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Volume-preserving maps with an invariant
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Several families of volume-preserving maps onR3 that have an integral are constructed using
techniques due to Suris. We study the dynamics of these maps as the topology of the
two-dimensional level sets of the invariant changes. ©2002 American Institute of Physics.
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Volume-preserving maps arise from the study of the flow
of incompressible fluids or magnetic fields. If a volume-
preserving map has a continuous symmetry, such as a
rotational symmetry, then it has an invariant and the or-
bits are confined to surfaces. More generally, the orbits
could densely cover regions with nonzero volume. Here
we construct maps that have an invariant, but no„obvi-
ous… symmetry. The dynamics of these maps, while sim
pler than the general case, can still be chaotic on the
invariant surfaces. Just as integrable systems are often
used as starting points for perturbation theory, our maps
provide a platform from which more general motion can
be studied.

I. INTRODUCTION

In this paper we construct several families of volum
preserving maps onR3 that have an invariant. Some of th
examples that we construct have the form,

f ~x,y,z!5~y,z,x1F~y,z!!. ~1!

Maps of this form are volume and orientation-preserving
any function F, and are diffeomorphisms wheneverF is
smooth. For the cases that we primarily study,F is the ratio-
nal function,

F~y,z!5
~y2z!~a2byz!

11g~y21z2!1byz1dy2z2
. ~2!

Here there are three free parametersa, b, g, and without
loss of generality, one can suppose that the indexd can only
have the valuesd50,61. This family of maps has an invari
ant, i.e., a functionF such that

F+ f 5F. ~3!

For Eq.~2!, the invariant has the form

F~x,y,z!5x21y21z21a~xy1yz2zx!

1g~x2y21y2z21z2x2!

1b~x2yz1z2xy2y2zx!1dx2y2z2. ~4!
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Several other examples will also be found in Sec. II, wherF
is rational in trigonometric or hyperbolic functions. We als
construct orientation-reversing examples.

As we will see, even though each orbit of~1! is restricted
to lie on the two-dimensional level sets,

Mm5$~x,y,z!:F~x,y,z!5m%, ~5!

they exhibit the full complexity expected for two
dimensional, area-preserving maps.

One motivation for the study of these systems is an
tempt to generalize results known for two-dimensional, co
servative systems, i.e., area-preserving maps. Such m
typically exhibit chaos, even if only on small sets in th
phase space.1 Thus the existence of a map with an invarian
~3!, is a notable phenomenon. Notwithstanding their rar
such maps provide valuable examples, especially as a s
ing point for perturbation theory. The existence of an inva
ant does not necessarily mean the map is globally integr
in the sense of Liouville–Arnold. In the latter case all of th
invariant curves are homotopic—this rules out even the c
of the pendulum since the invariant curves have two disti
topologies corresponding to oscillating and rotating motio
respectively. Globally integrable maps are conjugate to
Birkhoff normal form f (J,u)5(J,u1V(J)).2 More gener-
ally, the invariant will have level curves that are not hom
topically equivalent. Birkhoff refers to this case as loca
integrable.3

It is easy, in principle, to construct a locally integrab
map onR2, since any symplectic map obtained from a o
degree-of-freedom Hamiltonian flow has the energy as
invariant. However, explicit forms for such maps are not
easily obtained, except for those few cases where Hamilto
equations can be explicitly integrated. The first nontriv
example, apart from the pendulum, was the elliptic
billiard;3 however, the explicit form of this map is not easy
write down. A more explicit example is the rational fami
due to McMillan.4 A generalization of this family was dis
covered by Refs. 5,6; however, these maps are not a
preserving except in the McMillan case, though they can
reversible.

A systematic procedure for constructing locally int
© 2002 American Institute of Physics
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grable, area-preserving maps was devised by Suris.7 He stud-
ied maps of the second difference form,

xt1122xt1xt215eF~xt ,e!, ~6!

which can be thought of as an area-preserving map u
defining the variables (x,x8)5(xt21 ,xt). Under the assump
tions thatF and F are analytic and the invariant has th
form,

F~x,x8,e!5F~x8,x,e!5f0~x,x8!1ef1~x,x8!, ~7!

Suris showed there are exactly three possible families.
these cases the correspondingF is rational inx, in trigono-
metric functions ofx, or in exponentials ofx, respectively.
The three examples of the form~1! that we construct in Sec
II correspond to these three cases; however unlike Suris
have not shown that our solutions are exhaustive.

Other examples of integrable symplectic maps have a
been found. Suris’ techniques have been used to find hig
dimensional, integrable symplectic maps.8,9 Another tech-
nique that gives many examples is to find appropriate
cretizations of integrable differential equations; these can
treated with the methods obtained from inverse scatte
theory.10,11 Finally, maps with integrals have been co
structed as integration algorithms for differential equatio
with conserved quantities.12

In this paper we will study volume-preserving maps
R3. Such maps are useful in understanding the motion
passive tracers in fluids13 and magnetic field line
configurations.14,15They are also of interest since many ph
nomena in the two-dimensional case are not yet comple
understood in higher dimensions. Such phenomena inc
transport,16,17 the breakup of heteroclinic connections,18,19

and the existence of invariant tori.20,21 These maps are als
important as integrators for incompressible flows; in so
cases the maps are constructed to be volume-preserving22–25

and in others to preserve the conserved quantities of
flow.12

A prominent class of volume-preserving maps that ha
an invariant are trace maps.26 Physically, these are obtaine
from the Schro¨dinger equation with a quasiperiod
potential.27 Mathematically, they arise from substitution rule
on matrices.26,28,29 As an example, consider matricesA,B
PSL(2,R), the group of 232 matrices with unit determi-
nant. A substitution rule acts on a string of matrices a
corresponds to replacements of each occurrence ofA andB
with strings of these matrices. One of the most studied
amples is the Fibonacci substitution rule which correspo
to A°B and B°AB. The trace map is determined by th
action of this substitution on the traces of the matrices. D
fining x5 1

