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Abstract. We study quadratic, volume-preserving diffeomorphisms whose inverse is also
quadratic. Such maps generalize the Hénon area-preserving map and the family of symplectic
quadratic maps studied by Moser. In particular, we investigate a family of quadratic volume-
preserving maps in three-space for which we find a normal form and study invariant sets. We
also give an alternative proof of a theorem by Moser classifying quadratic symplectic maps.
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1. Introduction

The study of the dynamics of polynomial mappings has a long history both in applied and
pure dynamics. For example, such mappings provide simple models of the motion of charged
particles through magnetic lenses and are often used in the study of particle accelerators [1].
The simplest nonlinear systems are given by quadratic maps; the quadratic, area-preserving
map, introduced by H́enon [2], is one of the simplest models of chaotic dynamics.

Hénon’s study can be generalized in several directions. For example, Moser [3] studied
the class of quadratic, symplectic maps, obtaining a useful decomposition and normal form.
Here we do the same for a more general class of quadratic, orientation preserving volume-
preserving maps, with one caveat as we discuss below.

Just as symplectic maps arise as Poincaré maps of Hamiltonian flows, volume-preserving
maps are obtained from incompressible flows, and as such have application to fluid and
magnetic field line dynamics [4, 5]. Moreover, one can argue that computational algorithms
for flows should obey the ‘principle of qualitative consistency’ [6]: if a flow has some
qualitative property then the algorithm should as well. For the case of Hamiltonian flows
this leads to the construction of symplectic algorithms. A volume-preserving algorithm
should be used for a volume-preserving flow, such as the motion of a passive particle in an
incompressible fluid [7–10].

Some of the properties of symplectic maps generalize to the volume-preserving case. For
example, a volume-preserving map that is sufficiently close to integrable and nondegenerate
in a certain sense has lots of codimension-one invariant tori [11–13], which are absolute
barriers to transport [14]. Also, a perturbation of a volume-preserving map with a
heteroclinic connection can have an exponentially small transversal crossing [15]. Finally,
the Birkhoff normal form analysis can be used to study the motion in the neighbourhood
of fixed points [16]

Another motivation for the study of volume-preserving maps is that they can be used
as simple models for the study of transport in higher dimensions. The general theory of
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transport is based on a partition of phase space into regions separated by partial barriers
that restrict the motion in some way [17]. For example, in two dimensions a partition is
formed from intersecting stable and unstable manifolds of a saddle periodic orbit. In higher
dimensions an analogous construction requires the existence of codimension-one manifolds
that separate the space [18]. In most cases it is difficult to find a dynamically natural
construction of such manifolds; however, such manifolds do appear in volume-preserving
maps, and this leads easily to the construction of partial barriers.

The computation and effective visualization of invariant manifolds in higher-dimensional
maps is itself an interesting problem [19]. In this paper we will study the intersections of
the two-dimensional stable and unstable manifolds inR3.

Polynomial maps are also of interest from a mathematical perspective. Much work has
been done on the ‘Cremona maps’, that is polynomial maps with constant Jacobians [20].
An interesting mathematical problem concerning such maps is the conjecture proposed by
Keller in 1939.

Conjecture 1.1 (real Jacobian conjecture).Letf : Rn→ Rn be a Cremona map. Thenf
is bijective and has a polynomial inverse.

This conjecture is still open. It is known that injective polynomial maps are
automatically surjective and have polynomial inverses [21, 22], so it would suffice to prove
that f is injective. It is easy to see (cf lemma 2.1 below) that for the quadratic case, the
condition of volume preservation implies injectivity, thus the Jacobian conjecture holds for
quadratic maps.

Even if the conjecture is true, the degree of the inverse of a Cremona map could be
large. For example, the upper bound for the degree of the inverse of a quadratic map onRn
is known to be 2n−1 [22]. Thus in two dimensions the inverse of a quadratic area-preserving
mapping is quadratic, as was discussed by Hénon [23, 20]. More generally, Moser showed
that quadratic symplectic mappings in any dimension have quadratic inverses [3].

Hénon found the normal form for the quadratic Cremona mapping in the plane. In this
paper, we will correspondingly find the normal form for the three-dimensional case, but
we assume that the quadratic, volume-preserving mapping has a quadratic inverse (it is a
‘quadratic automorphism’). We give a complete classification of these diffeomorphisms.

Such maps can be written as the composition of an affine volume-preserving map and
a ‘quadratic shear’. We give necessary and sufficient conditions for such shears to have
a quadratic inverse. As a first application of this concept, we give a simple proof of the
theorem of Moser [3] for the symplectic case.

We also show that the quadratic automorphism inR3 can be reduced to one of three
normal forms. The generic case is given by

(
x ′

y ′

z′

)
=
(
α + τx + z+ ax2+ bxy + cy2

x

y

)
a + b + c = 1. (1)

The two parameters,α and τ represent the affine part of the map. It is reasonable that
only two parameters are needed because there are precisely two coordinate-independent
coefficients of the characteristic polynomial: the trace and ‘second trace’. The remaining
two parameters, say,a andb (with c then being determined), represent the nonlinear terms,
which are given by a single quadratic form in two variables.
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2. Quadratic shears

In this section we will study maps of the form

x 7→ x + 1
2Q(x)

whereQ is a vector of quadratic polynomials. Throughout this paper we will write vectors
of quadratic polynomials using the formQ(x) = M(x)x whereM : Rn → Rn2

is a linear
function into the set ofn×n matrices that satisfies the symmetry propertyM(x)y = M(y)x
so thatDx(M(x)x) = 2M(x). In fact for any quadraticQ, there is one and only oneM
that represents it.

