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Abstract. We study quadratic, volume-preserving diffeomorphisms whose inverse is also
quadratic. Such maps generalize thenldn area-preserving map and the family of symplectic
quadratic maps studied by Moser. In particular, we investigate a family of quadratic volume-
preserving maps in three-space for which we find a normal form and study invariant sets. We
also give an alternative proof of a theorem by Moser classifying quadratic symplectic maps.

AMS classification scheme numbers: 34C20, 34C35, 34C37, 58F05, 70H99

1. Introduction

The study of the dynamics of polynomial mappings has a long history both in applied and
pure dynamics. For example, such mappings provide simple models of the motion of charged
particles through magnetic lenses and are often used in the study of particle accelerators [1].
The simplest nonlinear systems are given by quadratic maps; the quadratic, area-preserving
map, introduced by Bhon [2], is one of the simplest models of chaotic dynamics.

Hénon's study can be generalized in several directions. For example, Moser [3] studied
the class of quadratic, symplectic maps, obtaining a useful decomposition and normal form.
Here we do the same for a more general class of quadratic, orientation preserving volume-
preserving maps, with one caveat as we discuss below.

Just as symplectic maps arise as Poia@eaaps of Hamiltonian flows, volume-preserving
maps are obtained from incompressible flows, and as such have application to fluid and
magnetic field line dynamics [4, 5]. Moreover, one can argue that computational algorithms
for flows should obey the ‘principle of qualitative consistency’ [6]: if a flow has some
qualitative property then the algorithm should as well. For the case of Hamiltonian flows
this leads to the construction of symplectic algorithms. A volume-preserving algorithm
should be used for a volume-preserving flow, such as the motion of a passive particle in an
incompressible fluid [7-10].

Some of the properties of symplectic maps generalize to the volume-preserving case. For
example, a volume-preserving map that is sufficiently close to integrable and nondegenerate
in a certain sense has lots of codimension-one invariant tori [11-13], which are absolute
barriers to transport [14]. Also, a perturbation of a volume-preserving map with a
heteroclinic connection can have an exponentially small transversal crossing [15]. Finally,
the Birkhoff normal form analysis can be used to study the motion in the neighbourhood
of fixed points [16]

Another motivation for the study of volume-preserving maps is that they can be used
as simple models for the study of transport in higher dimensions. The general theory of
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transport is based on a partition of phase space into regions separated by partial barriers
that restrict the motion in some way [17]. For example, in two dimensions a partition is
formed from intersecting stable and unstable manifolds of a saddle periodic orbit. In higher
dimensions an analogous construction requires the existence of codimension-one manifolds
that separate the space [18]. In most cases it is difficult to find a dynamically natural
construction of such manifolds; however, such manifolds do appear in volume-preserving
maps, and this leads easily to the construction of partial barriers.

The computation and effective visualization of invariant manifolds in higher-dimensional
maps is itself an interesting problem [19]. In this paper we will study the intersections of
the two-dimensional stable and unstable manifold®in

Polynomial maps are also of interest from a mathematical perspective. Much work has
been done on the ‘Cremona maps’, that is polynomial maps with constant Jacobians [20].
An interesting mathematical problem concerning such maps is the conjecture proposed by
Keller in 1939.

Conjecture 1.1 (real Jacobian conjecture)Let f : R* — R"” be a Cremona map. Thef
is bijective and has a polynomial inverse.

This conjecture is still open. It is known that injective polynomial maps are
automatically surjective and have polynomial inverses [21, 22], so it would suffice to prove
that f is injective. It is easy to see (cf lemma 2.1 below) that for the quadratic case, the
condition of volume preservation implies injectivity, thus the Jacobian conjecture holds for
guadratic maps.

Even if the conjecture is true, the degree of the inverse of a Cremona map could be
large. For example, the upper bound for the degree of the inverse of a quadratic &p on
is known to be 27 [22]. Thus in two dimensions the inverse of a quadratic area-preserving
mapping is quadratic, as was discussed @nth [23, 20]. More generally, Moser showed
that quadratic symplectic mappings in any dimension have quadratic inverses [3].

Hénon found the normal form for the quadratic Cremona mapping in the plane. In this
paper, we will correspondingly find the normal form for the three-dimensional case, but
we assume that the quadratic, volume-preserving mapping has a quadratic inverse (it is a
‘quadratic automorphism’). We give a complete classification of these diffeomorphisms.

Such maps can be written as the composition of an affine volume-preserving map and
a ‘quadratic shear’. We give necessary and sufficient conditions for such shears to have
a quadratic inverse. As a first application of this concept, we give a simple proof of the
theorem of Moser [3] for the symplectic case.

