
J Sci Comput (2009) 38: 316–330
DOI 10.1007/s10915-008-9240-6

A Fast Direct Solver for a Class of Elliptic Partial
Differential Equations

Per-Gunnar Martinsson

Received: 20 September 2007 / Revised: 30 May 2008 / Accepted: 12 August 2008 /
Published online: 30 August 2008
© Springer Science+Business Media, LLC 2008

Abstract We describe a fast and robust method for solving the large sparse linear systems
that arise upon the discretization of elliptic partial differential equations such as Laplace’s
equation and the Helmholtz equation at low frequencies. While most existing fast schemes
for this task rely on so called “iterative” solvers, the method described here solves the linear
system directly (to within an arbitrary predefined accuracy). The method is described for
the particular case of an operator defined on a square uniform grid, but can be generalized
other geometries. For a grid containing N points, a single solve requires O(N log2 N) arith-
metic operations and O(

√
N logN) storage. Storing the information required to perform

additional solves rapidly requires O(N logN) storage. The scheme is particularly efficient
in situations involving domains that are loaded on the boundary only and where the solution
is sought only on the boundary. In this environment, subsequent solves (after the first) can
be performed in O(

√
N logN) operations. The efficiency of the scheme is illustrated with

numerical examples. For instance, a system of size 106 × 106 is directly solved to seven
digits accuracy in four minutes on a 2.8 GHz P4 desktop PC.

Keywords Fast solver · Direct method · Discrete Laplace operator · Hierarchically
semi-separable matrix · H-matrix · Fast matrix algebra · Fast matrix inversion

1 Introduction

This paper describes a method for rapidly solving large systems of linear equations with
sparse coefficient matrices. It is capable of handling the equations arising from the finite
element or finite difference discretization of elliptic partial differential equations such as
Laplace’s equation, as well as the systems associated with heat conduction and random
walks on certain networks. While most existing fast schemes for such problems rely on
iterative solvers, the method described here solves the linear system directly (to within a

P.-G. Martinsson (�)
Department of Applied Mathematics, University of Colorado at Boulder, Boulder,
CO 80309-0526, USA
e-mail: martinss@colorado.edu

mailto:martinss@colorado.edu

J Sci Comput (2009) 38: 316–330 317

preset computational accuracy). This obviates the need for customized pre-conditioners,
improves robustness in the handling of ill-conditioned matrices, and leads to dramatic speed-
ups in environments in which several linear systems with the same coefficient matrix are to
be solved.

The scheme is described for the case of equations defined on a uniform square grid.
Extensions to more general grids, including those associated with complicated geometries
and local mesh refinements are possible, as described in Sect. 6.

For a system matrix of size N × N (corresponding to a
√

N × √
N grid), the scheme

requires O(N log2 N) arithmetic operations. For a single solve, only O(
√

N logN) storage
is required. Moreover, for problems loaded on the boundary only, any solves beyond the
first require only O(

√
N logN) arithmetic operations provided that only the solution on the

boundary is sought. For problems loaded on the entire domain, it is still possible to perform
very fast subsequent solves, but this requires O(N logN) storage. Numerical experiments
indicate that the constants in these asymptotic estimates are quite moderate. For instance, to
directly solve a system involving a 1000 000 × 1 000 000 matrix to seven digits of accuracy
takes about four minutes on a 2.8 GHz desktop PC with 512 Mb of memory. Additional
solves beyond the first can be performed in 0.03 seconds (provided that only boundary data
is involved).

The proposed scheme is conceptually similar to a couple of recently developed methods
for accelerating domain decomposition methods such as nested dissection, [8] and [4]. The
original nested dissection algorithm reduces a problem defined on a two dimensional do-
main in the plane to a sequence of problems defined on one dimensional domains. These
problems involve dense coefficient matrices, but the reduction in dimensionality results in
a decrease in the cost of a direct solve from O(N3) to O(N3/2) for a grid containing N

points. In [8] and [4] it is observed that these dense matrices in fact have internal structure,
and that by exploiting this structure, it is possible to further reduce the computational cost.
The scheme proposed here is similar to the schemes of [4, 8] in that it relies on a combination
of a dimension-reduction technique, and fast algorithms for structured matrices to solve the
resulting sequence of dense problems. However, it uses a different technique for dimension
reduction, and a much simpler format for working with structured matrices than previous
schemes. Its principal advantage over previous work is that what it actually computes is a
sequence of Schur complements for successively larger parts of the computational domain.
As a consequence, the scheme directly computes the solution operator that maps a boundary
load to the solution on the boundary. Having access to this operator enables very fast solves
in environments where a sequence of equations on the same computational grid are to be
solved for a number of different boundary loads. The technique of hierarchical computation
of Schur complements also appears to lead to improvements in robustness over competing
methods.

A core advantage of the method of this paper, as well as the methods of [8] and [4], over
existing methods such as multigrid or nested dissection, is that they combine the robustness
of direct solvers with the almost linear asymptotic CPU time requirement of existing iterative
solvers. Moreover, like all direct solvers, they perform exceptionally well in environments
involving multiple right hand sides.