Definition 2.1. We say thatf : Rn → Rn is a quadratic map in standard form iff is
written as

f (x) = x + 1
2M(x)x

whereM is a matrix valued linear function that satisfiesM(x)y = M(y)x.

It is important to note thatDf (x) = I +M(x).
Lemma 2.1. Let f (x) = x + 1

2M(x)x be a quadratic map ofRn in standard form. The
following statements are equivalent.

(i) For all x ∈ Rn, det(Df (x)) = 1.
(ii) f is bijective with polynomial inverse.
(iii) [M(x)]n = 0.

Proof. We will show (iii )⇒ (ii)⇒ (i)⇒ (iii ).
(iii )⇒ (ii) Since [M(x)]n = 0, the inverse of the matrixDf (x) = I+M(x) is explicitly

given by I −M(x) +M(x)2 − · · · − (−1)nM(x)n−1. ThereforeI +M(x) is nonsingular
for any x. Moreover, we can show thatf is injective by writing the difference betweenf
at two points as

f (x)− f (y) = x − y + 1
2[M(x)x −M(y)y)]

= [I + 1
2(M(x)+M(y))](x − y)+ 1

2[M(x)y −M(y)x].

The last term vanishes using the symmetry property ofM. SinceM(x) is linear inx, we
can combine the penultimate terms to obtain

f (x)− f (y) =
[
I +M

(
x + y

2

)]
(x − y).

SinceI +M is nonsingular, this implies that whenx 6= y, f (x) 6= f (y), so the function
is injective. Theorem A in [21], states that an injective polynomial map has a polynomial
inverse. Thus we conclude thatf is bijective with a polynomial inverse.

(ii) ⇒ (i) In principle, det(Df (x)) and det(Df −1(f (x))) are polynomials in
x1, x2, . . . , xn. However, differentiation off −1(f (x)) = x gives

det(Df −1(f (x))) det(Df (x)) = 1,

and therefore, since both are polynomials, det(Df (x)) has to be a constant independent of
x. Thus we conclude that det(Df (x)) = det(Df (0)) = det(I ) = 1.

(i)⇒ (iii ) Since det(I +M(x)) = 1 andM is linear inx, then for anyζ 6= 0

det(M(x)− ζ I ) = (−1)nζ n det

(
I +M

(
−1

ζ
x

))
= (−1)nζ n.
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This implies that the characteristic polynomial ofM(x) is (−ζ )n and therefore
[M(x)]n = 0. �

At this point, we restrict ourselves to the case of quadratic maps in standard form
whose inverse is also quadratic. We will see that the dynamics of such maps is essentially
integrable, and is similar to the dynamics of a shear. We first establish the following
characterization.

Lemma 2.2. Letf (x) = x+ 1
2M(x)x be a bijective quadratic map ofRn. Then the following

statements are equivalent.
(i) f −1 is a quadratic map.
(ii) M(x)2x ≡ 0.
(iii) M(x)M(y)z+M(y)M(z)x +M(z)M(x)y ≡ 0.
(iv) f k(x) = x + k

2M(x)x for all k ∈ Z.

Proof. We will show (i)⇒ (ii)⇒ (iii )⇒ (iv)⇒ (i).
(i)⇒ (ii) By assumptionf −1 is quadratic, and sinceDf (0) = I , we must have

f −1(x) = x + 1
2N(x)x,

whereN(x) is a matrix valued linear function that satisfiesN(x)y = N(y)x. Then we have
that

x = f (f −1(x)) = x + 1
2N(x)x + 1

2M(x + 1
2N(x)x)(x + 1

2N(x)x)

= x + 1
2N(x)x + 1

2M(x)x + 1
2M(x)N(x)x + 1

8M(N(x)x)N(x)x.

Since this is true for allx, the quadratic terms must vanish givingN(x)x = −M(x)x,
and the cubic terms must also vanish givingM(x)M(x)x = 0. The quartic terms then
automatically vanish.

(ii) ⇒ (iii ) We rewrite the relationM(x)2x = 0 with x replaced bysx + ty + uz for
s, t, u ∈ R andx, y, z ∈ Rn, to obtain

F = [sM(x)+ tM(y)+ uM(z)]2(sx + ty + uz) = 0,

where we used linearity.F must vanish for alls, t, u, and therefore so must its derivative:

∂3F

∂s∂t∂u

∣∣∣∣
s,t,u=0

= 2(M(x)M(y)z+M(y)M(z)x +M(z)M(x)y) = 0,

where we have combined terms using the symmetry relationM(x)y = M(y)x.
(iii )⇒ (iv) Let gk(x) = x + k

2M(x)x for any k ∈ Z. Then

gk(gl(x)) = x + l

2
M(x)x + k

2
M

(
x + l

2
M(x)x

)(
x + l

2
M(x)x

)
= x + l + k

2
M(x)x + kl

2
M(x)M(x)x + kl

2

8
M(M(x)x)M(x)x

= x + l + k
2
M(x)x − kl

2

8
[M(x)M(x)M(x)x +M(x)M(M(x)x)x]

= x + l + k
2
M(x)x.

Thereforegk ◦gl = gk+l . On the other handg1 = f andg0 = id. This implies thatgk = f k.
(iv)⇒ (i) Note that the relationf k = x+ k

2M(x)x holds for any integerk, in particular
for k = −1. This implies thatf −1 is quadratic, and thus (i). �
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Definition 2.2. Let f : Rn → Rn be given, in standard form, byf (x) = x + 1
2M(x)x. If

f satisfies any of the conditions of lemma 2.2, we will say thatf is a quadratic shear.