2 Tr(A), y5 1
2 Tr(B), and z5 1

2 Tr(AB), then the
substitution rule givesx85 1

2 Tr(B)5y, y85 1
2 Tr(AB)5z,

and z85 1
2 Tr(BAB)5 1

2 Tr(AB2)52x12yz, where we use
the Cayley–Hamilton theorem to simplify the last equatio
Thus we obtain the three-dimensional mapping,

f ~x,y,z!5~y,z,2x12yz!. ~8!
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This map has a form similar to~1! and is volume-preserving
but the change in sign in the last term means the ma
orientation-reversing. All trace maps that arise from inve
ible substitution rules have the function,

F~x,y,z!5x21y21z222xyz21, ~9!

as an invariant. Roberts calls this function the Fricke–Vo
invariant;28 it is an example of a group theoretic invaria
called a character. In this case,~9! arises from the trace of the
word A21B21AB. There are also orientation-preservin
trace maps, though no nontrivial quadratic ones. A sim
cubic example is

f ~x,y,z!5~2y12xz,z,2x22yz14xz2!. ~10!

While trace maps are polynomial maps that have an
variant, it is interesting to note that there are no nontriv
polynomial, locally integrable maps in two dimensions.2

Maps, such as~8! and ~10!, that preserve the Fricke–
Vogt invariant have orbits that are confined to the tw
dimensional level sets,Mm defined in~5!, for ~9!. Whenm is
in the range21,m,0, Mm has a compact component th
is topologically a sphere. Orbits on this sphere become
creasingly chaotic asm increases towards 0, see Fig. 1. A
m50, the compact component becomes a tetrahedron~a
sphere with four corners! that is joined to the unbounde
pieces at the four critical points ofF. Orbits on the tetrahe-
dron are still confined, and their dynamics is semiconjug
to the hyperbolic torus map (u,c)→(c,u1c).26 Recall that
a semiconjugacy is a many-to-one relationship between
dynamical systems, while a conjugacy is one-to-one; in t
case the map is two-to-one.

The dynamics of the map~1!–~2! is at least as complex
We will see in Sec. III that the components of the level s
of ~4! are topologically points, circles, spheres, tori or u
bounded sets depending upon the values of the param
andm. We will use the critical points of~4!, and their orbits
to help classify these cases. We also find the low per

FIG. 1. Some orbits of the cubic trace map~10!. The outermost orbit lies on
the levelm50.
IP license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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orbits and their bifurcations. The existence of the invari
implies that these orbits come in one parameter families
are transverse to the level setsMm , except at bifurcation
points. We will also show some numerical examples of
dynamics.

One reason for studying maps of the form~1! is that they
are volume-preserving for arbitraryF. Moreover, this form
also arises quite generally for the case of quadratic autom
phisms. According to Ref. 30, any such map that is n
trivial, volume and orientation-preserving is conjugate to
normal form~1!, whereF is replaced by

Q~y,z!5a1tz2sy1ay21byz1cz2, ~11!

a quadratic polynomial.

II. CONSTRUCTION OF THE INVARIANT

Motivated by the fact that quadratic case has the nor
form ~1!, we will use the techniques of Suris to constru
maps of this form that have an invariant. It is convenient
introduce a parametere by scaling the variables (x,y,z)
→e(x,y,z), and defining a new function 2F(y,z,e)
5e22F(ey,ez) so that~1! becomes

f e~x,y,z!5~y,z,x12eF~y,z,e!!. ~12!

The factor of 2 is added to simplify some of the intermedi
results. In the case of quadratic maps, sinceQ(ey,ez)
5e2Q(y,z), the nonlinear function in the scaled coordinat
does not involvee; however in the general case it does,
we allow for this dependence. We will assume thatF(y,z,e)
depends smoothly one.

It is convenient to write~12! as a third difference equa
tion, by noting that

f e~xn21 ,xn ,xn11!5~xn ,xn11 ,xn12!,

wherexn12 is given by

xn125xn2112eF~xn ,xn11 ,e!.

The map is now in a form analogous to that studied by S
~6!. If Fe is an invariant forf e , then for alln,

Fe~xn21 ,xn ,xn11!5Fe~xn ,xn11 ,xn12!, ~13!

which in terms ofx, y, andz leads to

Fe~x,y,z!5Fe~y,z,x12eF~y,z,e!!. ~14!

Since 2xn2152xn1212eF(xn ,xn11 ,e), it follows that
Fe should also satisfy

Fe~2xn12 ,xn ,xn11!5Fe~xn ,xn11 ,2xn21!

which suggests considering invariants satisfying the sym
try ansatz

Fe~x,y,z!5Fe~y,z,2x!. ~15!