It is not fully understood what the exact range of applicability of the scheme proposed
here is. It certainly works for positive definite symmetric matrices that arise upon the dis-
cretization of elliptic differential equations such as Laplace’s equation or the equations of
elasticity [2, 4]. Numerical experiments indicate that it also works for non-positive prob-
lems such as those arising from the discretization of the Helmholtz equation at low and
intermediate frequencies, as well as for many non-symmetric problems such as those aris-
ing from the discretization of convection-diffusion problems (as long as the diffusion term

318 J Sci Comput (2009) 38: 316–330

is not too small). Moreover, it works for discrete Laplace operators on regular networks in
two dimensions with no apparent constraints on regularity in the coefficients (see Sect. 7.2
for details).

The paper is structured as follows: Sect. 2 introduces a model problem that will be used
to describe the method. Section 3 describes a very simple O(N2) direct solver. Section 4 de-
scribes some known algorithms for performing fast operations on matrices with off-diagonal
blocks of low rank. Section 5 describes how the O(N2) scheme of Sect. 3 can be acceler-
ated to O(N log2 N) using the methods of Sect. 4. Section 6 describes how the technique can
be modified to accommodate more general grids. Section 7 gives the results of numerical
experiments. Section 8 summarizes the results presented.

2 A Model Problem

We will describe the fast direct solver in the simplest possible setting by showing how it can
be used to solve the linear system associated with the standard five-point stencil on a square
uniform grid. This linear system is a standard discretization of Laplace’s equation, but it can
also be viewed as a first principles model of, e.g., a random walk on the square grid. In this
section, we introduce some notation, and formally describe the system matrix.

Letting m denote a positive integer, we consider a (2m + 2) × (2m + 2) uniform square
grid, as illustrated in Fig. 1. As our model problem, we consider heat conduction on the
grid. We give Dirichlet boundary conditions by prescribing the temperature at the 8m + 4
boundary nodes, and seek to determine the equilibrium temperature at the (2m)2 internal
nodes. Supposing that all links between nodes have unit conductivity, the vector x of nodal
temperatures satisfies the equation

Ax = b, (2.1)

Fig. 1 The computational grid
for N = 36 (which is to say
m = 3)

J Sci Comput (2009) 38: 316–330 319

where A is the standard five-point stencil. Using the standard ordering of the nodes by
column (not the ordering shown in Fig. 1), A is a block matrix consisting of 2m × 2m

blocks of size 2m × 2m, as follows:

A =

⎡
⎢⎢⎢⎢⎣

D −I 0 · · · 0
−I D −I 0
0 −I D 0
...

...

0 D

⎤
⎥⎥⎥⎥⎦

, where D =

⎡
⎢⎢⎢⎢⎣

4 −1 0 · · · 0
−1 4 −1 0
0 −1 4 0
...

...

0 4

⎤
⎥⎥⎥⎥⎦

. (2.2)

The load vector b has contributions from the prescribed boundary data, and from any exter-
nal heat source applied directly to the internal nodes (if applicable).

We will sometimes consider the more general system matrix A obtained by assigning
different conductivities to the different links in the grid. We call such a matrix a “discrete
Laplace operator” on the grid. Letting k denote one of the (2m − 2) × (2m − 2) nodes that
do not connect to the boundary, the action of the discrete Laplace operator on x at k is

[Ax](k) =
∑
j∈Bk

λkj

(
x(k) − x(j)

)
,

where Bk = {ks, ke, kn, kw} is an index set marking the nodes to the “south”, “east”, “north”,
and “west” of the node k, respectively, and λkj is the conductivity of the link between nodes
k and j . (The standard five-point stencil in (2.2) is recovered by setting λkj = 1 for all
connected nodes k and j .)

Generalizations to discrete Laplace operators on other grids is described in Sect. 6, while
generalizations to matrices that arise upon the discretization of other elliptic differential
operators are described in Sect. 7.2.

3 An Exact O(N2) Direct Solver

In this section we describe a method for directly solving the linear system (2.1) that relies
on the sparsity pattern of the matrix only. In the absence of rounding errors, it would be
exact. When the matrix A is of size N × N , the method requires O(N2) floating point
operations and O(N) memory. This makes the scheme significantly slower than well-known
O(N3/2) schemes such as nested dissection [7]. (We mention that O(N3/2) is optimal in this
environment [11].) The merit of the scheme presented in this section is simply that it can
straight-forwardly be accelerated to an O(N log2 N) or possibly even O(N) scheme, as
shown in Sect. 5.

Ordering the N points in the grid in the spiral pattern shown in Fig. 1, the matrix A in
(2.1) has the sparsity pattern indicated in Fig. 2 for N = 100. We next partition the grid
into m concentric squares and collect the nodes into index sets J1, J2, . . . , Jm accordingly.
In other words,

J1 = {1,2,3,4},
J2 = {5,6, . . . ,16},

...