A simple family of quadratic shears is determined by any vectorv ∈ Rn and a symmetric
matrix P such thatPv = 0 according toM(x)y = (xT Py)v, for then

M(x)2x = (xT Pv)(xT Px)v = 0.

We will see that, at least in the casen = 3, this is the most general quadratic shear. Moser’s
normal form for symplectic, quadratic maps [3] shows that the higher-dimensional case is
not quite this simple. From now on, we will concentrate on the special casen = 3.

Theorem 2.1.A functionf : R3 → R3 is a quadratic shear inR3 if and only if there is a
vectorv ∈ R3 and a3× 3 symmetric matrixP such thatPv = 0 and

f (x) = x + 1
2(x

T Px)v.

Proof. Sincef is a bijection, we can define a new functiong : S2 → S2 on the unit
two-dimensional sphereS2 ⊂ R3, in the following way.

g(x) = f (x)

|f (x)| .

Using standard theorems of algebraic topology [24], we can argue thatg has either a fixed
point or an antipodal point (a point such thatg(x) = −x). In any case, there is a constant
K ∈ R \ {0} and a vectorx0 6= 0 such thatf (x0) = Kx0. We will show thatK = 1. Note
that x0 satisfies the following

f (x0) = Kx0 = x0+ 1
2M(x0)x0,

f −1(Kx0) = x0 = Kx0− K
2

2
M(x0)x0.

These imply that

Kx0− x0 = 1

2
M(x0)x0 = K2

2
M(x0)x0

so thatK2 = 1. In fact, we can show thatK = 1: sincef is a bijection,f ( 1
2x0) 6= 0

implies thatM(x0)x0 6= −4x0. We conclude thatf (x0) 6= −x0 which implies thatK 6= −1
which leaves the only optionK = 1.

It is clear thatM(x0)x0 = 0. Without loss of generality, we can assume that
x0 = e1 = (1, 0, 0). Note thatM(e1) must have the form

M(e1) = ( 0 γ1 γ2 )

where γ1, γ2 ∈ R3. This fact, together with (iii) of lemma 2.2, implies that the matrix
M(e1)

2 = 0, and a simple calculation then implies thatγ1 andγ2 must be parallel, or one
of them must be zero. Therefore, we can perform a linear change of coordinates leavingx1

fixed, to eliminated the third column ofM(e1). Then the second component ofγ1 in the new
coordinates must vanish, since the relationM(e1)

2 = 0 still holds in the new coordinates.
Therefore, the map has the explicit form

f

(
x1

x2

x3

)
=
(
x1

x2

x3

)
+ x1x2

(
α

0
β

)
+ x

2
2

2

(
µ1

µ2

µ3

)
+ x2x3

(
ν1

ν2

ν3

)
+ x

2
3

2

(
η1

η2

η3

)
.
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Let M1 = M(e1),M2 = M(e2) andM3 = M(e3) wheree1 = (1, 0, 0), e2 = (0, 1, 0) and
e3 = (0, 0, 1). It is easy to see that

M1 =
( 0 α 0

0 0 0
0 β 0

)
,

M2 =
(
α µ1 ν1

0 µ2 ν2

β µ3 ν3

)
,

and

M3 =
( 0 ν1 η1

0 ν2 η2

0 ν3 η3

)
.

To finish the proof, we need to show that the column vectorsµ, ν, η and (α, 0, β) of
M1,M2,M3 are parallel to each other. We will show step by step that several of the entries
are zero. We have two cases.
• β 6= 0. Using lemma 2.2 we conclude that 2M2

3e1 +M1M3e3 = 0. This implies that
η2 = 0. We also have thatM3

3 = 0, soν2 = 0 andη3 = 0. The conditionM2
2e2 = 0 implies

that µ2 = 0 and this together withM3
2 = 0 implies thatν3 = −α. Using the equation

M2M3e3+ 2M2
3e2 = 0 we find thatη1 = 0. UsingM3

2 = 0 andM2
2e2 = 0, we find that the

column vectors ofM2 are parallel, and the rest is clear.
• β = 0. The conditionM3

2 = 0 implies thatα = 0, ν3 = −µ2 andµ2
2+ν2µ3 = 0. The

conditionM3
3 = 0 implies thatη3 = −ν2 andν2

2 −µ2η2 = 0. On the other hand,M2
2e2 = 0

implies thatµ1µ2+ µ3ν1 = 0 andM2
3e3 = 0 implies thatν1η2− η1ν2 = 0.

So it is enough to show thatµ1ν2− ν1µ2 = 0 andν1ν2− η1µ2 = 0. Clearly, if η2 = 0
thenµ2 = 0 and we would be finished. So, we can assume thatη2 6= 0.

If η2 6= 0 thenη1µ2 = η1ν
2
2/η2 = ν1ν2. If ν2 = 0 thenµ2 = 0 and we would be finished.

Assume thatν2 6= 0 andη2 6= 0. This implies thatµ1ν2 = µ1µ2η2/ν2 = −µ3ν1η2/ν2 =
µ2

2ν1η2/ν
2
2 = µ2ν1. �

3. Quadratic symplectic maps

In this section we use the characterization of quadratic shears in lemma 2.2 to give an
alternate proof of the result of Moser [3] for quadratic symplectic maps. Recall that a map
f is symplectic ifω(Df v,Df v′) = ω(v, v′) for all vectorsv, v′ ∈ R2n whereω is the
standard symplectic formω(v, v′) = vT Jv′ andJ is the 2n× 2n matrix,

J =
(

0 I

−I 0

)
.