In fact, following ~7! our attention will be focussed on in
variants of the form,

Fe~x,y,z!5f0~x,y,z!1ef1~x,y,z!, ~16!

satisfying condition~15!. With these assumptions we can o
tain the following proposition.
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Proposition 1: Let F(y,z,e) be a smooth function de
fined on some neighborhood ofe50. Suppose that forueu
,e0 there exist smooth, real valued functionsf0 and f1

such thatFe defined by~16! satisfies~14! and ~15!. Thenf0

is even, invariant respect to cyclic permutations of the va
ables and satisfies

]jS ]jjjf0

]jf0
D50, j5x,y,z. ~17!

Proof: Setting un5eF(xn ,xn11 ,e)1xn21 , we have
xn125eF(xn ,xn11 ,e)1un and xn2152eF(xn ,xn11 ,e)
1un . In that case~13! and ~15! imply

Fe~xn ,xn11 ,eF~xn ,xn11 ,e!2un!

5Fe~xn ,xn11 ,eF~xn ,xn11 ,e!1un!. ~18!

As f05F0 we have f0(x,y,2u)5f0(x,y,u) and
f0(x,y,u)5f0(y,u,x). Thereforef0 is even and invariant
respect to any cyclic permutation of the variables. Now, a
renamingx5xn , y5xn11 andu5un , we differentiate~18!
three times with respect toe and sete50 to obtain

2]zf0~x,y,u!Fu05f1~x,y,2u!2f1~x,y,u!, ~19!

2]zf0~x,y,u!]eFu05~]zf1~x,y,2u!

2]zf1~x,y,u!!Fu0 , ~20!

and

2]zzzf0~x,y,u!~Fu0!316]zf0~x,y,u!]eeFu0

53~]zzf1~x,y,2u!2]zzf1~x,y,u!!~Fu0!2

16~]zf1~x,y,2u!2]zf1~x,y,u!!]eFu0 , ~21!

where Fu0 , ]eFu0, and ]eeFu0 stand for F and its partial
derivatives evaluated at (x,y,0). Differentiating~19! twice
w.r.t. u and using~20! and ~21! yields

24]zzzf0~x,y,u!~Fu0!3

16]zf0~x,y,u!S ]eeFu022
~]eFu0!2

Fu0
D50. ~22!

SinceFu0 is independent ofu, the result then follows forj
5z. The proof is completed upon noting thatf0 is invariant
respect to cyclic permutations of the variables. h

A. Rational case

Note that if we assume thatF does not depend one, then
~22! as an equation forf0, reduces to

]jjjf050, j5x,y,z.

Indeed this would be the case if, e.g., we were to consider
family obtained from rescaling the homogeneous quadr
case,~11! with a5t5s50. As this is also a particular so
lution of ~17!, this may also yield solutions for more gener
F as well. We now explore precisely thosef0 satisfying that
IP license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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condition. In such cases,f0 is a polynomial of degree a
most two in each variable. Sincef0 is even and invarian
under cyclic permutation, we have

f0~x,y,z!5a0~x21y21z2!

1b0~x2y21y2z21z2x2!1c0 x2y2z2, ~23!

up to additive constants. From~20! it follows that

~f1~x,y,u!1f1~x,y,2u!!Fu0

522f0~x,y,u!]eFu01k~x,y!,

wherek(x,y) is some function not depending onu. Taking
into account~19! gives

2f1~x,y,u!Fu0522]zf0~x,y,u!~Fu0!2

22f0~x,y,u!]eFu01k~x,y!,

thereforef1 is a polynomial of degree at most 2 inu and by
the symmetry condition~15! we obtain

f1~x,y,z!5a~x21y21z2!1b~x2y21y2z21z2x2!

1c x2y2z21d~xy1yz2zx!

1e~x2yz1z2xy2y2zx!. ~24!

Finally, upon using~23! and~24! in Eq. ~18!, and solving for
F yields

2 F~y,z,e!

5
~y2z!~d2e yz!

a01ea1~b01eb!~y21z2!1~c01ec!y2 z21ee y z
.

s
r

he
o
o

th
or
-
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Notice thatF is a polynomial only whene50, thus the
only polynomial case is linear, and therefore dynamica
trivial.

Many of the parameters inF are superfluous. As we ar
interested in maps that do not have singularities, we
assume that the origin is not a singular point. Thena01ea
Þ0, and we can rewrite the above equation so that there
only four essential parameters, and the map becomes~1!
with F given by ~2!, and invariant given by~4!. Moreover,
after rescaling we are reduced to three, 3-parameter fam
corresponding tod50,61.

B. Other solutions

While we have not investigated all solutions of~17!, it is
possible to find other explicit solutions if we assume that
first integral of this equation is given by

]jjjf0

]jf0
5const,j5x, y, z; ~25!

thus, we assume that the right-hand side is constant ins
of being a function of the remaining two variables. There a
two possible forms, depending upon the sign of the const
When const52v2Þ0 we obtain a solution that contain
trigonometric functions. Eliminating unnecessary parame
we obtain a family of maps of the form~1! with
tric
F~y,z!52 arctanS a~sinz2siny!1b sin~z2y!

x1g~cosy1cosz!1b siny sinz1d cosy coszD .

This family has invariants given by

F~x,y,z!5x~cosx1cosy1cosz!1a~sinx siny1siny sinz2sinz sinx!1b~sinx sin y cosz1siny sinz cosx

2sinz sinxcosy!1g~cosx cosy1cosy cosz1cosz cosx!1d cosx cosy cosz. ~26!