Jm = {(2m − 2)2 + 1, (2m − 2)2 + 2, . . . , (2m)2}.

320 J Sci Comput (2009) 38: 316–330

Fig. 2 The sparsity pattern of A

in (2.1) for N = 100

For κ,λ ∈ {1,2, . . . ,m}, we let Aκλ denote the submatrix of A formed by the intersection of
the Jκ rows with the Jλ columns. The linear system (2.1) then takes on the block-tridiagonal
form

⎡
⎢⎢⎢⎢⎢⎢⎣

A11 A12 0 0 · · · 0
A21 A22 A23 0 · · · 0
0 A32 A33 A34 · · · 0
0 0 A43 A44 · · · 0
...

...
...

...
...

0 0 0 0 · · · Amm

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4
...

xm

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

b1

b2

b3

b4
...

bm

⎤
⎥⎥⎥⎥⎥⎥⎦

, (3.1)

where x and b have been partitioned accordingly. The sparsity and block pattern of (3.1) for
m = 5 (equivalently, N = 100) is illustrated in Fig. 2.

The blocked system of (3.1) can now easily be solved by eliminating the variables
x1, x2, . . . , xm−1 one by one. Using the first row to eliminate x1 from the second row, we
obtain the following system of equations for the variables x2, . . . , xm:

⎡
⎢⎢⎢⎢⎣

Ã22 A23 0 · · · 0
A32 A33 A34 · · · 0
0 A43 A44 · · · 0
...

...
...

...

0 0 0 · · · Amm

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

x2

x3

x4
...

xm

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

b̃2

b3

b4
...

bm

⎤
⎥⎥⎥⎥⎦

, (3.2)

where

Ã22 = A22 − A21A
−1
11 A12

and

b̃2 = b2 − A21A
−1
11 b1.

J Sci Comput (2009) 38: 316–330 321

This elimination process is continued row by row until we obtain the following equation for
xm:

Ãmmxm = b̃m. (3.3)

Equation (3.3) is of size (8m− 4)× (8m− 4) and is solved directly to obtain xm. Then xm−1

is determined by solving the equation

Ãm−1,m−1xm−1 = b̃m−1 − Am−1,mxm.

The remaining xj ’s are computed analogously. To summarize the entire process:

(1) Ã11 = A11 and b̃1 = b1.
(2) for κ = 2 : m
(3) Ãκκ = Aκκ − Aκ,κ−1Ã

−1
κ−1,κ−1Aκ−1,κ

(4) b̃κ = bκ − Aκ,κ−1Ã
−1
κ−1,κ−1b̃κ−1

(5) end
(6) xm = Ã−1

mmb̃m

(7) for κ = (m − 1) : (−1) : 1
(8) xκ = Ã−1

κκ

(
b̃κ − Aκ,κ+1xκ+1

)
(9) end

We note that while all matrices Aκλ are sparse, the matrices Ãκκ are dense. This means
that the cost of inverting Ãκκ in each step of the algorithm is O(κ3). (The remaining matrix-
matrix operations involve matrices that are diagonal or tri-diagonal and have negligible costs
in comparison to the matrix inversion.) The total cost Ttotal therefore satisfies

Ttotal ∼
m∑

κ=1

κ3 ∼ m4 ∼ N2.

Remark 3.1 The matrix Ãκκ is the Schur complement of the submatrix Aκκ in the system
matrix of (3.1) obtained by eliminating all nodes interior to the nodes in the set Jκ . In
applications where data is prescribed and sought at the boundary only, Ã−1

mm is the essential
solution operator. For instance, suppose that in the heat conduction problem described in this
section, we are interested in computing the fluxes through the boundary nodes. Once Ã−1

mm

has been obtained, this computation can be executed in three inexpensive steps: (1) The
prescribed temperatures are mapped to the vector bm via a diagonal matrix. (2) The vector
bm is mapped to the equilibrium temperatures xm on the boundary of the computational grid
via application of Ã−1

mm. (3) The flux through each boundary node is computed by adding
the fluxes through each of the three bars that connect to it, which is easily done since the
temperatures of these nodes are known. This computation costs only O(N) operations, and
requires only the storage of the (8m − 4) × (8m − 4) matrix Ã−1

mm. Finally we note that by
multiplying the three linear operators associated with the three steps, we obtain the so called
“Dirichlet-to-Neumann” operator of the network.

4 Compressible Matrices and Fast Matrix Algebra

The most time-consuming part of the direct solver scheme described in Sect. 3 is the inver-
sion of a sequence of dense intermediate matrices (the matrices Ãκκ). In many applications,
these matrices have internal structure that enables the use of accelerated algorithms that

322 J Sci Comput (2009) 38: 316–330

rapidly perform the matrix inversion (to within a specified precision). In this section, we
will describe that structure, and give a simple algorithm for computing an approximation to
the inverse of such a matrix.