Theorem 3.1.Letf be a quadratic symplectic map of(R2n, ω). Thenf can be decomposed
asf = T ◦S whereT is affine symplectic andS is a symplectic quadratic shear. Furthermore,
if S is any symplectic quadratic shear, then there is a symplectic linear mapλ such that
λ ◦ S ◦ λ−1(q, p) = (q +∇V (p), p) for some cubic potentialV .

Proof. Let b = f (0) and L = Df (0). Clearly L is a symplectic matrix and if we
let T (x) = Lx + b then S = T −1 ◦ f is a symplectic quadratic map in standard form,



Quadratic volume-preserving maps 563

i.e. S(x) = x + 1
2M(x)x, whereM(x) is linear in x and satisfies the symmetry property

M(x)y = M(y)x. ThenS is symplectic providing

(I +M(x))T J (I +M(x)) = J.
Homogeneity ofM(x) implies that

M(x)T J = J TM(x), (2)

and

M(x)T JM(x) = 0. (3)

Using (2) in (3) gives 0= M(x)T JM(x) = J TM(x)M(x), and sinceJ is nonsingular this
implies

M(x)2 = 0. (4)

Then lemma 2.2 implies thatS is a quadratic shear.
To finish the proof, we follow Moser [3] and define the null space ofM(x) in the

following way

N = N (M) = {y ∈ R2n : M(x)y = 0, ∀x ∈ R2n} = {y ∈ R2n : M(y) = 0}.
Recall [25] that theω-orthogonal complement of a subspaceE ⊂ R2n is defined by
E⊥ = {v ∈ R2n : ω(v, v′) = 0, ∀v′ ∈ E}. We will show thatN⊥ ⊂ N . For that
purpose, we will use the following fact

M(z)M(x)y = M(x − y)2z = 0 (5)

that follows from lemma 2.2, linearity and symmetry.
Let u ∈ N⊥ and x ∈ R2n. Now for any y ∈ R2n, (5) implies thatM(x)y ∈ N .

Thereforeω(y,M(x)u) = yT JM(x)u = −yTM(x)T Ju = −ω(M(x)y, u) = 0. This
implies thatM(x)u = 0 and henceu ∈ N . Standard theorems in symplectic geometry (cf
[25]) imply that it is possible to find a Lagrangian spaceF such thatN⊥ ⊂ F⊥ = F ⊂ N
and a symplectic linear transformationλ such that

λ(F) = {(q, p) ∈ Rn × Rn : p = 0}.
Clearly, if S(x) = I + 1

2M(x)x is a symplectic quadratic shear, then so isS̃ = λ ◦ S ◦ λ−1.
Assume that̃S(x) = I+ 1

2M̃(x)x. Thenλ(F) ⊂ N (M̃). Therefore for all(q, p) ∈ Rn×Rn,
M̃(q, p)(q, p) = M̃(q, p)(0, p) = M̃(0, p)(q, p) = M̃(0, p)(0, p).

Since, in general, the matrix̃M(0, p) can be written inn× n blocks as

M̃(0, p) =
(
A(p) B(p)

C(p) D(p)

)
,

then M̃(0, p)(q,0) = 0 impliesA(p) = C(p) = 0. Moreover, (2) impliesD(p) = 0 and
B(p)T = B(p). Thus finally we see that

M̃(q, p)(q, p) = (B(p)p, 0)

whereB(p)p is a gradient vector field. Therefore there exists a cubic potentialV such that
∇V (p) = B(p)p. �
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4. Normal form in R3

In this section we give normal forms for a quadratic diffeomorphismf of R3 that preserves
volume and has a quadratic inverse. Now lemma 2.2 implies that if we letb = f (0) and
L = Df (0), andT (x) = Lx + b, then the mapS = T −1 ◦ f is a quadratic shear. Then
theorem 2.1 implies thatS is of the formS(x) = x + 1

2(x
T Px)v wherev ∈ R3 andP is a

symmetric matrix such thatPv = 0. Depending on the relation betweenL andv, we have
three possible cases; these can be distinguished by considering the space

Z(v, L) = span{v, Lv,L2v}.
Theorem 4.1.Let f : R3→ R3 be a quadratic volume-preserving diffeomorphism. Thenf

can be written as the composition of an affine mapT and a quadratic shearS, f = T ◦ S,
whereS(x) = x + 1

2(x
T Px)v, v ∈ R3 and P is a symmetric matrix such thatPv = 0.

Moreover,f is affinely conjugate to one of three possible normal forms, depending on the
dimension ofZ(v, L):

(i) dimZ(v, L) = 3. The mapf is conjugate to(
α + τx − σy + z+Q(x, y)

x

y

)
(6)

whereτ and σ are the trace and second trace ofL, andQ(x, y) = ax2 + bxy + cy2 is a
quadratic form.

(ii) dimZ(v, L) = 2. The mapf is conjugate to(
x0+ αx + y +Q(x, z)

y0− βx
z0+ 1

β
z

)
.

(iii) dimZ(v, L) = 1. The mapf is conjugate to(
x0+ αx +Q(y, z)

y0− 1
α
z

z0+ y + βz

)
.