The case when the constant is positive, const5v2Þ0, produces a similar family of maps but replaces the trigonome
functions with hyperbolic ones. ThusF becomes

F~y,z!52 arctanhS a~sinhy2sinhz!1b sinh~y2z!

x1g~coshy1coshz!1b sinhy sinhz1d coshy coshzD ,
ps
ar

of

to
and the invariants are given by~26! with sin and cos replaced
by the corresponding hyperbolic functions. In both of the
cases some restrictions on parameters would be necessa
avoid singularities.

However unlike Ref. 7, our results do not exclude t
existence of additional families of maps having invariants
the type considered in Proposition 1. For example, the m
general first integral of~17! involves arbitrary functions
whose signs could change depending upon position,
causing a switch from trigonometric to hyperbolic behavi
Certainly there exist solutions of~17! that are even and cy
e
y to

f
st

us
.

clic permutation invariant but which do not satisfy~25!, as,
for example,f0(x,y,z)5cosxyz and f05coshxyz. These
two particular solutions also give rise to families of ma
with an invariant F, however these maps have singul
points.

Finally we investigate the orientation reversing analog
~1!,

~x,y,z!→~y,z,2x1F~y,z!!. ~27!

Introducing the parametere as before, means that we wish
find solutions to
IP license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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Fe~x,y,z!5Fe~y,z,2x12eF~y,z,e!!.

Then the symmetry ansatz,~15!, should be replaced by

Fe~x,y,z!5Fe~y,z,x!.
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These conditions lead to the same result as before, nam
Eq. ~17! in Proposition 1. If, as before, we consider the sim
plest case]zzzf050, we still obtainf0 of the form ~23!.

The result for~27!, after assuming the origin is not
singular point and scaling out inessential constants beco
F~y,z!52
a1~b1gyz!~y1z!1dy21xyz1hz21ky2z2

11hy1dz1gyz1l~y21z2!1kyz~y1z!1my2z2
. ~28!

This map has the invariant,

F~x,y,z!5x21y21z21~a1gxyz!~x1y1z!1~b1kxyz!~xy1yz1zx!1h~x2y1y2z1z2x!1d~xy21yz21zx2!

1xxyz1l~x2y21y2z21z2x2!1mx2y2z2. ~29!
n

ted
i-

ue

i-

e-
Note that the Fibonacci map~8! can be recovered from
this result by settingx522 and all of the other paramete
to zero. A slightly more general polynomial map can also
obtained by lettinga andb be nonzero, which gives

~x,y,z!→~y,z,2x2a2b~y1z!22yz!.

This map is not conjugate to the Fibonacci map, as the le
sets ofF are topologically different from those of~9!.

III. DYNAMICS

In this section we will study the dynamics of the ration
map f given by~1!–~2!. We begin with a brief discussion o
some general properties of volume-preserving maps, t
consider properties specific tof.

Recall that this map has three free parameters,a,b,g
and one indexd50,61. The map is defined on all ofR3 if
and only if

d51, g>0 and ubu,2~g11!

or

d50, g.0 and ubu<2g. ~30!

In these casesf is a diffeomorphism. Only parameters sat
fying such conditions will be considered in this section.

A. Volume-preserving maps with an invariant

In this section we will discuss some general properties
volume preserving maps with an invariant. As is w
known,26,28 the dynamics of these maps restricted to a n
critical level setMm , ~5!, is equivalent to those of a measu
preserving map. Moreover, the existence of the invariant
plies that orbits typically come in one-parameter families

Lemma 2: Let f be a volume-preserving diffeomorphis
on Rd with a smooth invariantF.

Suppose thatj0 is a noncritical point ofF that is peri-
odic of period n for f. Then fn is locally equivalent to a
parametrized family of d21 dimensional maps. The linea
map D fn(j0)T has an eigenvector¹F(j0), whose multiplier
is 1 and the remaining multipliers correspond to the restr
e

el

l

en

f
l
-

-

-

tion of fn to F(j0)5m0 . Moreover, if 1 is a multiplier of
multiplicity one, then there is a unique curve,j(m) of period
n orbits throughj0 .

On the other hand ifj0 is a critical point ofF, so are all
points in the orbit ofj0 .

Proof: SinceF( f (j))5F(j) for any j, we can differ-
entiate to obtainDF( f (j))+D f (j)5DF(j), or in terms of
the gradient,

D f ~j!T¹F~ f ~j!!5¹F~j!.

Thus sinceD f is nondegenerate, wheneverj0 is a critical
point so is its image. This proves the last assertion. Whenj0

is a period-n orbit, this relation applied tof n implies

~D f n~j0!!T¹F~j0!5¹F~j0!,

which implies that¹F(j0) is an eigenvector with multiplier
1, as promised.

Whenj0 is not a critical point, the setMm is a smooth
submanifold atj0 . Thus, according to the inverse functio
theorem there exists a linear projectionp(j)5zPRd21 such
that the maph(j)5(p(j),F(j)) is a diffeomorphism on a
neighborhood of j0 . Locally, the map h+ f n+h21(z,m)
5(z8,m) is well defined and has 1 as a multiplier associa
to the parameterm, so the remaining multipliers are assoc
ated with the mapz→z8. Finally, let G:Rd3R→Rd be
given by G(j,m)5(p( f n(j)2j),F(j)2m). It is easy to
see that the Jacobian

DjG~j0 ,m0!5S p~D f n~j0!2I !