No claim is made that the methods described in this section are original; in fact,
they are primitive versions of more sophisticated algorithms such as those described in
[3, 9, 10]. A specific point of the paper is that a fast direct solver for many sparse matri-
ces can be obtained via these very simple techniques. However, it should be noted that these
techniques could easily be substituted by, e.g. the methods of [3] and that such a substitution
would likely result in a gain in computational speed, see Sect. 4.3.

4.1 Compressible Matrices

Roughly speaking, we say that a matrix is “compressible” if it can be tessellated into sub-
matrices in a pattern such as the one illustrated in Fig. 3, and each off-diagonal block in the
tessellation can be approximated by a low-rank matrix.

In order to give a precise definition of the term “compressible”, we let ε denote a com-
putational accuracy, and recall that a matrix B is said to have ε-rank k if

min
rank(Bk)=k

‖B − Bk‖ ≤ ε.

Equivalently, a matrix B has ε-rank k if it has the most k singular values larger than ε. We
let p denote the maximal rank allowed for the off-diagonal blocks, and we then define the
“compressibility” property recursively by saying that a square matrix A is compressible if,
upon partitioning it into four pieces of equal size,

A =
[

A11 A12

A21 A22

]
,

it is the case that A12 and A21 have ε-rank at most p, and A11 and A22 are “compressible”.

Fig. 3 Matrix tessellation. The
diagonal blocks have full rank,
while the off-diagonal blocks
have rank at most p

J Sci Comput (2009) 38: 316–330 323

An approximation to a compressible matrix can be stored using O(pN logN) real num-
bers, and a matrix-vector product involving a compressible matrix can be evaluated (approx-
imately) using O(pN logN) arithmetic operations.

Remark 4.1 For notational simplicity, we assume throughout the paper that the ranks of
all off-diagonal blocks are the same. It is however a simple matter to use adaptively tuned
ranks when implementing the algorithm. The numerical examples given in Sect. 7 are all
computed using variable ranks.

4.2 Inversion of Compressible Matrices

A recursive fast inversion scheme for compressible matrices can easily be derived from the
following formula for the inverse of a 2 × 2 block matrix:

[
A11 A12

A21 A22

]−1

=
[

X11 −X11A12A
−1
22

−A−1
22 A21X11 A−1

22 + A−1
22 A21X11A12A

−1
22

]
, (4.1)

where

X11 = (
A11 − A12A

−1
22 A21

)−1
.

From the formula (4.1), we immediately get the following recursive inversion scheme for
compressible matrices:

(1) function B = invert matrix(A)
(2) if (A is “small”) then
(3) Invert by brute force: B = A−1

(4) else

(5) Split A =
[

A11 A12

A21 A22

]
.

(6) X22 = invert matrix(A22)
(7) X11 = invert matrix(A11 − A12X22A21)

(8) B =
[

X11 −X11A12X22

−X22A21X11 X22 + X22A21X11A12X22

]
.

(9) end if
(10) end function

The efficiency of this algorithm is a consequence of the fact that the matrices A12 and A21

have low rank. As a result, the matrix-matrix multiplications that occur on lines (7) and (8)
in fact consist simply of a small number of multiplications between compressible matrices
and vectors. Moreover, the matrix additions in lines (7) and (8) are in fact low-rank updates
to compressible matrices.

If the ranks of the off-diagonal blocks do not grow larger than p as the computation pro-
ceeds, then the computational complexity of the scheme described above is O(p2N log2 N).
In the numerical experiments that we have performed, we determine the rank of each block
adaptively at each step of the computation; the observed ranks have in all practical experi-
ments been very small (cf. Table 2) and our CPU time measurements indicate O(N log2 N)

scaling with N of the direct solver.
Another way in which the computational scheme described here could fail is if errors ag-

gregate during the course of the computation. In the computational experiments that we have
performed, the errors appear to grow at worst as logN as the problem size is increased. Such

324 J Sci Comput (2009) 38: 316–330

error growth can very easily be dealt with by moderately decreasing ε as larger problems
are considered.

4.3 Hierarchically Compressible Matrices

The performance of fast methods for structured matrices can often be improved from
O(N log2 N) to O(N logN) or O(N). This is possible when the class of matrices under
consideration satisfies the stronger compressibility criterion that it is possible to express the
bases for the off-diagonal blocks hierarchically. In other words, it must be possible to express
the basis vectors used at one level in terms of the basis vectors used at the next finer level.
Using the matrix illustrated in Fig. 3 as an example, a basis for the column space of the block
labelled (4,5) is constructed from the bases for the column spaces of the blocks (8,9) and
(9,8). An approximation to a matrix satisfying this stronger compressibility condition re-
quires only O(pN) storage, and can be applied to a vector in O(pN) arithmetic operations.

An O(N) inversion scheme for the “hierarchically compressible” matrices that arise
when discretizing boundary integral equations in two dimensions is described in [12]. The
concept of “hierarchically semi-separable” matrices described in [3–6] also exploits hierar-
chically defined basis functions to achieve high performance, as does the H2-matrix frame-
work described in [1, 10].