We also show that the quadratic automorphisnRthcan be reduced to one of three
normal forms. The generic case is given by

/

(x/> <a+rx+z+ax2~|—bxy+cy2
z

y X ) a+b+c=1 D)

y
The two parametersy and t represent the affine part of the map. It is reasonable that
only two parameters are needed because there are precisely two coordinate-independent
coefficients of the characteristic polynomial: the trace and ‘second trace’. The remaining

two parameters, say, andb (with ¢ then being determined), represent the nonlinear terms,
which are given by a single quadratic form in two variables.
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2. Quadratic shears

In this section we will study maps of the form
x> x4 30(x)

where Q is a vector of quadratic polynomials. Throughout this paper we will write vectors
of quadratic polynomials using the for@(x) = M (x)x whereM : R" — R" is a linear
function into the set of x n matrices that satisfies the symmetry propétyx)y = M (y)x

so thatD, (M (x)x) = 2M (x). In fact for any quadrati@, there is one and only on&

that represents it.

Definition 2.1. We say thatf : R* — R” is a quadratic map in standard form ff is
written as

f(x) =x+ FM(x)x
whereM is a matrix valued linear function that satisfi#s(x)y = M (y)x.
It is important to note thaDf (x) = I + M(x).

Lemma 2.1.Let f(x) = x + %M(x)x be a quadratic map oR” in standard form. The
following statements are equivalent.

(i) For all x € R", det(Df (x)) = 1.

(i) f is bijective with polynomial inverse.

(i) [M(x)]" =0.

Proof. We will show (iii) = (ii) = (i) = (iii).

(iii) = (ii) Since M (x)]" = 0, the inverse of the matriRf (x) = I+ M (x) is explicitly
given byl — M(x) + M(x)?> — --- — (=1)"M(x)"~L. Thereforel + M(x) is nonsingular
for any x. Moreover, we can show that is injective by writing the difference betweefi
at two points as

f) = () =x—y+ 3[Mx)x — M(»)y)]
=[I 4+ 3(Mx) + MO)](x — y) + 3[M(x)y — M(y)x].

The last term vanishes using the symmetry propertyfof Since M (x) is linear inx, we
can combine the penultimate terms to obtain

FO) = fF) = [1 M (%)] x — ).

Sincel + M is nonsingular, this implies that when# y, f(x) # f(y), so the function
is injective. Theorem A in [21], states that an injective polynomial map has a polynomial
inverse. Thus we conclude thgtis bijective with a polynomial inverse.
(i) = (i) In principle, detDf(x)) and detDf '(f(x))) are polynomials in
X1, X2, ..., X,. However, differentiation off ~(f(x)) = x gives

detDf1(f(x))) det Df (x)) = 1,

and therefore, since both are polynomials,(fgt(x)) has to be a constant independent of
x. Thus we conclude that dé?f (x)) = det(Df (0)) = det(/) = 1.
(i) = (iii) Since det/ + M(x)) = 1 andM is linear inx, then for any¢ # 0

1
detM(x) — ¢I) = (=1)"¢" det(l +M <—2x>> = (—1)"¢".
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This implies that the characteristic polynomial d#f(x) is (—¢)* and therefore
[M(x)]" =0. O

At this point, we restrict ourselves to the case of quadratic maps in standard form
whose inverse is also quadratic. We will see that the dynamics of such maps is essentially
integrable, and is similar to the dynamics of a shear. We first establish the following
characterization.

Lemma 2.2.Let f(x) = x+%M(x)x be a bijective quadratic map &". Then the following
statements are equivalent.

(i) £~ is a quadratic map.

(i) M(x)?x =0,

(i) MM )z + MM )x + M(Z)M(x)y = 0.

(iv) f*(x) =x + 5M(x)x forall k € Z.

Proof. We will show (i) = (ii) = (iii) = (iv) = ().
(i) = (ii) By assumptionf ! is quadratic, and sinc®f(0) = I, we must have
FHx) =x + IN()x,
whereN (x) is a matrix valued linear function that satisfi¥§x)y = N(y)x. Then we have
that
x=f(f7Hx) = x + ZN)x 4+ 3M(x + 3N (0)x) (x + 3N (x)x)
=x+ $N@)x + IM@)x + IMX)N(0)x + EM(N(x)x)N (x)x.
Since this is true for all, the quadratic terms must vanish gividg(x)x = —M(x)x,
and the cubic terms must also vanish givitgx)M (x)x = 0. The quartic terms then
automatically vanish.
(i) = (i) We rewrite the relationV (x)?x = 0 with x replaced bysx + ty + uz for
s,t,u € Randx, y, z € R", to obtain
F=[sM(x)+tM(y) +uM(@)]*(sx + ty +uz) =0,
where we used linearityF must vanish for alk, z, u, and therefore so must its derivative:
a3F
0s50tou

where we have combined terms using the symmetry reladgrn)y = M (y)x.
(i) = (iv) Let g¢(x) = x + §M(x)x for anyk € Z. Then

=2MxX)M(y)z + M(y)M)x + M(z)M(x)y) =0,

s,t,u=0

[ k l I
gr(gi(x)) =x + EM(X)X + EM <x + EM(x)x) (x + EM(x)x)

2

I+k ki ki

=X+ = M)x + ZMEME)x + = MM @)X M (0)x
I+ k ki?