DF~j0! D
has rankd. Since we know the solutionG(j0 ,m0)50, the
implicit function theorem implies that there exists a uniq
solution,jm , to G50 in a neighborhood ofm0 . h

Whend53, the characteristic polynomial for the mult
pliers has the form p(l)5l32tl21sl21, where t
5Tr(D f n), and s5 1

2@ t22Tr((D f n)2)#. Therefore, whenl
51 is a multiplier,s5t and the characteristic equation r
duces to

l32tl21tl215~l21!~l22~ t21!l11!50,
IP license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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so that the remaining multipliers satisfyl11l25t21.
These two multipliers correspond to the map restricted to
invariant surface when the orbit is not in the critical set ofF.
Thus if we consider the restricted map, the periodic orbi
elliptic if 21,t,3, hyperbolic with reflection ift,21,
and hyperbolic ift.3. If t521, the restricted map has
double multiplier at21, so that a period-doubling is ex
pected. In the caset53, l51 is a double eigenvalue and
saddle-center bifurcation is expected. More generally s
pose thatj0 is not a critical point ofF and that at this point
a curve of periodn points, intersects a periodk•n curve.
Then the linearization off n at j0 must have akth root of
unity as eigenvalue so thatt5112 cos(2p(m/k)) for some
integerm.

B. Invariant surfaces

The topology of the level sets of the invariant~4!,

F~x,y,z!5x21y21z21a~xy1yz2zx!

1g~x2y21y2z21z2x2!1b~x2yz1z2xy

2y2zx!1dx2y2z2,

depends significantly on the parametersa, b, andg, as well
as the indexd. As we will see, the components of these s
can be points, circles, spheres, tori, or noncompact. For s
parameter values all of the level sets are compact, while
others there are compact components for certain ranges om.
Of course, when the parameters are fixed the topology ofMm

can change only at critical values ofm, i.e., on level sets
containing critical points ofF, so our first task is to find
these.

The equations for the critical points,¹F50, reduce to

2x52F~y,z!, 2y52F~z,2x!, 2z52F~2x,2y!,

whereF is given in~2! and we have assumed—as always
this section—that it is never singular. Thus, on critical poi
the mapf acts as (x,y,z)→(y,z,2x). This implies that the
critical orbits are at most period 6.

The fixed point at the origin is always a critical poin
The origin is local minimum ofF when22,a,1 so that
the surfaces are locally spheres. It is a saddle whena,22
or a.1, so that the surfaces are locally a family of hyp
bolic cylinders.

To obtain more explicit expressions for the remaini
critical points, note that the level surfaces have a disc
symmetry, corresponding to the transformation (x,y,z)
→(y,z,2x), which is ap/3 rotation aroundx52y5z fol-
lowed by a reflection throughx2y1z50. To make this
more explicit, it is often convenient to introduce rotated c
ordinates so that the vertical axis coincides withx52y
5z. In particular we define cylindrical coordinates (r ,u,z),
determined by

r cosu5
1

A2
~x1y!, r sinu5

1

A6
~2x1y12z!,

~31!

z5
1

A3
~x2y1z!.
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In these coordinates~4! becomes

F~r ,u,z!5
d

54
r 6~sin 3u!21

A2

54
~9~b12g!

1d~3r 222z2!!r 3z sin 3u

1
1

3
~g2b!z41

1

4
gr 41

1

2
br 2z2

1S 11
a

2 D r 2

1~12a!z21
d

108
z2~2z223r 2!2. ~32!

This is especially simple whend50, andb522g, be-
cause all of theu-dependent terms vanish, and so the s
faces have cylindrical symmetry. We exploit this in some
the examples below.

The critical points ofF can be computed explicitly in a
rather general way using~32!. There are five classes of criti
cal points:

C0. The origin is always a fixed critical point.
C1. There are up to two critical orbits of period 2, whic

correspond to points (x,2x,x) wherex a real root ofdx4

12(g2b)x2112a50.
C2. There are up to three critical orbits of period

corresponding to points (x,y,x), wherex andy are given by
any real solutions of

052dgx61~4g22b21d~22a!!x416gx2121a,
~33!

y52
bx31ax

dx41~2g2b!x211
.

The orbits are generated by the period six symmetry ofMm ,
so two points from these orbits lie on each of the three pla
x5z, z52y, andy52x.

C3. If a,22 andg.0 there exists an additional perio
6 critical orbit, generated by (x0 ,x0,0), where x0

5A2(21a)/2g. Such orbits lie on the planey5x1z.
C4. Finally in the special case (2g1b)52d it is pos-

sible that there exist curves of critical orbits. When th
exist, these curves include the orbits~C2! and ~C3!. The
simplest case isd50, when the surfaces have cylindric
symmetry. Then the circle of radiusA2(21a)/g in the
planey5x1z is critical providinga,22, g.0. Every or-
bit on the critical circle is period 6, and the circle contai
the critical orbit~C3!. The cased51 is more complex. In the
coordinate system~31!, the critical curves are given by

z25
21a1gr 2

2g
,

~34!

sin 3u5z
21a22g~91r 2!

A2gr 3
.
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Solutions only exist whena,22 or a.18g22. When
a,22, ~34! represents one closed curve. Fora.18g22,
~34! corresponds to two closed curves lying on each side
y5x1z.

For the special cased50, we can relatively easily clas
sify the possible topologies of the setsMm . In this case there
is at most one critical orbit in each of the classes descri
above. We label the critical levels corresponding to the~Ci!
by m i . When they exist, the critical levels appear in the ord

m2<m35m4<m050

while m1 may vary in the ordering.
Whena,22 there are two period six orbits. The firs

~C2!, is born atm2 which has an expression—arising fro
the discriminant of~33!—that is too long to display. The
second period six orbit~C3! is born at

m352
~21a!2

4g
.