5 A Fast Direct Solver

When the direct solver described in Sect. 3 is applied to a matrix A that arises from the
discretization of an elliptic partial differential equation such as the Laplace equation, the
intermediate matrices that arise in the computation are compressible in the sense described
in Sect. 4, see [2, 4] and Remark 5.2. As a consequence, the scheme can be accelerated
by replacing the dense matrix inversions by the fast matrix inversion scheme described in
Sect. 4.2. Since the cost of inverting Ãκκ at each step κ = 1,2, . . . ,m is then O(κ log2 κ),
the computational cost of the resulting scheme is

Ttotal ∼
m∑

κ=1

κ(logκ)2 ∼ m2(logm)2 ∼ N(logN)2.

This scheme requires O(N logN) memory to store all information required to approximate
the application of A−1. Such a scheme has been implemented and the computational results
are given in Sect. 7.

We note that the scheme is particularly memory efficient in environments where the
solution is sought only on the boundary of the domain, cf. Remark 3.1. In such situations,
the operators Ãκκ need not be stored, and the direct solver requires only O(

√
N logN)

memory. Moreover, if the domain is loaded only on the boundary, and if (2.1) is to be solved
for several different boundary loads, subsequent solutions are obtained simply by applying
the pre-computed operator Ã−1

mm at the modest cost of O(
√

N logN) operations.
We also note that while it would require O(N) memory to store A itself, the scheme only

accesses each entry of A once. Consequently, the elements of A can either be computed on
the fly (if given by a formula), or fetched sequentially from slow memory (“tape”).

Remark 5.1 A further improvement in computational speed can in principle be obtained
whenever the intermediate matrices are compressible in the stronger sense described in

J Sci Comput (2009) 38: 316–330 325

Sect. 4.3. In this case, the cost of inverting Ãκκ is O(κ) and so the total cost is

Ttotal ∼
m∑

κ=1

κ ∼ m2 ∼ N.

Experimental data (described in Sect. 7) indicate that the matrices Ãκκ are indeed “hierar-
chically compressible” and permit O(N) inversion schemes. However, such a scheme has
not yet been implemented.

Remark 5.2 We currently do not have a good understanding of which sparse matrices allow
fast inversion and factorization. Experimental and theoretical results indicate that symmetric
positive definite matrices arising from the discretization of elliptic PDEs certainly qualify
[2, 4]. But neither symmetry nor ellipticity are necessary properties, as the numerical exper-
iments described in Sect. 7.2 demonstrate.

6 Generalizations

The scheme presented can be adapted to more general operators in two and three dimensions.
The generalization to other difference operators on uniform square grids in two dimensions
is trivial. Other two-dimensional grids that are uniform in the sense that they can readily
be partitioned into a sequence of concentric annuli can also be handled quite easily, and we
expect the performance of such schemes to be similar to the performance reported in Sect. 7.

Many grids cannot in a natural way be partitioned into a sequence of concentric annuli;
this is for instance the case with grids arising from adaptive mesh-refinement, or the dis-
cretization of complex geometries. For such cases, other domain decomposition techniques
(based for instance on minimal graph cuts as in nested dissection) will probably perform bet-
ter than the concentric annuli technique of this paper. However, the technique of computing
Schur complements of the system matrix by successively merging larger and large patches
of the computational grid should still be applicable. Work in this direction is currently under
way.

7 Numerical Examples

In this section we describe the results of computational experiments that illustrate the capa-
bilities of the method described in Sect. 5. Specifically, Sect. 7.1 describes a set of experi-
ments that illustrate the computational speed of the method, while Sect. 7.2 focusses on the
question of which matrices are amenable to the techniques described in this paper.

We use a fixed computational precision of ε = 10−7 in all experiments. In other words, at
each step of the calculation, off-diagonal blocks in the matrices were represented to within
an absolute precision of ε. We let the ranks of approximation vary between blocks.

The code used is written in a Matlab-FORTRAN hybrid. It is highly non-optimized. The
experiments were run on a 2.8 GHz Pentium 4 PC with 512 Mb of RAM.

7.1 Performance Test

The O(N log2 N) numerical scheme described in Sect. 5 was implemented and tested on a
conduction problem on a square uniform grid. We assigned each bar in the grid a conduc-
tivity drawn from a uniform random distribution on the interval [1/2,1]. For a range of grid

326 J Sci Comput (2009) 38: 316–330

Table 1 A summary of the computational experiment described in Sect. 7.1

N Tsolve Tapply M e1 e2

10000 5.93e−1 2.82e−3 3.82e+2 2.61e−8 3.31e−8

40000 4.69e+0 6.25e−3 9.19e+2 4.71e−8 6.47e−8

90000 1.28e+1 1.27e−2 1.51e+3 7.98e−8 1.25e−7

160000 2.87e+1 1.38e−2 2.15e+3 9.02e−8 1.84e−7

250000 4.67e+1 1.52e−2 2.80e+3 1.02e−7 1.14e−7

360000 7.50e+1 2.62e−2 3.55e+3 1.37e−7 1.57e−7

490000 1.13e+2 2.78e−2 4.22e+3 – –

640000 1.54e+2 2.92e−2 5.45e+3 – –

810000 1.98e+2 3.09e−2 5.86e+3 – –

1000000 2.45e+2 3.25e−2 6.66e+3 – –

sizes between 50×50 and 1000×1000, we computed the operator Ã−1
mm described in Sect. 3.