=x = Mx — [M(x)M (x)M (x)x + M (x)M (M (x)x)x]

I+k
=x+ %M(x)x.
Thereforeg, og; = gr4;. On the other hang; = f andgo = id. This implies thafg, = f*.
(iv) = (i) Note that the relatiorf* = x+§M(x)x holds for any integek, in particular
for k = —1. This implies thatf ~* is quadratic, and thus (i). O
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Definition 2.2. Let f : R" — R” be given, in standard form, by(x) = x + %M(x)x. If
f satisfies any of the conditions of lemma 2.2, we will say tfias a quadratic shear.

A simple family of quadratic shears is determined by any vegcterR" and a symmetric
matrix P such thatPv = 0 according toM (x)y = (xT Py)v, for then

M(x)*x = (x"Pv)(x" Px)v =0.

We will see that, at least in the case= 3, this is the most general quadratic shear. Moser’s
normal form for symplectic, quadratic maps [3] shows that the higher-dimensional case is
not quite this simple. From now on, we will concentrate on the special cas@.

Theorem 2.1.A function f : R® — RS is a quadratic shear irR? if and only if there is a
vectorv € R® and a3 x 3 symmetric matrixP such thatPv = 0 and

fx)=x+ %(xTPx)v.

Proof. Since f is a bijection, we can define a new functign: 2 — $? on the unit
two-dimensional spher§? c R3, in the following way.

_f)
|f ol

Using standard theorems of algebraic topology [24], we can argue thas either a fixed

point or an antipodal point (a point such thgtr) = —x). In any case, there is a constant

K € R\ {0} and a vectong # 0 such thatf (xg) = Kxo. We will show thatk = 1. Note

that xo satisfies the following

g(x)

f(x0) = Kxo = x0 + $M (xo)xo,
KZ
F K x0) = x0 = Kxo — 7M(xo)xo~

These imply that

2
Kxo—x0= %M(xo)xo = 7M(xo)xo
so thatk? = 1. In fact, we can show thak = 1: sincef is a bijection,f(%xo) #0
implies thatM (xg)xo # —4xo. We conclude thaf (xg) # —xo which implies thatk # —1
which leaves the only optio&A = 1.
It is clear that M(xg)xo = 0. Without loss of generality, we can assume that
xo = e1 = (1, 0,0). Note thatM (e;) must have the form

M(e) =(0 y1 y2)

where y1, y» € R3. This fact, together with (iii) of lemma 2.2, implies that the matrix
M (e1)? = 0, and a simple calculation then implies thatand y», must be parallel, or one
of them must be zero. Therefore, we can perform a linear change of coordinates leaving
fixed, to eliminated the third column @f (e;). Then the second component)afin the new
coordinates must vanish, since the relatidiie;)? = 0 still holds in the new coordinates.
Therefore, the map has the explicit form

X1 X1 a (2 [ vy 2 (M
flx])=1x)+xx2{0]+ 52 p2 | +x2x3| v2 | + ?3 n2 |-
X3 X3 B u3 V3 n3
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Let My = M(e1), Mo = M(ep) and M3 = M (e3) wheree, = (1,0,0), e, = (0,1, 0) and
e3=(0,0,1). Itis easy to see that

0O « O
Mlz(o 0 o),
0 g O

o pu1 o
Mo=|0 p2 v,

B 3 v3

0 vi m
Mz=|0 v2 n2].
0 vz n3

To finish the proof, we need to show that the column veciors, n and («, O, 8) of
M1, M, M3 are parallel to each other. We will show step by step that several of the entries
are zero. We have two cases.

e B # 0. Using lemma 2.2 we conclude tha¥/Ze; + M1 Mzes = 0. This implies that
n2 = 0. We also have tha¥$ = 0, sov, = 0 andnz = 0. The conditionM2e, = 0 implies
that u, = 0 and this together withi3 = 0 implies thatvs = —a. Using the equation
MaMses + 2M2e, = 0 we find thaty; = 0. Using M3 = 0 andM2e, = 0, we find that the
column vectors of\f, are parallel, and the rest is clear.

e 8 =0. The conditionM3 = 0 implies thate = 0, v3 = —up anduz+vpusz = 0. The
condition M3 = 0 implies thatyz = —v, andv2 — o, = 0. On the other handyf2e, = 0
implies thatpy s + pnavy =0 andM§e3 = 0 implies thatv;n, — n1v, = 0.

So it is enough to show that;v, — viuo = 0 andviv, — niue = 0. Clearly, ifn, =0
thenu, = 0 and we would be finished. So, we can assumeijhat 0.