Proof. We know thatf = L(x + 1
2(x

T Px)v)+ b, andPv = 0. To obtain the first normal
form, perform a linear change of coordinates,x = Uξ . Since the vectorsv, Lv, andL2v

are linearly independent, the transformationU can be defined by the following equations

U−1v = e3 Ue3 = v
U−1Lv = e1 Ue1 = Lv
U−1L2v = e2+ τe1 Ue2 = L2v − τLv

where, as we will see below, we will chooseτ = Tr(L). In the new coordinates the map
becomes

ξ ′ = U−1f (U(ξ))

= U−1b + U−1LUξ + 1
2(ξ

T UT PUξ)U−1Lv

= ξo + U−1LUξ + e1Q̃(ξ, ξ)

whereQ̃(ξ1, ξ2) = 1
2(ξ

T
1 U

T PUξ2). Note thatQ̃(ξ, e3) = 1
2(ξ

T UT Pv) = 0, so in the new
coordinates the quadratic terms depend only on the first and second components. Moreover,
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in this coordinate system

U−1LUe1 = U−1L2v = e2+ τe1

U−1LUe2 = U−1(L3v − τL2v)

U−1LUe3 = U−1Lv = e1.

The second equation can be simplified by noting that the characteristic equation for the
matrix L is satisfied byL itself, and soL3 − τL2 + σL − I = 0, whereτ = Tr(L)
and σ = Tr2(L), the ‘second trace’ of the matrixL, thus we obtainU−1LUe2 =
U−1(I − σL)v = e3− σe1. Thus we obtain

U−1LU =
(
τ −σ 1
1 0 0
0 1 0

)
.

Upon reverting to(x, y, z) as the names for the coordinates we obtain

U−1f (U(x)) =
(
x0

y0

z0

)
+
(
τx − σy + z+Q(x, y)

x

y

)
.

To simplify this map further, we can conjugate, using the translation

(x, y, z) 7→ (x, y + y0, z+ y0+ z0),

to a map withx0 = α, y0 = 0 andz0 = 0. This is the promised form.
For the second case, assume thatL2v = αLv − βv, for some nonzeroα andβ. This

implies that the characteristic polynomial forL factors as(L−1/βI)(L2−αL+βI) = 0, and
therefore, sinceL is nondegenerate, there exists a vectorw /∈ Z(v, L) such thatLw = 1

β
w.

We define the following change of coordinates.

U−1v = e2 Ue2 = v (7)

U−1Lv = e1 Ue1 = Lv (8)

U−1w = e3 Ue3 = w (9)

As before, we note that in the new coordinates the quadratic term satisfiesQ̃(e2, ξ) = 0, so
in the new coordinates the quadratic terms depend only on the first and third components.
Moreover in this coordinate system we obtain

U−1LU =
(
α 1 0
−β 0 0
0 0 1

β

)
.

This implies the form for the second case.
For the third case, assume thatLv = αv. Note that there exists a vectorw /∈ Z(v, L)

such thatZ(w,L) ⊕ Z(v, L) = R3. In fact, we can also find a constantβ such that
L2w − βLw + 1

α
w = 0. We define the following change of coordinates.

U−1v = e1 Ue1 = v
U−1w = e2 Ue2 = w
U−1Lw = e3 Ue3 = Lw.

As before, we note that in the new coordinates the quadratic term isQ̃(e1, ξ) = 0, so in
the new coordinates the quadratic terms depend only on the second and third components.
Moreover in this coordinate system we obtain

U−1LU =
(
α 0 0
0 0 − 1

α

0 1 β

)
.

This implies the form for the last case. �
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5. Dynamics

The dynamics of the second and third cases of theorem 4.1 are essentially trivial. In case
(ii), the z dynamics decouples from the(x, y) dynamics. There are four special cases.
• |β| 6= 1. The planez = βz0/(β − 1) is invariant, and is either a global attractor

(|β| > 1) or repellor (|β| < 1). On the plane the dynamics is linear.
• β = 1, z0 6= 0. All orbits are unbounded.
• β = 1, z0 = 0. Every planez = c is invariant, and the dynamics reduces to a

two-dimensional, area-preserving Hénon map on each plane.
• β = −1. Each planez = c is fixed underf 2. Restricted to a plane,f 2 is the

composition of two orientation-reversing Hénon maps.
For case (iii) the(y, z) dynamics is linear and decouples from thex dynamics.

Generically, there is an invariant line on which the dynamics is affine. The invariant
line can have any stability type.

5.1. Generic case

Equation (6) is the only nontrivial case. In general this map has six parameters, one from
the shift, two from the linear matrix (the two coefficients of its characteristic polynomial)
and the three coefficients ofQ. However, generically, two of these parameters can be
eliminated.

Write the quadratic form asQ(x, y) = ax2+ bxy+ cy2. Genericallya+ b+ c 6= 0 and
we can we can apply a scaling transformation to seta+ b+ c = 1. Similarly if b+ 2c 6= 0
the parameterσ can be eliminated using the diagonal translation

(x, y, z) 7→ (x + γ, y + γ, z+ γ ), γ = σ/(b + 2c).

In this way, we obtain the final, generic form(
x ′

y ′

z′

)
=
(
α + τx + z+ ax2+ bxy + cy2

x

y

)
a + b + c = 1. (10)

There are four parameters in the system. Even ifa + b + c = 0 and/orb + 2c = 0, then
other normalizations can be chosen to eliminate two of the parameters in (6). We will not
study these special cases.