The computational cost, the amount of memory required, and the accuracies obtained are
presented in Table 1. The following quantities are reported:

Tsolve Time required to construct Ã−1
mm (in seconds).

Tapply Time required to apply Ã−1
mm (in seconds).

M Memory required to construct Ã−1
mm (in kilobytes).

e1 The l2-error in the vector Ã−1
mmr where r is a unit vector of random direction.

e2 The l2-error in the first column of Ã−1
mm.

The errors e1 and e2 were estimated by comparing the computed Schur complement to the
result of using an iterative solver to solve the unreduced (2.1). (We let the iterative solver
run until the residual had hit 10−14.)

The numbers in Table 1 support the claims made regarding the asymptotic cost of the
algorithm. They also indicate that when the local accuracy is kept fixed, the global error
grows very slowly as the problem size increases.

7.2 Range of Applicability

Both theoretical and numerical results in the literature support the claim that matrices aris-
ing from the discretization of Laplace’s equation (and closely related equations such as the
equations of elasticity) should have inverses and Schur complements that are “compressible”
in the sense described in Sect. 4. It is from a theoretical point of view less well understood
to what extent similar results can be obtained for other classes of PDEs. In this section, we
investigate via computational experiments whether the scheme described in Sect. 5 works
for the matrices associated with the partial differential operator

[Du](x) = −�u(x) + b(x)ux(x) + c(x)uy(x) + d(x)u(x) (7.1)

acting on the domain � = [0,1] × [0,1] with Dirichlet boundary data. The experiments
indicate that generally speaking, the answer is yes as long as the magnitude of the functions
b, c, and d , is not very large, but that issues of ill-conditioning can arise.

We discretized the domain � into (2m + 2) × (2m + 2) points organized in a uniform
grid so that the grid spacing is h = 1/(2m + 1). For any interior grid point k, we discretized
the operator (7.1) via the simplistic finite difference scheme:

J Sci Comput (2009) 38: 316–330 327

[Au](k) = 1

h2

[
4u(k) − u(kn) − u(ks) − u(ke) − u(kw)

]

+ 1

h
b(k)

[
u(ke) − u(kw)

] + 1

h
c(k)

[
u(kn) − u(ks)

] + d(k)u(k),

where ke, kn, kw, ks denote the grid points to the “east”, “north”, “west”, and “south” of k,
respectively. We note that such a discretization scheme is not always a good one for an
equation of the general form (7.1), especially when b and c are large. However, since our
goal here is not to actually compute accurate solutions to any PDE, but rather to merely
investigate the rank-structure of its inverse, this should not be of much significance.

All numerical experiments reported in this section were run on a grid with 400 × 400
internal grid points, and with a local truncation error of ε = 10−7.

The performance of the scheme described in Sect. 5 was tested on eight different model
problems:

PureLap: A pure Laplace problem. The functions b, c, and d were all identically zero, and
the matrix A is the classical five-point stencil.

RandLap: This example stands out from the others in that it is not related to a discretization
of (7.1). Instead, A is a discrete Laplace operator acting on a regular (2m + 2) × (2m + 2)

square grid, as described at the end of Sect. 2. The conductivity of each bar was drawn from
a uniform random distribution on the interval [0.01,1].

ConstCon: A convection/diffusion problem with a constant convection term acting along
the x2-axis: b ≡ 100, c = 0, d = 0.

DivFrCon: A convection/diffusion problem with a divergence-free convection field:
b(x) = 125 cos(4πx2), c(x) = 125 sin(4πx1), d = 0.

DivCon: A convection/diffusion problem with a convection field with sources and sinks:
b(x) = 125 cos(4πx1), c(x) = 125 sin(4πx2), d = 0. We note that this boundary value prob-
lem is intrinsically highly ill-conditioned due to the existence of solutions representing
purely internal flows between sources and sinks.

Helm100: A Helmholtz problem at a low frequency not close to a resonance: b = c = 0,
d = 100. These coefficients translate to a computational domain roughly 1.5 × 1.5 wave-
lengths large.

HelmRes: A Helmholtz problem at a low frequency very close to a resonance: b = c = 0,
d = −λ10 + 10−5 where λ10 is the 10’th eigenvalue of the discrete Laplace operator. (Note
that for the five-point stencil on a square regular grid, these are known analytically, and
λ9 = λ10 = 167.77043 . . . is a double eigenvalue.)