If n2 # 0thennyuy = n1v§/n2 = v1vy. If v, = 0 thenu, = 0 and we would be finished.
Assume thatv, ;ﬁ 0 and n2 75 0. This |mp||es thatuj_l)z = Mluzng/vz = —,Ll,g\)j_?]z/\)z =
13v1n2/v3 = pav1. O

and

3. Quadratic symplectic maps

In this section we use the characterization of quadratic shears in lemma 2.2 to give an
alternate proof of the result of Moser [3] for quadratic symplectic maps. Recall that a map
f is symplectic ifw(Dfv, Dfv') = w(v,v’) for all vectorsv, v’ € R wherew is the
standard symplectic form (v, v') = v7 Jv' and J is the 21 x 2n matrix,

(5.

Theorem 3.1.Let f be a quadratic symplectic map &%, w). Thenf can be decomposed
asf = ToS whereT is affine symplectic anflis a symplectic quadratic shear. Furthermore,
if S is any symplectic quadratic shear, then there is a symplectic linear insipch that
roSorYg, p) = (g +VV(p), p) for some cubic potential .

Proof. Let » = f(0) and L = Df(0). Clearly L is a symplectic matrix and if we
let T(x) = Lx + b thenS = T71o f is a symplectic quadratic map in standard form,
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ie. Sx) =x+ %M(x)x, where M (x) is linear inx and satisfies the symmetry property
M(x)y = M(y)x. ThenS is symplectic providing

(I +M)"TU+ Mx) =J.

Homogeneity ofM (x) implies that

M) =J"Mx), @
and

M@)TIMx) =0. (3)
Using (2) in (3) gives 6= M(x)T JM(x) = JTM(x)M (x), and since/ is nonsingular this
implies

M(x)%2=0. 4)

Then lemma 2.2 implies theft is a quadratic shear.
To finish the proof, we follow Moser [3] and define the null spaceMx) in the
following way
N=NM)={yeR?”: Mx)y =0,Vx e R?"} = {y e R?" : M(y) = 0}.

Recall [25] that thew-orthogonal complement of a subspage c R? is defined by
E+ = {v e R” : 0wk, v) = 0,Yv € E}. We will show thatAN* ¢ N. For that
purpose, we will use the following fact

MM (x)y = M(x — y)’z2 =0 (5)

that follows from lemma 2.2, linearity and symmetry.

Let u € Nt andx € R?. Now for anyy € R?, (5) implies thatM (x)y € N.
Thereforew(y, M(x)u) = yTIM@x)u = —y"Mx)TJu = —w(M(x)y,u) = 0. This
implies thatM (x)u = 0 and hence: € N. Standard theorems in symplectic geometry (cf
[25]) imply that it is possible to find a Lagrangian spa€esuch thatv*- c F- = F c N
and a symplectic linear transformatiansuch that

AMF)={(g,p) eR" xR": p=0}

Clearly, if S(x) =1 + %M(x)x is a symplectic quadratic shear, then sdis 1 0 S o A~ L.
Assume tha(x) = I+1M(x)x. Thenr(F) C N (M). Therefore for allg, p) € R" xR",
M(q, p)(q. p) = M(q, p)(0, p) = M(0, p)(q, p) = M(O, p)(0, p).

Since, in general, the matriX (0, p) can be written im x n blocks as

A(p) B(P))
C(p) D)’

then M (O, p)(g,0) = 0 implies A(p) = C(p) = 0. Moreover, (2) impliesD(p) = 0 and
B(p)T = B(p). Thus finally we see that

M(q, p)(q, p) = (B(p)p,0)

whereB(p)p is a gradient vector field. Therefore there exists a cubic poteWitglch that
VV(p) = B(p)p. 0

M@m=<
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4. Normal form in R3

In this section we give normal forms for a quadratic diffeomorphigmf R? that preserves
volume and has a quadratic inverse. Now lemma 2.2 implies that if wk detf(0) and
L = Df(0), andT(x) = Lx + b, then the maps = T-1 o f is a quadratic shear. Then
theorem 2.1 implies thag is of the formS(x) = x + 2(x” Px)v wherev e R® and P is a
symmetric matrix such thaPv = 0. Depending on the relation betweénand v, we have
three possible cases; these can be distinguished by considering the space

Z(v, L) = sparv, Lv, sz}.

Theorem 4.1.Let f : R® — R3 be a quadratic volume-preserving diffeomorphism. Tlien
can be written as the composition of an affine nfapnd a quadratic shea$, f =T o S,
where S(x) = x + %(xTPx)v, v € R® and P is a symmetric matrix such thatv = 0.
Moreover, f is affinely conjugate to one of three possible normal forms, depending on the
dimension ofZ (v, L):

(i) dimZ(v, L) = 3. The mapf is conjugate to

<a+tx—ay+z+Q(x,y))

X
y

wheret and o are the trace and second trace bf and Q(x, y) = ax? + bxy + cy?is a
guadratic form.
(i) dimZ(v, L) = 2. The mapf is conjugate to

(xo+ax+y+Q(x,z)>

(6)

Yo — Bx
Z0 + %z
(i) dimZ(v, L) = 1. The mapf is conjugate to
xXo+ax + Q(y,2)
( yo— 21z ) .
20+y+Bz

