurcaticetall change into a normal form with six parameters and two in-

Fig. 2). However, in the bottom panel, there appears to b%ices. This map is generated by the Lagrangian
another singularity in the frequency map in the interior of the

image of the positive quadrant, perhaps indicating that there L (x,x')=—x'TCx—U(X),
is a nearby cusp in this case.

H.R.D. was supported in part by the EPSRC Grant No.

showed that any four-dimensional, quadratic,

whereU (x) =a;x; +ayX,+ 3bx2+x,(e'x5+x3), andC is a

The behav_|or of this case becon_]es ‘even more exo“%xz matrix such that de§)=e. The six parameters are the
upon a further increase &, as shown in Fig. 14. For small three elements o€ and a. a. b: the indices aree— + 1
1:A42,M, - — 4,

values of the actions, the narrow wedge of the image of the . .

. . . ~—and €' =0,= 1. Geometrically,e corresponds to the product
positive quadrant is clearly visible, but for moderate actions o , L

. . . of the Krein signatures, and’ to the discriminant of the
the image appears to undergo several spirals. The images bic terms
theJ; andJ, axes are particularly difficult to compute using o . ,

. . . . . When the matrixC is symmetric, Moser’s normal form
the iterative method; in particular the frequency map is more

sensitive to the number of iterates used in this case tha%an be transformed to the standard foth) with the sym-

when both actions are nonzero. This is reflected in the rapiglec'[IC coordinate change{y)—(X,J) generated by
change in the frequencies in the figure wtignn particular F(x,%)=x"Cx+ KTCXx+U(X).

is increased from zero. o .
This gives a map generated by a Lagrangian of the form

(16), where the kinetic energy ik (v)=v'Cv/2 and poten-
VI. CONCLUSIONS tial V(x)=x"Cx+U(x). If, in addition, the map has a fixed

) . . . point, we can shift coordinates so that the fixed point is at the
We have shown that twistless bifurcations occur in one-

-~ ; ~'Zorigin. In this case, the linear terms Yhbecome zero.
parameter families of symplectic maps when the elliptic ;i interesting that’, the discriminant of the cubic part
fixed point is near a tripling resonance, whesg=3. The

’ ; , : . of U, is also the discriminant o¥. The other sign, corre-
simplest such bifurcation corresponds to the fold smguIarlty;sponding to the determinant 6, is equivalent to the prod-
it leads to the reversal of the orientation of the frequencyuct of the signaturess=s;s,. '

map and a domain on which the map is two-to-one. Finally, if there is a linear transformation that simulta-

_ A fold singularity at an eIIip_tic fixed point is manifested neously diagonalizes the kinetic energy and the quadratic
in one of several ways depending upon whether the columnsat o v/, then this transformation can be used to put the

of the twist matrix are parallel or antiparallel and whether thep, 55 i our form(21). A sufficient condition for simultaneous
slope of the singular curve is positive or negative. We hav

. ! %iagonalization is thaK is definite, so thae=1.
calculated the twist for a quadratic example and shown that it If the Krein signatures are not equal, the simultaneous

predicts where this phenomenon is observed in computationg, onajization is not always possible. It still can be done,
of the frequency map from iterative data. Though our tW'Sthowever, if one of the matrices is “diagonally dominant.” If

formulas apply for the case of mixed Krein signatures, We,q e need a general symplectic transformation instead of
have not investigated the effect of these on the dynamics. just a point transformation to diagonalize the quadratic

Since the two-dimensional twistless bifurcation creates ggrms. This more general transformation will mix coordinates

twistless invariant circle and reconnection bifurcations, We, g momenta, and therefore will destroy the simple structure

can expect that similar phenomena occur in the foury;atic plus potential” of the generating function.

dimensional case. We are currently investigating these. We conclude that our map is equivalent to the general
It would also be interesting to investigate the OCCUITENC& ase when there is a strongly-stable fixed point, and vhen

of cusp singularities, which would require knowing the twist is symmetric and the simultaneous diagonalization can be

through first order in th'e action variables. S_lnce the Iocaldone_ This certainly includes the case of a “natural” map.
frequency map in the neighborhood of a cusp is three-to-one,
it should be possible for reconnection bifurcations to occur
between three resonances with the same frequency vectolV. I. Arnold, Mathematical Methods of Classical MechaniSpringer,

: : : ; ; ; + New York, 1978.
The dynamlcal eﬁeCt_Of this on nelghbqung_ mvanant tori 2K. R. Meyer and G. R. Halllntroduction to the Theory of Hamiltonian
should be as dramatic as the meandering invariant Curvessystemsvol. 90 of Applied Mathematical SciencéSpringer-Verlag, New

that occur near a reconnection in two dimensions. York, 1992.
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