Helm4000: A Helmholtz problem at an intermediate frequency not close to a resonance:
b = c = 0, d = 4000. Note that d = 4000 corresponds to a domain roughly 10 × 10
wavelengths large. (The closest eigenvalues of the discrete Laplace operator are λ300 =
3991.61850 . . . and λ301 = 4028.67360)

The results of the experiments are reported in Table 2. The numbers rj denote the average
rank of the off-diagonal blocks of size j × j in Ãmm. The number cmax is the maximum of

328 J Sci Comput (2009) 38: 316–330

Table 2 Results of experiments designed to investigate the range of applicability of the fast direct solver.
The quantities given are described in Sect. 7.2. (The meaning of the numbers in parenthesis is described in
Remark 7.1)

r50 r100 r200 r400 cmax E1 E2

PureLap 8 (16) 9 (19) 9 (24) 17 (33) 5.82e+000 2.84e−007 2.84e−007

RandLap 8 (15) 9 (18) 9 (23) 17 (32) 5.02e+001 1.18e−007 1.18e−007

ConstCon 6 (15) 7 (18) 7 (22) 15 (31) 5.81e+000 2.25e−006 2.25e−006

DivFrCon 7 (15) 8 (18) 9 (23) 16 (30) 5.81e+000 6.23e−007 6.23e−007

DivCon 7 (14) 7 (16) 7 (19) 13 (26) 8.56e+000 4.41e−003 4.39e−003

Helm100 8 (15) 8 (19) 9 (23) 16 (32) 5.74e+000 1.92e−007 1.92e−007

HelmRes 9 (16) 9 (20) 10 (25) 19 (34) 9.71e+003 3.25e−002 3.36e−002

Helm4000 6 (13) 6 (15) 6 (17) 11 (22) 5.16e+000 3.45e−008 3.50e−008

the condition numbers of the matrices Ãκκ for κ = 1,2, . . . ,m. The numbers E1 and E2

denote estimates of the error measure

E = ‖(Ãε
mm)−1 − (Ãmm)−1‖

‖(Ãmm)−1‖ , (7.2)

where Ãmm is the exact Schur complement at level m, and Ãε
mm is the result of the numerical

algorithm described in Sect. 5. Of course, the exact matrix Ãmm is not available, but we
computed the estimate E1 of E by first simulating the action of (Ãmm)−1 using an iterative
solver for (2.1) and then using an inverse power iteration to estimate the operator norms
in (7.2). The estimate E2 is obtained by comparing the Schur complement resulting from
the “fast” algorithm described in Sect. 5 with the unaccelerated method described in Sect. 3.

It is encouraging to see that in all environments tested, the interaction ranks rj are very
small. This indicates that the computational cost of the method described in Sect. 5 will
scale almost linearly for a wide range of problems. The table also indicates that the method
is highly accurate and stable in most environments. In particular, we note that for the very
nearly resonant Helmholtz problem “HelmRes”, we lose no more than 5 digits of accuracy
(compared to the local truncation error) even though the physical problem being modelled
amplifies applied loads by a factor of 104. Example “DivCon” illustrates a similar situation
of a highly ill-conditioned physical problem resulting in a loss of accuracy. What is slightly
worrying about this example, however, is that here all the intermediate Schur complements
Ãκκ are well-conditioned, meaning that we get no warning of a loss of computational ac-
curacy. This indicates that while the fast solver described here may be applicable to a wide
range of equations, it should in some environments be complemented with rigorous error
estimation techniques.

Remark 7.1 The ranks rj that are given in Table 2 refer to the rank in the matrix format
described in Sect. 4.1. The numbers given in parentheses next to the values for rj report the
number of basis vectors that are required when the matrix is compressed using hierarchically
defined bases, as described in Sect. 4.3 (this number is what Gu and Chandrasekaran call the
“HSS-rank”, see [3, 5]). Since these numbers are of moderate size, and grow only slowly
with j , it appears likely that O(N) methods are feasible for all environments tested. How-
ever, we note that the numbers in parenthesis are substantially larger than the numbers rj ,
indicating that for moderate problem sizes, the gain could be smaller than one might have
hoped.

J Sci Comput (2009) 38: 316–330 329

8 Concluding Remarks

We have presented a scheme for rapidly performing direct solves on linear systems involving
the large sparse matrices arising from the discretization of elliptic PDEs such as Laplace’s
equation, or the Helmholtz equation at low wave-numbers. The scheme is based on a com-
bination between a technique for reducing a problem defined on a two-dimensional domain
to a sequence of problems defined on one-dimensional subdomains, and the use of a fast
method to invert the dense but structured matrices that represent the problem on each of the
one-dimensional domains.

The scheme presented typically achieves an asymptotic computational complexity of
O(N log2 N), with a constant sufficiently small that a direct solve of a linear system involv-
ing a million by million sparse coefficient matrix can be performed in about four minutes
on a modest desktop PC. The algorithm produces a Schur complement of the system matrix
which can be used to solve additional linear problems involving the same coefficient matrix
in 0.03 seconds (provided that data is given only on the boundary of the domain, and that
the solution is sought only on the boundary). The computations cited produced results with
seven correct digits.