Proof. We know thatf = L(x + %(xTPx)v) + b, and Pv = 0. To obtain the first normal
form, perform a linear change of coordinates= U&. Since the vectors, Lv, and L?v
are linearly independent, the transformatigncan be defined by the following equations

1

U v=oe3 Ues=v
ULy = e1 Uey = Lv
U lL%y = er+Te; Ue, = L% —tLv

where, as we will see below, we will choogse= Tr(L). In the new coordinates the map
becomes

£ =UfUE)
=U'b+U'LUE + 3" UTPUEU 'Ly
=& +U'LUE +e10(5, )

where Q(&1, &) = 36/ UT PU&,). Note thatQ(£, es) = 3(67UT Pv) = 0, so in the new
coordinates the quadratic terms depend only on the first and second components. Moreover,
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in this coordinate system
U_lLUel =U1L% = er+ Teq
U LUe, = U Y (L% — tL%)
U LUes=U"1Lv =e;.
The second equation can be simplified by noting that the characteristic equation for the
matrix L is satisfied byL itself, and soL® — tL? + 6L — I = 0, wheret = Tr(L)
and o = Tra(L), the ‘second trace’ of the matrixX, thus we obtainU 1LUe, =
U~YI — oL)v = e3 — 0e1. Thus we obtain
T —0o 1
ULy = (1 0 o).
0O 1 o0
Upon reverting to(x, y, z) as the names for the coordinates we obtain

X0 tx—oy+z+0(x,y)
Utf(U©x) = <y0> + ( X ) .

20 y
To simplify this map further, we can conjugate, using the translation

(x,y,2) = (x,y + Yo, 2 + Yo + 20),

to a map withxg = «, yp = 0 andzg = 0. This is the promised form.

For the second case, assume théab = «Lv — v, for some nonzerex and 8. This
implies that the characteristic polynomial fbrfactors agL—1/1)(L>—aL+B1) = 0, and
therefore, sincd. is nondegenerate, there exists a veeto¢ Z(v, L) such thatLw = 1w.

B
We define the following change of coordinates.

U71v262 Uey=v )
Ullv=1e Ue; = Lv (8)
U71w=€3 Ues=w (9)

As before, we note that in the new coordinates the quadratic term satKfiest) = 0, so
in the new coordinates the quadratic terms depend only on the first and third components.
Moreover in this coordinate system we obtain

a 1 O
ULU = (—,3 0 o).
0 0 3
This implies the form for the second case.
For the third case, assume that = ov. Note that there exists a vectar ¢ Z(v, L)

such thatZ(w, L) & Z(v, L) = R3. In fact, we can also find a constaft such that
L?w — BLw + ‘%w = 0. We define the following change of coordinates.

Uty = e1 Uer1=v
U tw = e Uer =w
U lLw = e3 Ues = Lw.
As before, we note that in the new coordinates the quadratic te@ds £) = 0, so in

the new coordinates the quadratic terms depend only on the second and third components.
Moreover in this coordinate system we obtain

a 0 O
U—lLU=<o 0 —%).

01 8
This implies the form for the last case. O
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5. Dynamics

The dynamics of the second and third cases of theorem 4.1 are essentially trivial. In case
(ii), the z dynamics decouples from the, y) dynamics. There are four special cases.

e |B] # 1. The planez = Bzo/(B — 1) is invariant, and is either a global attractor
(18] > 1) or repellor {8] < 1). On the plane the dynamics is linear.

e 8 =1,707# 0. All orbits are unbounded.

e 8 =1, z0 = 0. Every planez = c is invariant, and the dynamics reduces to a
two-dimensional, area-preservingehbn map on each plane.

e § = —1. Each planes = ¢ is fixed underf2. Restricted to a planef? is the
composition of two orientation-reversingeéHon maps.

For case (iii) the(y,z) dynamics is linear and decouples from tkedynamics.
Generically, there is an invariant line on which the dynamics is affine. The invariant
line can have any stability type.

5.1. Generic case

Equation (6) is the only nontrivial case. In general this map has six parameters, one from
the shift, two from the linear matrix (the two coefficients of its characteristic polynomial)
and the three coefficients ad. However, generically, two of these parameters can be
eliminated.

Write the quadratic form a@ (x, y) = ax?+ bxy + cy?. Genericallya + b+ ¢ # 0 and
we can we can apply a scaling transformation toaseth + ¢ = 1. Similarly if b+2c # 0
the parametes can be eliminated using the diagonal translation

x,y, 200> (x+y,y+vyv,2+y), y =0/(b+20).
In this way, we obtain the final, generic form
x' o + 1x + 7+ ax? + bxy + cy?
<y/>_( X ) a+b+c=1 (20)
y

There are four parameters in the system. Evem-f b + ¢ = 0 and/orb + 2¢ = 0, then
other normalizations can be chosen to eliminate two of the parameters in (6). We will not
study these special cases.