5.2. Periodic orbits

Generically we can assume thata + b + c = 1 for the quadratic form in (6). The map (6)
has at most two fixed points

x = y = z = x± = 1
2

(
−τ + σ ±

√
(τ − σ)2− 4α

)
(11)

born in a saddle-node bifurcation at(τ − σ)2 − 4α = 0. The characteristic polynomial of
the linearized map at the fixed points is

λ3− tλ2+ sλ− 1= 0

where the tracet and second traces are

t± = τ + (2a + b)x±
s± = σ − (2c + b)x±.
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Figure 1. General stability diagram for a volume-preserving map.

Note that

t± − s± = ±
√
(τ − σ)2− 4α

t± − s∓ = ±(a − c)
√
(τ − σ)2− 4α.

The corresponding eigenvalues are illustrated in figure 1. It is easy to see (using the
symmetric polynomials) that there are two lines in(t, s) space where the stability changes:
the saddle-node linet = s corresponds to an eigenvalue 1, and the period-doubling line
t + s = −2 corresponds to an eigenvalue−1. At the pointt = s = −1 where they cross
the eigenvalues are necessarily(−1,−1, 1). Note also that when−16 t = s 6 3 there is a
pair of eigenvalues on the unit circle. There are two other curves of interest in the stability
plane—these correspond to a double eigenvalueλ1 = λ2 = r, or

2r + 1/r2 = t r2+ 2/r = s.
This gives the two curves shown in figure 1. One has a cusp att = s = 3, where we
have the triple rootλ = 1. The second crosses the saddle-node and period-doubling lines at
t = s = −1. These are the two codimension-two points.

A fixed point with a one-dimensional unstable manifold is calledtype Aand one with
a one-dimensional stable manifold is calledtype B. The saddle-node and period-doubling
lines divide the plane into quadrants which alternate between typeA andB.

Having a pair of fixed points, one oftype A and one of type B, has interesting
consequences for our map. For instance, the two-dimensional manifolds serve as partial
barriers to transport. Generically, they intersect along a one-dimensional manifold. We
have computed numerically some pairs of two-dimensional stable and unstable manifolds.
As an example, see figure 2.

We have noticed that varying the parameter makes the one-dimensional intersection
bifurcate. Further investigation in this direction is the subject of future papers and a more
complete treatment will appear elsewhere.

The two fixed points (11) are born on the linet = s and move to opposite sides of this
line for (τ − σ)2 > 4α (x+ is always on the right side). If|a − c| is small, they are on the
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Figure 2. Two-dimensional stable and unstable manifolds for the parametersa = c = 0.5,
b = 0.0, α = 0.0, τ = −0.3 andσ = 0.0.

same side of the period-doubling line, so that one is typeA and the other typeB; however,
when this parameter is large enough they can be on opposite sides, and therefore of the
sametype. This is determined by the sign of

s± + t± + 2= 2+ τ + σ + 2(a − c)x±.
Whena = c, we havet± = s∓ so that the eigenvalues of the two fixed points are reciprocal
(see section 5.3 for the explanation of this).

Remember that, generically and without loss of generality, we can assume thatσ = 0.
Therefore, we can plot stability diagrams for different values ofτ and α. The stability
diagram in the(τ, α) plane for thea = c case is shown in figure 3. A more general case
is shown in figure 4.

Periodic orbits can be studied by converting the map into a third-order difference
equation. Let(xt , yt , zt ), t = 0, 1, . . . be a trajectory of the map (6), then the map can
be written as

xt+1 = α + τxt − σxt−1+ xt−2+Q(xt , xt−1).

Now it is clear that if this system ofn quadratic equations has a finite number of solutions,
then there are at most 2n. We can rule out this degeneracy is most cases.

Lemma 5.1. Supposea and c are not both zero, and letµ± be the two (possibly complex)
solutions ofQ(µ, 1) = 0. Then ifµk+µ

n−k
− 6= 1 for some integer0 6 k 6 n, the number of

fixed points off n for the map (6) is at most2n.

Proof. The ‘nonlinear alternative’ [26] asserts that the number of complex solutions, counted
with multiplicity, of a system ofn polynomial equations inn variables is precisely the
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Figure 3. Stability diagram for the reversible casea + b + c = 1, a = c and σ = 0. There
are no fixed points in the shaded region. The complex eigenvalues for the fixed pointx+ are
shown. Those ofx− are reciprocal to those ofx+.

product of the degrees of the polynomials providing the system of equations obtained by
discarding all terms but those of the highest degree in each equation has only the trivial
solution. For our case, the resulting system is

Q(xt , xt−1) = ax2
t + bxtxt−1+ cx2

t−1 = 0, t =, 1 . . . n, xn = x0.

If any one of thext = 0, then they are all zero, unlessa = c = 0. Otherwise the general
nonzero solution to this system isxt = µ±xt−1, whereaµ2+ bµ+ c = 0. Settingxn = x0

requiresµk+µ
l
− = 1, wherek + l = n. �

For example, typically there are at most four fixed points off 2, giving a single period-
two orbit in addition to the two fixed points off . However, there could be infinitely many
period-two orbits or none whenµ+µ− = 1, giving a = c or µ2

± = 1, giving b = ±(a+ c).
As an example, whena = c = b/2 andσ+τ+2= 0, the line(x, δ−x, x) 7→ (δ−x, x, δ−x)
has period two whereδ is defined by

α + (1+ σ)δ + aδ2 = 0.

5.3. Reversibility

A map is reversible if it is conjugate to its inverse by a diffeomorphismh that is an
involution, thus

h ◦ f = f −1 ◦ h, h2 = I.
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Figure 4. Stability diagram fora = − 1
2 , b = 1, c = 1

2 , σ = 0. Full curves correspond to
changes in the stability ofx+, while broken curves correspond tox−.