The critical circle~C4! exists whenb522g anda,22. In
this casem45m35m2 , and the orbits~C2! and~C3! become
part of the critical curve. Finally the period two critical orb
arises only when (12a)/(g2b),0 at the level

m15
3~a21!2

4~b2g!
.

In the special casea51,g5b all points on the axis (x,
2x,x) are critical of period 2 and they lie on the levelm
5m15m050.

To complete the classification of the foliation$Mm ,m
PR% for d50, we use~32! to describe cross sections on th
z5const planes, and take into account the critical points.
mmin ~respectively,mmax) the minimum ~respectively, the
maximum! of the levels where critical orbits arise.

Wheng,b all level sets are nonempty and unbounde
however, there can be compact components for some ra
of m. In fact Mm is composed of two unbounded cones lyi
on each side ofy5x1z for m,mmin while for m.mmax, the
level sets are unbounded cylinders surrounding the axx
52y5z.

On the other hand ifg.b the level sets are empty fo
m,mmin and homeomorphic to spheres ifm.mmax. In the
rangemmin,m,mmax eachMm is composed of one or mor
closed surfaces.

Taking into account the possible transitions we find
following families of level sets~see the illustrations in Fig
2!:

~1! g>b, a,22: Mm5B when m,m2 . For m2,m
,m3 , Mm consists of six bubbles that develop from t
critical orbit ~C2!. At m5m3 these six components be
come connected at the~C3! orbit, creating a torus. At
m050, the torus changes into a sphere pinched at
origin when the~C0! point appears. The caseb522g is
special sincem25m3 and the torus develops directl
from the critical circle~C4!.
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~2! g>b, 22<a<1, excluding the casea51, g5b: The
only critical point is the origin that arises atm050. Sub-
sequent level sets are homeomorphic to spheres tha
close the critical point.

~3! g.b, a.1: At m5m1 the period two~C1! orbit ap-
pears, giving rise to two spherical components. Atm0

50 these components become attached by the crit
point ~C0!.

~4! g,b, a,22: In addition to unbounded cones, com
pact components develops as in case 1. However am
5m1 the spherical component becomes attached to
unbounded cones by the~C1! orbit originating the un-
bounded cylinder.

~5! g,b, 22<a<1: A sphere develops from the critica
point ~C0!. This set becomes joined to the unbound
cones by the~C1! orbit whenm5m1 .

~6! g<b, a.1: No bounded components exist. The u
bounded cones meet at the~C0! point whenm050 and
become an unbounded cylinder.

~7! g5b, a51: In this special case the level sets are em
for m,m050. M0 is the critical axisx52y5z. This
critical set gives rise to unbounded cylinders for positi
m.

C. Periodic orbits

In this subsection we describe the low period orbits
the map~1!–~2! and their bifurcations.

Every point on the diagonalx5y5z is a fixed point.
Fixed points onMm correspond to solutions of the equatio

dx61~3g1b!x41~31a!x25m,

so that if mÞ0 the number of fixed points on any give
surface is even; whend51 there are up to 6, and whend
50 there are up to 4. The origin, which is a critical fixe
point, lies onM0 ; this corresponds to the collapse of tw
fixed points into the critical one.

The stability of fixed points is determined by

t5Tr~D f !5]2F~x,x!5
bx22a

11~2g1b!x21dx4
. ~35!

FIG. 2. Level sets of~32! for d50. There are seven categories according
the parameter values ofa andg2b. Some of the most distinctive level set
in six of these families are displayed.
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Even though the fixed point at the origin is critical, it alwa
has one unit multiplier since it lies on the curve of fixe
points. It is elliptic when23,a,1.

Period two points have the form (x,y,x)→(y,x,y),
wherex andy lie on the curve

g~x21y2!12bxy1dx2y25a21. ~36!

Using our standard assumptions~30!, we see that this curve
is an ellipse whend50 if g.ubu, and is otherwise a hyper
bola. Whend51 the curve is bounded unlessg50 anda
>12b2.

The period two curves intersect the fixed point curves
the period doubling points, where the trace~35! is 21. This
verifies that these points are period doubling bifurcations
the fixed points. The period two curves also intersect
critical orbits ~C1! when they exist.

The stability of the period two orbits is determined by

t5]1F~x,y!1]1F~y,x!1]2F~x,y! ]2F~y,x!

5324
~x2y!2~g2b2dxy!

a2bxy

24
~x2y!2~gx1by1dxy2!~bx1gy1dx2y!

~a2bxy!2
,

FIG. 3. ~Color! Structure of level sets ofF, ~38!, whena,22. Specifi-
cally, g51, a524. Three level sets ofF are shown: a torus form,0, the
critical pinched sphere atm50 and a sphere form.0. The line labeledp1

is the line of fixed points, and the pair of curves labeledp3 is one of three
period three hyperbolas. The vertical axis corresponds tox52y5z.

FIG. 4. ~Color! Structure of the level setsMm for ~38!, whena.1. Spe-
cifically, g51, a52. p1 , p2 are the curves of points of period one and tw
respectively. The vertical axis corresponds tox52y5z.
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For a,bÞ0 period three points lie on the hyperbola

(x,x,a/bx)→(x,a/bx,x)→(a/bx,x,x). For a period 3
point (x,y,z) we have

t531]1F~y,z!]2F~z,x!1]1F~x,y!]2F~y,z!