/

Z

5.2. Periodic orbits

Generically we can assume that- b + ¢ = 1 for the quadratic form in (6). The map (6)
has at most two fixed points

x=y=z=xi=%(—f+0i\/W) (11)

born in a saddle-node bifurcation @t — 0)?> — 4o = 0. The characteristic polynomial of
the linearized map at the fixed points is

B2 4s2a—1=0
where the trace and second trace are

tr =17+ (Q2a+b)xy
Sy =0 — (2c+b)xi.
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1<A,=,

0<A=A,<1

—1<A=A,<0

Figure 1. General stability diagram for a volume-preserving map.

Note that
ty —s4 ==+ (T—O’)2—4Ol
ty — s+ =+(a— o)V (Tt —0)?—4a.

The corresponding eigenvalues are illustrated in figure 1. It is easy to see (using the
symmetric polynomials) that there are two lines(ins) space where the stability changes:
the saddle-node line = s corresponds to an eigenvalue 1, and the period-doubling line
t +s = —2 corresponds to an eigenvaluel. At the pointt = s = —1 where they cross
the eigenvalues are necessarilyl, —1, 1). Note also that wher1 <t =5 < 3 thereis a
pair of eigenvalues on the unit circle. There are two other curves of interest in the stability
plane—these correspond to a double eigenvalue A, = r, or

2r+1/r2 =1t r2+2/r =s.

This gives the two curves shown in figure 1. One has a cusp=ats = 3, where we
have the triple rook = 1. The second crosses the saddle-node and period-doubling lines at
t = s = —1. These are the two codimension-two points.

A fixed point with a one-dimensional unstable manifold is caligoe Aand one with
a one-dimensional stable manifold is calligghe B The saddle-node and period-doubling
lines divide the plane into quadrants which alternate betweenAyaed B.

Having a pair of fixed points, one dfype A and one oftype B has interesting
consequences for our map. For instance, the two-dimensional manifolds serve as partial
barriers to transport. Generically, they intersect along a one-dimensional manifold. We
have computed numerically some pairs of two-dimensional stable and unstable manifolds.
As an example, see figure 2.

We have noticed that varying the parameter makes the one-dimensional intersection
bifurcate. Further investigation in this direction is the subject of future papers and a more
complete treatment will appear elsewhere.

The two fixed points (11) are born on the line= s and move to opposite sides of this
line for (r — 0)? > 4a (x4 is always on the right side). 1z — c| is small, they are on the
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Figure 2. Two-dimensional stable and unstable manifolds for the parametetsc = 0.5,
b=0.0,¢ =0.0, 7 =-0.3 ando = 0.0.

same side of the period-doubling line, so that one is #m@ad the other typ®; however,
when this parameter is large enough they can be on opposite sides, and therefore of the
sametype This is determined by the sign of

Sty +ty+2=24+17+ 0+ 2(a — c)x+.

Whena = ¢, we haver, = s; so that the eigenvalues of the two fixed points are reciprocal
(see section 5.3 for the explanation of this).

Remember that, generically and without loss of generality, we can assume th&t
Therefore, we can plot stability diagrams for different valuesradind «. The stability
diagram in the(t, @) plane for thea = ¢ case is shown in figure 3. A more general case
is shown in figure 4.

Periodic orbits can be studied by converting the map into a third-order difference
equation. Let(x,, y;,7z),t = 0,1,... be a trajectory of the map (6), then the map can
be written as

X1 =a+TX —0ox1+ X2+ Q(x, x,-1).
Now it is clear that if this system of quadratic equations has a finite number of solutions,
then there are at most 2We can rule out this degeneracy is most cases.

Lemma 5.1. Suppose: and ¢ are not both zero, and let. be the two (possibly complex)
solutions ofQ(u, 1) = 0. Then ifu’;u’i‘k # 1 for some integeb < k < n, the number of

fixed points off” for the map (6) is at mos2".

Proof. The ‘nonlinear alternative’ [26] asserts that the number of complex solutions, counted
with multiplicity, of a system ofn polynomial equations im variables is precisely the
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-10 10

Figure 3. Stability diagram for the reversible caget b + ¢ = 1,a = ¢ ando = 0. There
are no fixed points in the shaded region. The complex eigenvalues for the fixedxpoare
shown. Those ok_ are reciprocal to those of; .

product of the degrees of the polynomials providing the system of equations obtained by
discarding all terms but those of the highest degree in each equation has only the trivial
solution. For our case, the resulting system is

Oxy, xi-1) = axt2 + bx;x;—1 + cxtz_l =0, t=,1...n, x, = xg.
If any one of thex, = 0, then they are all zero, unlegs= ¢ = 0. Otherwise the general

nonzero solution to this system is = p.x,_1, whereau? + bu + ¢ = 0. Settingx, = xo
requiresp® u’ = 1, wherek + 1 = n. O

For example, typically there are at most four fixed pointséf giving a single period-
two orbit in addition to the two fixed points of. However, there could be infinitely many
period-two orbits or none whem, = 1, givinga = c or u2 =1, givingb = £(a +c).
As an example, whem = ¢ = b/2 ando +1t+2 = 0, the line(x, §—x, x) — (§—x, x, §—x)
has period two wheré is defined by

a+(1+0)8+as’>=0.