Some of the quadratic maps that we have considered have a reversor. Assume the generic
casea + b + c 6= 0 (or equivalentlyQ(1, 1) 6= 0, whereQ is the quadratic form given in
(6)). It is easy to see that, ifa = c, then the map (6) has a reversor given by

h(x, y, z) = −
(
z+ η
y + η
x + η

)
.

whereη = (τ − σ )/(a + b + c).
Note that whenf is reversible and has fixed points, then the two fixed points have

reciprocal eigenvalues—so if one is type A, the other is type B. Moreover, if the eigenvalues
are complex, then the rotation rates have the same magnitudes at the two fixed points.

Lemma 5.2. Let f be a quadratic map in normal form (6). Assume, generically, that the
quadratic form satisfiesQ(1, 1) 6= 0 and(τ−σ)2 6= 4αQ(1, 1) Thenf is smoothly reversible
if and only ifQ(x, y) = Q(y, x).

Proof. Without loss of generality, we assume thatQ(1, 1) = a + b + c = 1 and
(τ − σ)2 − 4α 6= 0. Extend the map toC3. The imposed conditions imply that the
mapf has exactly two fixed points inC3. Supposef is reversible and has a fixed points
x±, then it is easy to see thath(x±) are also fixed points. In addition,Df (x±) is conjugate
to Df −1(h(x±)).

Since there are two fixed points, eitherh(x±) = x± or h(x±) = x∓. Now the eigenvalues
are invariant under a diffeomorphism, so in the first case the eigenvalues ofDf (x+) must be
the same as those ofDf −1(x+), and similarly forx−. This can only happen whent± = s±
but this impliesx+ = x−, which cannot happen by assumption.

jdm
Inserted Text
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We conclude thath(x+) = x−. This implies thatt± = s∓, which givesa = c, or
Q(x, y) = Q(y, x).

The other direction is proved by a simple computation, as described above. �

Reversibility simplifies finding orbits of a map. Orbits that are invariant underh

are called symmetric, and as is easy to see, they must have points on the fixed set
Fix(h) = {x ∈ R3 : h(x) = x}. In our case this is the linex + z = −η, y = −η/2, so a
numerical algorithm for finding for symmetric orbits involves a one-dimensional search.

Similarly, if the stable manifold of one of the fixed points intersects Fix(h), then
the intersection point is on a heteroclinic orbit, for supposex ∈ Fix(h) ∩ Ws(x+), then
x ∈ Wu(x+), becauseh(f n(x)) = f −n(h(x)) = f −n(x), so

lim
n→∞ f

n(x) = x+ ⇒ lim
n→∞h(f

n(x)) = lim
n→∞ f

−n(x) = h(x+) = x−.
Furthermore, suppose the stable manifold is two dimensional, and has the normal vectorn̂

at a point on Fix(h), thenDh(x)n̂ is the normal to the unstable manifold at this point. This
implies that the curve of heteroclinic orbits is tangent to the directionn̂×Dh(x)n̂.

5.4. Bounded orbits

For the H́enon map, it is well known that the set of bounded orbits is contained in a square.
For the volume-preserving case, we will show that an analogue of this result also holds
providing the quadratic formQ is positive definite.

Theorem 5.1. If Q is positive definite then there is aκ > 0 such that all bounded orbits are
contained in the cube{(x, y, z) : |x| 6 κ, |y| 6 κ, |z| 6 κ}. Moreover, points outside the
cube go to infinity along the +x axis ast →+∞ or thez-axis ast →−∞.

Proof. We start by writing the map in third-difference form as

xt+1 = α + τxt − σxt−1+ xt−2+Q(xt , xt−1).

Recall that a quadratic formQ(x, y) = ax2+bxy+cy2 is positive definite iffa > 0, c > 0,
andd ≡ ac − b2/4> 0. We will use the bounds obtained from completing the square:

Q(x, y) = d

c
x2+ c(y + bx/2c)2 > d

c
x2,

= (x + by/2a)2+ d
a
y2 > d

a
y2.

There are three cases to consider, depending upon the relative sizes ofxt , xt−1, andxt−2:
• |xt | > max(|xt−1|, |xt−2|). The difference equation then gives

xt+1 > Q(xt , xt−1)− |α| − |τxt | − |σxt−1| − |xt−2|
> d

c
x2
t − (|τ | + |σ | + 1)|xt | − |α|,

Now sinced/c > 0 there is a constantκ1 > 0, depending onα, τ, σ, a, b, andc such that
when |xt | > κ1, we have

d

c
x2
t − (|τ | + |σ | + 1)|xt | − |α| > |xt |,

In this case, we havext+1 > |xt |. Noting that we then havext+1 > |xt | > |xt−1|, we can
recursively apply this result to show that the sequence

xt+k > xt+k−1 > · · · > |xt | > κ1
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is monotone increasing. In fact, this sequence is unbounded; otherwise it would have a
limit xt → x∗ > κ1, and this point would have to be a fixed pointx = y = z = x∗ of the
map. However, there are at most two such points,x±, and a simple calculation shows that
κ1 > x±, so both fixed-point points are excluded.
• |xt−2| > max(|xt |, |xt−1|). Inverting the difference equation and shiftingt by one

yields

xt−3 = xt − α − τxt−1+ σxt−2−Q(xt−1, xt−2).