1]1F~z,x!]2F~x,y!1]2F~x,y!]2F~y,z!]2F~z,x!.

~37!

The explicit expression for this is too long to display.
The fixed points undergo a tripling bifurcation whent

50, or equivalently whenx25a/b. This is exactly when the
period three orbits collide with the fixed point line.

Next we illustrate the above discussion with some s
cific examples.

D. Examples

Example 3.1: In the particular cased50, b522g, Eq.
~32! reduces to

F~r ,u,z!5
g

4
~r 222z2!21S 11

a

2 D r 21~12a!z2, ~38!

so that intersections of the level sets with planes perpend
lar to the z axis are either circles or empty sets and t
topology of Mm as m changes is especially easy to unde
stand. In particular eachMm is a closed surface so thatf
generates a bounded dynamics. Whenm.mmax the surface is
topologically a sphere; for largem has an hourglass shap
that corresponds approximately to the dominant hyperb
cylinder, r 222z25const, determined by the first term i
~38!.

Whena<22, the topology corresponds to case 1. T
critical levels are:
~C4! m452(21a)2/4g, corresponding to a critical circle o
period six orbits in the planey5x1z.
~C0! m050, corresponding to the critical point at the origi
This case is illustrated in Fig. 3.

The casea.1, whose topology corresponds to case 3
illustrated in Fig. 4. In this case the critical levels are:

FIG. 5. ~Color! Structure of the level setsMm for ~32!, with (a,b,g,d)
5(24,2,1,0). The vertical axis corresponds tox52y5z. Two level sets
are shown, one form520.5 contains a toroidal component, and a seco
for m518.75 contains a spherical component.
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~C1! m152(a21)2/4g, corresponding to the critical perio
two orbit.
~C0! m050 corresponding to the critical point at the origi

The fixed points lie on the line (x,x,x). If a,23 there
are no fixed points onMm until m52@(31a)2/4g#, when
the line is tangent to the invariant surface at two points. Asm
increases each of these splits into a pair of fixed points,
hyperbolic and the other elliptic; thus, each level set n
contains four fixed points. Whenm approaches 0 the two
hyperbolic fixed points move to the origin, collapsing on
the critical fixed point atm50. The remaining elliptic points
period double at

m5
~12a!~71a!

4g
~39!

when the fixed point line meets the period two curve.
For 23<a<1 the fixed points line does not interse

Mm for negativem. For positivem two elliptic fixed points
appear on eachMm . These points period double at~39!
when the line crosses the period two curve.

Whena.1 fixed points also first appear on the invaria
surfaces atm50. Each of the fixed points is hyperbolic an
remain so for allm.0.

Period two orbits (x,y,x) lie on the curve~36!, which in
this case is the hyperbola,x5z, g(x21y224xy)5a21. If
a,1 this hyperbola is tangent toMm when the fixed points
period double,~39!. This is a supercritical bifurcation, giving
rise to a pair of elliptic period two orbits, and they lat
become hyperbolic when they period double as well.

The scenario is modified whena.1, since the period
two orbits are not born in a period doubling bifurcation. I
stead they begin at the critical points~C1!, whenm52(a
21)2/4g. As m increases, there are two period two orbits
each level set. WhenaÞ4 these orbits are initially elliptic,
becoming hyperbolic after a period doubling. Fora54 they
are always hyperbolic with reflection.

Orbits of period three are generated by the intersec
of the hyperbola (x,x,a/bx) with Mm . Using ~37!, we find
these orbits havet53 at the solutions of

~2gx21a!2~8g3x614g2~21a!x42a2!50.

The second factor in the equation above corresponds
saddle-center bifurcation that creates two pairs of per
three orbits on each level surface. Asm moves away from
this bifurcation one of the orbits of each pair is hyperbo
and the other elliptic. Whena.0 there are no further bifur
cations. The first factor above corresponds to the collision
the hyperbolic period three orbits with the fixed points. Th
only occurs when a,0, on the surfacem52@a(a
16)/4g#. The hyperbolic orbits pass through the fixe
points, emerging again as hyperbolic—this corresponds
the standard scenario for tripling bifurcations in are
preserving mappings.31

The period three orbits undergo a period doubling wh

2gx21a1250.
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Thus if a>22 there is no period doubling, but the trac
asymptotes to21 as the orbit moves to infinity. Whena
,22 the elliptic orbits period double on the surfacem
52((21a)312a2)/4g(21a).

Example 3.2:For the general case, computations are
so simple. As an additional example we consider the c
(a,b,g,d)5(24,2,1,0); this corresponds to the topology
case~4!, see Fig. 5. For these parameter values the crit
levels are:
~C2! m252 43

27, corresponding to a single period six orb

generated by 1/A3(1,10
3 ,1).

~C3! m3521, corresponding to a period six orbit generat
by (1,1,0).
~C0! m050, corresponding to the critical point at the origi
~C1! m1518.75, corresponding to a period two orbit

x52y5z56A 5
2.

The evolution of fixed points is similar to the casea
,23 of Example 3.1. The fixed point line is tangent to t
invariant surface form52 1

20 and then intersectsMm at four
points. The two orbits closer to the origin are hyperbo
while the other two are elliptic. The hyperbolic fixed poin
disappear as they collapse into the origin atm50. However
unlike Example 3.1 there is no period doubling and the
maining fixed points remain elliptic on all subsequentMm .