5.3. Reversibility

A map is reversible if it is conjugate to its inverse by a diffeomorphignthat is an
involution, thus

hof=ftoh, =1
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Figure 4. Stability diagram fora = f%, b=1c= % o = 0. Full curves correspond to
changes in the stability of;, while broken curves correspond ta.

Some of the quadratic maps that we have considered have a reversor. Assume the generic
casea + b + ¢ # 0 (or equivalentlyQ(1, 1) # 0, whereQ is the quadratic form given in
(6)). It is easy to see that, if = ¢, then the map (6) has a reversor given by

Z+n
h(x,y,z)=—<y+n>-
X +n

wheren = (t —o)/(a + b+ ¢).

Note that whenf is reversible and has fixed points, then the two fixed points have
reciprocal eigenvalues—so if one is type A, the other is type B. Moreover, if the eigenvalues
are complex, then the rotation rates have the same magnitudes at the two fixed points.

Lemma 5.2.Let f be a quadratic map in normal form (6). Assume, generically, that the
quadratic form satisfie® (1, 1) # 0 and(r —o)? # 4o Q(1, 1) Thenf is smoothly reversible
if and only if Q(x, y) = Q(y, x).

Proof. Without loss of generality, we assume th@t(1,1) = a + b+ ¢ = 1 and
(t —0)2 —4a # 0. Extend the map tC3. The imposed conditions imply that the
map f has exactly two fixed points i€®. Supposef is reversible and has a fixed points
x4, then it is easy to see thatx.) are also fixed points. In additio®f (x4) is conjugate
to Df H(h(x1)).

Since there are two fixed points, eithig.) = x4 or h(x+) = x=. Now the eigenvalues
are invariant under a diffeomorphism, so in the first case the eigenvalugg(@f.) must be
the same as those @ f ~(x,), and similarly forx_. This can only happen when = s..
but this impliesx, = x_, which cannot happen by assumption.
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We conclude thati(x;) = x_. This implies thatty = s, which givesa = ¢, or

O(x,y) =0y, x).
The other direction is proved by a simple computation, as described above. [

Reversibility simplifies finding orbits of a map. Orbits that are invariant under
are called symmetric, and as is easy to see, they must have points on the fixed set
Fix(h) = {x € R®: h(x) = x}. In our case this is the line + z = —n, y = —n/2, so a
numerical algorithm for finding for symmetric orbits involves a one-dimensional search.
Similarly, if the stable manifold of one of the fixed points intersects(/Bix then
the intersection point is on a heteroclinic orbit, for suppese Fix(h) N W*(xy), then
x € W*(xy), becauséi(f"(x)) = f"(h(x)) = f"(x), SO
Iim f"(x) =x; = lim A(f"(x)) = lim f7(x) =h(xy) =x_.
n—00 n—00 n—00
Furthermore, suppose the stable manifold is two dimensional, and has the normalavector

at a point on Fixk), thenDh(x)n is the normal to the unstable manifold at this point. This
implies that the curve of heteroclinic orbits is tangent to the directionDh(x)n.

5.4. Bounded orbits

For the Henon map, it is well known that the set of bounded orbits is contained in a square.
For the volume-preserving case, we will show that an analogue of this result also holds
providing the quadratic forn® is positive definite.

Theorem 5.1.1If Q is positive definite then there iska> 0 such that all bounded orbits are
contained in the cubg(x, y, z) : x| < «, |y| < «, |z] < «}. Moreover, points outside the
cube go to infinity along the ¥ axis ast — o0 or the z-axis ast — —oc.

Proof. We start by writing the map in third-difference form as
Xpr =0+ TX —0X—1 + X2+ Q(x, X-1).
Recall that a quadratic forr@ (x, y) = ax?+bxy +cy? is positive definite iffa > 0, ¢ > 0,
andd = ac — b*/4 > 0. We will use the bounds obtained from completing the square:
d d
Ox,y) = sz +c(y + bx/2c)% > sz,

d d
= (x + by/2a)* + ;yz > ;yz.

There are three cases to consider, depending upon the relative sizes,0f, andx,_»:
e |x;| > max(x;_1], |x,_2|). The difference equation then gives

Xip1 2 Q(xp, xi-1) — lof — [Tx:| — |ox;—1] — [x;—2]
d 2
> P (el + ol + Dlx| — e,

Now sinced/c > O there is a constant; > 0, depending ow, 7, 0, a, b, andc such that
when|x;| > k1, we have

d 3
e (Il +lol+ Dlx | — lal > |x],

In this case, we have,,.; > |x,|. Noting that we then have, ;1 > |x;| > |x;_1], we can
recursively apply this result to show that the sequence

Xidk > Xpph—1 > -0 > x| > K1
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is monotone increasing. In fact, this sequence is unbounded; otherwise it would have a
limit x, - x* > k1, and this point would have to be a fixed point= y = z = x* of the
map. However, there are at most two such points,and a simple calculation shows that
k1 > x4, SO both fixed-point points are excluded.
e |x;,_2| > max(x|, |x;—1]). Inverting the difference equation and shiftingdoy one
yields

X 3=X —a—Tx-1+0x_2— Q(x-1,X-2).