The method described can be accelerated significantly (probably all the way to an O(N)

method) by using more efficient techniques for inverting structured matrices, such as those
described in [12]. Work in this direction in progress.

Another way of potentially improving the algorithm is to use a different technique for
reducing a problem on a two-dimensional domain to a sequence of problems defined on
one-dimensional subdomains. One option would be to use a method based on minimal graph
cuts such as nested dissection, as was done in [4]. This would likely result in a method that
is more versatile in terms of which meshes can be handled, and might prove advantageous
in terms of computational speed.

One feature of the present scheme that we believe is very attractive compared to com-
peting methods is the aggregation of Schur complements of the original system matrix.
This technique is inherently well-conditioned, and leads to conceptually simple algorithms
that are robust when applied to a wide range of differential operators, as demonstrated in
Sect. 7.2. It also has the advantage that it automatically produces a “reduced model” for the
computational domain that directly maps a boundary load to the solution on the boundary
in environments where the interior of the domain is unloaded; even for problems involving
millions of degrees of freedom, this map can be evaluated in a couple of hundredths of a
second on a regular desktop PC.

The method was developed as a technique for symmetric positive definite matrices such
as those arising from the discretization of Laplace’s equations and the equations of elasticity.
In such environments, both theory and numerical experiments support our claims regarding
stability, accuracy, and speed of the method. Numerical tests indicate that the method is
in fact far more widely applicable, and will retain its performance in terms of speed and
accuracy for a wide range of sparse matrices (see Sect. 7.2). However, examples do exist for
which the method as currently implemented loses accuracy. Work aimed at determining in
which environments the method can be made to work well is in progress.

Acknowledgements The idea of constructing a direct solver by computing a sequence of operators defined
on concentric annuli was described to the author by Vladimir Rokhlin in 2003 in a conversation about con-
structing a fast direct solver for the Lippmann-Schwinger equation. The algorithm presented in this paper is
directly inspired by that conversation. Moreover, the author is indebted to Mark Tygert for sharing his insights
on fast methods.

330 J Sci Comput (2009) 38: 316–330

References

1. Börm, S.: H 2-matrix arithmetics in linear complexity. Computing 77(1), 1–28 (2006)
2. Börm, S.: Approximation of solution operators of elliptic partial differential equations by H and H 2-

matrices. Tech. Report 85/2007, Max Planck Institute for Mathematics in the Sciences (2007)
3. Chandrasekaran, S., Gu, M., Li, X.S., Xia, J.: Some fast algorithms for hierarchically semiseparable

matrices. Private Communication (2007)
4. Chandrasekaran, S., Gu, M., Li, X.S., Xia, J.: Superfast multifrontal method for structured linear systems

of equations. Private Communication (2007)
5. Chandrasekaran, S., Gu, M., Lyons, W.: A fast adaptive solver for hierarchically semiseparable repre-

sentations. Calcolo 42(3–4), 171–185 (2005)
6. Chandrasekaran, S., Gu, M., Pals, T.: A fast ULV decomposition solver for hierarchically semiseparable

representations. SIAM J. Matrix Anal. Appl. 28(3), 603–622 (2006). (Electronic)
7. George, A.: Nested dissection of a regular finite element mesh. SIAM J. Numer. Anal. 10, 345–363

(1973)
8. Grasedyck, L., Kriemann, R., Le Borne, S.: Domain-decomposition based H -matrix preconditioners. In:

Proceedings of DD16. LNSCE, vol. 55, pp. 661–668. Springer, Berlin (2006)
9. Hackbusch, W.: A sparse matrix arithmetic based on H -matrices. I. Introduction to H -matrices. Com-

puting 62(2), 89–108 (1999)
10. Hackbusch, W., Khoromskij, B., Sauter, S.A.: On H 2-matrices. In: Lectures on Applied Mathematics

(Munich, 1999), pp. 9–29. Springer, Berlin (2000)
11. Hoffman, A.J., Martin, M.S., Rose, D.J.: Complexity bounds for regular finite difference and finite ele-

ment grids. SIAM J. Numer. Anal. 10, 364–369 (1973)
12. Martinsson, P.G., Rokhlin, V.: A fast direct solver for boundary integral equations in two dimensions.

J. Comput. Phys. 205(1), 1–23 (2005)

	A Fast Direct Solver for a Class of Elliptic Partial Differential Equations
	Abstract
	Introduction
	A Model Problem
	An Exact O(N2) Direct Solver
	Compressible Matrices and Fast Matrix Algebra
	Compressible Matrices
	Inversion of Compressible Matrices
	Hierarchically Compressible Matrices

	A Fast Direct Solver
	Generalizations
	Numerical Examples
	Performance Test
	Range of Applicability
	PureLap:
	RandLap:
	ConstCon:
	DivFrCon:
	DivCon:
	Helm100:
	HelmRes:
	Helm4000:

	Concluding Remarks
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