There are up to four period two orbits at the intersect
of the level setsMm with the branches of the hyperbol
(x,y,x), x21y214xy525. Whenm,23.95501,... there is
a pair of hyperbolic period two orbits on the unbound
components ofMm . At this level a period doubling occurs
and the orbits become elliptic. Atm518.75 a pair of hyper-
bolic period two orbits emerge from the critical period tw
orbit ~C1!. At m531 the hyperbola is tangent toMm , and
the hyperbolic and elliptic orbits disappear in a saddle-cen
bifurcation.

Orbits of period three correspond to points on the hyp
bola (x,x,22/x). Four period three orbits are born atm
'17.8429 in two simultaneous saddle-center bifurcatio
The two hyperbolic orbits remain hyperbolic for largerm,
but the elliptic orbits undergo two period doubling bifurc
tions, becoming hyperbolic atm'17.9167, and then elliptic
again whenm'27.4444.

E. Numerical examples

In this section we present some numerical investigati
of the dynamics of~1!–~2!.

In Fig. 6 we show initial conditions on three level se
for the same parameters as Fig. 3. The left panel shows
casem520.69, where the level set is a torus. In addition
several invariant circles with nontrivial homology, one c
also see a chain of islands around an elliptic period five o
~the blue orbit!. For thism, the fixed points do not yet exist
In the middle panel of Fig. 6, the critical levelm50 is
shown. The origin, where the spherical surface is pinch
appears to be in the middle of a widespread chaotic zo
The domains covered by the orbits points near the ori
with z.0 ~black points! and those withz,0 ~red points! are
distinct. Away from the origin they are separated by a fam
of invariant circles, two of which are shown in the figur
IP license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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FIG. 6. ~Color! Orbits of ~1!–~2! for parameters (a,b,g,d)5(24,22,1,0). Here some orbits on three level sets,m520.69, 0, and 1.0 are shown.
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The right panel shows the dynamics form51.0. Here one
can see a prominent island~purple! enclosing one of the
elliptic fixed points. Again the invariant surface is divide
into two large chaotic domains. Form.1.1 the large invari-
ant circles have been destroyed, and the two chaotic zo
are joined. There are prominent elliptic regions until after
fixed point orbit period doubles@from ~39!, m53.75]. For
larger m the dynamics appears nearly uniformly chaot
however, amongst the chaotic orbits are the islands surro
ing the two elliptic period three orbits. These become m
visible for largem.

The orbits for the case corresponding to Fig. 4 are sho
in Fig. 7. When1

4,m,0, the orbits that lie on the pair o
spheres enclosing the critical period two orbit are predo
nantly regular, as can be seen in the left panel. Asm ap-
proaches 0, the chaotic regions grow, and they dominate
critical surface,m50, as seen in the middle panel. There a
also large islands surrounding the elliptic period two orbits
this level. Nearm50.42 a family of invariant circles appear
that divides the chaotic region into two parts, as can be s
in the right panel. These circles are destroyed bym51.8, and
as before, apart from the elliptic period three orbits, the
namics is largely chaotic asm becomes large and the invar
ant surface acquires its hourglass shape.

As a final example, we consider the parameters co
sponding to Fig. 5. For this case, orbits on compact com
nents of six level sets are shown in Fig. 8. In the top-l
panel,m,21, and the orbits lie on a family of six sphere
enclosing the~C2! orbit. In the next panel, these spher
have joined at the~C3! orbit, and the dynamics appears un
formly chaotic. In the top-right panel,m50, the torus
pinches at the origin. The red and black orbits encircle
elliptic fixed points. Also shown are green and yellow orb
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that are associated with two elliptic period five orbits. F
larger m, as shown across the bottom row in Fig. 8, t
islands around the elliptic fixed points remain promine
Also visible are two elliptic period four orbits~light blue and
green! in the bottom-middle panel atm55. Apart from these
islands, which persist on the unbounded components fom
.18.75, the dynamics on these sets appears to be lar
unbounded.

IV. CONCLUSIONS

We have used the methods of Suris to find several fa
lies of volume preserving maps onR3 that have an invariant
Unlike Suris, our solutions do not appear to be exhaustive
would be interesting to obtain such a classification. We h
not found any polynomial maps that have an invariant
yond the trace maps,~8!–~10!. It may be that there are no
polynomial, volume-preserving maps which have an inva
ant that satisfies the conditions~15!–~16!; our results show
this is true whenF is a homogeneous quadratic function.

Both topologically and dynamically our maps are rich
than the well-known trace maps. We do not know if there
a set of parameter values for which our maps are ‘‘co
pletely chaotic’’ on an invariant surface; this was one of t
prominent features of trace maps, which are semiconjug
to an Anosov system on the tetrahedral critical level set
the Fricke–Vogt invariant.

In the future it would be interesting to investigate th
dynamics of these maps composed with a small perturba
that destroys the invariance ofF. Is the transport between
level sets more efficient when the dynamics on the surfac
chaotic?
s,
.

FIG. 7. ~Color! Orbits of ~1!–~2! for
parameters (a,b,g,d)5(2,22,1,0).
Here some orbits on three level set
m520.112, 0, and 0.518 are shown
IP license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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FIG. 8. ~Color! Orbits of~1!–~2! for parameters (a,b,g,d)5(24,2,1,0). Across the top are shown orbits on the level setsm521.4,21.0,0.0, and across the
bottom arem51.0, 5.0, and 17.6. The figures are not shown to the same scale.
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