Thus we have

d
2
X—3 < —Zx,_z + x| + o] + |Tx-1] + |o X, 22|

d
< _;x,{z + (tl + lo| + Dlx 2| + ||
< _|X[,2|,

when |x,_»| > k2, for a constank, chosen as before, but wiith/c replacingd/a. This
implies that the sequenog_; < x;_ 11 < --- < —|x;_2| iS monotone decreasing, negative,
and unbounded.

o |x;_1| = max(|x;|, |x.—2|). In this case we will see that the orbit is unbounded in both
directions of time. For the forward direction, note that

Xi41 2 gxtz,l =zl +lo| + Dlx;-a| — ||
> [x—al,
when |x,_1| > k2. Thusx,41 > |x;—1] = |x/], which is the situation covered by (i), and we
obtain a monotone increasing sequence, providing > «1. Alternatively, note that
55 <~ Tx (el ol + Dl + ol
< —l|x;-al,

when |x,_1| > k1. This givesx,;_3 < —|x,_1| < —|x;_2|, SO we are in the situation covered
by (ii), which implies that the sequence approaches providing |x,_3| > «».

In conclusion, we have shown that an orbit is unbounded eitherast-oco providing it
contains a poing, such thatx,| > max(x, k2) = «. Note thatx; is a monotone decreasing
function ofd/c, so therefore we can defineby usingd/ max(a, c):

maxXa, ¢ o
k= % (ITI + o] +2+\/(|T| + o] +2)2+4|d_| max(a,c)) .
Finally, we investigate the asymptotic direction of an unbounded orbit. Recall that
Y = x,—1 andz, = x;_». Suppose thatx,| > |y,| > |z;| > «, then each of the variables is
eventually positive, so the orbit moves to infinity in the positive octant. Moreover, once all
components are positive, we have

X+l Oxs, y1) n a+TX —0oy + 2

Xy X; Xy
d ||
> —x = (tl o]+ - — > o0
c Xt
So the ratiosy, /x;, = x,_1/x; andz,/y, = x,_2/x,_1 go to zero, and the orbit approaches
the positivex-axis ast — oo. Similarly if |z,| > |y| > |x]| > «, then eventually all
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the components are negative, and so the orbit moves to infinity in the negative octant as
t — —oo. Once all components are negative, we have
Zr—=1  X-3
2t B X2
_ _Q()’tth) n X —a—1Ty +0z
Zt 2t

d ||
<—lz|+ (| + o]+ + — = —o0.
a |z

This implies the orbit moves too along the negative axis. O

6. Conclusions

We have studied a family of volume-preserving maps with the property that all entries
are quadratic polynomials. We showed that these conditions imply that such maps are
polynomial diffeomorphisms. Then we restricted ourselves to quadratic maps whose inverse
is also quadratic. The class of maps studied is related to an old conjecture about polynomial
maps called the Jacobian conjecture.

A definition of quadratic shears was introduced and a characterization was given in
general. A further characterization in three-space was applied to find a normal form for the
family. In three-space, the form of the generic case is similar in form to the area-preserving
Hénon map and, generically, the map has two fixed points that can be sjge®A or
type B

In addition, using our definition of quadratic shear and its characterization, we were
able to give a simpler proof of a theorem of Moser classifying quadratic symplectic maps.

The normal form, (6), does not seem to have received much study. Gonckeako
[27, 28] found maps of our form for the return map near a quadratic homoclinic tangency.

There remain many enticing open problems. For example, we plan further computations
to visualize the stable and unstable manifolds of the fixed points. Often these manifolds
intersect, enclosing a ball; however, this is not guaranteed. Moreover, the heteroclinic
intersections, which are generically curves, can fall in many homotopically distinct classes.
We suspect that there are bifurcations between these classes, and that which occurs will
depend, for example, on the complex phase of the eigenvalue of the associated fixed point.
Heteroclinic orbits can be found most easily for the reversible case, as an intersection should
occur on the fixed set of the reversor.

Another problem of interest is to obtain a characterization of quadratic shears in higher
dimensions similar to the one we obtained in three dimensions. At this point, normal forms
could be obtained using techniques similar to the current paper.

Finally, as we discussed in the introduction, one of our main motivations for
characterizing the quadratic volume-preserving maps is to study transport. If the two fixed
points have disparate types, and their two-dimensional manifolds intersect on a circle, then
transport can be localized to ‘lobes’ similar to the two-dimensional case [18]. However, as
figure 2 shows, the intersections can be curves that spiral from one fixed point to the other.
We plan to characterize transport for such cases. The existence, for the definite case, of a
cube containing the bounded orbits (cf theorem 5.1) will prove useful in this study.
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