Thus we have

xt−3 6 −d
a
x2
t−2+ |xt | + |α| + |τxt−1| + |σxt−2|

6 −d
a
x2
t−2+ (|τ | + |σ | + 1)|xt−2| + |α|

< −|xt−2|,
when |xt−2| > κ2, for a constantκ2 chosen as before, but withd/c replacingd/a. This
implies that the sequencext−k < xt−k+1 < · · · < −|xt−2| is monotone decreasing, negative,
and unbounded.
• |xt−1| > max(|xt |, |xt−2|). In this case we will see that the orbit is unbounded in both

directions of time. For the forward direction, note that

xt+1 >
d

a
x2
t−1− (|τ | + |σ | + 1)|xt−1| − |α|

> |xt−1|,
when |xt−1| > κ2. Thusxt+1 > |xt−1| > |xt |, which is the situation covered by (i), and we
obtain a monotone increasing sequence, providingxt+1 > κ1. Alternatively, note that

xt−3 6 −d
c
x2
t−1+ (|τ | + |σ | + 1)|xt−1| + |α|

< −|xt−1|,
when |xt−1| > κ1. This givesxt−3 < −|xt−1| < −|xt−2|, so we are in the situation covered
by (ii), which implies that the sequence approaches−∞ providing |xt−3| > κ2.

In conclusion, we have shown that an orbit is unbounded either ast →±∞ providing it
contains a pointxt such that|xt | > max(κ1, κ2) ≡ κ. Note thatκ1 is a monotone decreasing
function of d/c, so therefore we can defineκ by usingd/max(a, c):

κ = max(a, c)

2d

(
|τ | + |σ | + 2+

√
(|τ | + |σ | + 2)2+ 4

|α|
d

max(a, c)

)
.

Finally, we investigate the asymptotic direction of an unbounded orbit. Recall that
yt = xt−1 andzt = xt−2. Suppose that|xt | > |yt | > |zt | > κ, then each of the variables is
eventually positive, so the orbit moves to infinity in the positive octant. Moreover, once all
components are positive, we have

xt+1

xt
= Q(xt , yt )

xt
+ α + τxt − σyt + zt

xt

> d

c
xt − (|τ | + |σ | + 1)− |α|

xt
→∞.

So the ratiosyt/xt = xt−1/xt and zt/yt = xt−2/xt−1 go to zero, and the orbit approaches
the positivex-axis ast → ∞. Similarly if |zt | > |yt | > |xt | > κ, then eventually all
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the components are negative, and so the orbit moves to infinity in the negative octant as
t →−∞. Once all components are negative, we have

zt−1

zt
= xt−3

xt−2

= −Q(yt , zt )
zt

+ xt − α − τyt + σzt
zt

6 −d
a
|zt | + (|τ | + |σ | + 1)+ |α||zt | → −∞.

This implies the orbit moves to∞ along the negativez axis. �

6. Conclusions

We have studied a family of volume-preserving maps with the property that all entries
are quadratic polynomials. We showed that these conditions imply that such maps are
polynomial diffeomorphisms. Then we restricted ourselves to quadratic maps whose inverse
is also quadratic. The class of maps studied is related to an old conjecture about polynomial
maps called the Jacobian conjecture.

A definition of quadratic shears was introduced and a characterization was given in
general. A further characterization in three-space was applied to find a normal form for the
family. In three-space, the form of the generic case is similar in form to the area-preserving
Hénon map and, generically, the map has two fixed points that can be eithertype A or
type B.

In addition, using our definition of quadratic shear and its characterization, we were
able to give a simpler proof of a theorem of Moser classifying quadratic symplectic maps.

The normal form, (6), does not seem to have received much study. Gonchenkoet al
[27, 28] found maps of our form for the return map near a quadratic homoclinic tangency.

There remain many enticing open problems. For example, we plan further computations
to visualize the stable and unstable manifolds of the fixed points. Often these manifolds
intersect, enclosing a ball; however, this is not guaranteed. Moreover, the heteroclinic
intersections, which are generically curves, can fall in many homotopically distinct classes.
We suspect that there are bifurcations between these classes, and that which occurs will
depend, for example, on the complex phase of the eigenvalue of the associated fixed point.
Heteroclinic orbits can be found most easily for the reversible case, as an intersection should
occur on the fixed set of the reversor.

Another problem of interest is to obtain a characterization of quadratic shears in higher
dimensions similar to the one we obtained in three dimensions. At this point, normal forms
could be obtained using techniques similar to the current paper.

Finally, as we discussed in the introduction, one of our main motivations for
characterizing the quadratic volume-preserving maps is to study transport. If the two fixed
points have disparate types, and their two-dimensional manifolds intersect on a circle, then
transport can be localized to ‘lobes’ similar to the two-dimensional case [18]. However, as
figure 2 shows, the intersections can be curves that spiral from one fixed point to the other.
We plan to characterize transport for such cases. The existence, for the definite case, of a
cube containing the bounded orbits (cf theorem 5.1) will prove useful in this study.
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[23] Hénon M 1976 A two-dimensional mapping with a strange attractorCommun. Math. Phys.50 69–77
[24] Greenberg M J and Harper J R 1981Algebraic Topology(Reading, MA: Addison-Wesley)
[25] Abraham R and Marsden E 1985Foundations of Mechanics(New York: Benjamin)
[26] Friedland S 1977 Inverse eigenvalue problemsLinear Alg. Appl.17 15–51
[27] Gonchenko S V, Turaev D V and Shil’nikov L P 1993 Dynamical phenomena in multidimensional systems

with a structurally unstable homoclinic Poincaré curveRuss. Acad. Sci. Dokl. Math.47 410–15
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