
An O(N) algorithm for constructing the solution operator to elliptic
boundary value problems in the absence of body loads

Adrianna Gillman
Department of Mathematics

Dartmouth College
adrianna.gillman@Dartmouth.edu

Per-Gunnar Martinsson
Department of Applied Mathematics
University of Colorado at Boulder

martinss@colorado.edu

Abstract: The large sparse linear systems arising from the finite element or finite dif-
ference discretization of elliptic PDEs can be solved directly via, e.g., nested dissection
or multifrontal methods. Such techniques reorder the nodes in the grid to reduce the
asymptotic complexity of Gaussian elimination from O(N3) to O(N1.5) for typical prob-
lems in two dimensions. It has recently been demonstrated that the complexity can
be further reduced to O(N) by exploiting structure in the dense matrices that arise in
such computations (using, e.g., H-matrix arithmetic). This paper demonstrates that
such accelerated nested dissection techniques become particularly effective for boundary
value problems without body loads when the solution is sought for several different sets
of boundary data, and the solution is required only near the boundary. In this case, a
modified version of the accelerated nested dissection scheme can execute any solve be-
yond the first in O(Nboundary) operations, where Nboundary denotes the number of points
on the boundary. Typically, Nboundary ∼ N0.5. Numerical examples demonstrate the
effectiveness of the procedure for a broad range of elliptic PDEs that includes both the
Laplace and Helmholtz equations.

1. Introduction

1.1. Problem formulation. This paper presents a fast technique for solving homogeneous
boundary value problems (BVPs) of the form

(1.1)
−∆u(x) + b(x)ux(x) + c(x)uy(x) + d(x)u(x) = 0 x ∈ Ω

u(x) = g(x) x ∈ Γ,

where Ω = [0, 1]2 is the unit square in R2, where Γ is the boundary of Ω, and where b,
c, and d are functions on Ω. We assume that the only information sought is the normal
derivative of u at Γ. In other words, the objective is to construct an approximation to the
Dirichlet-to-Neumann operator associated with the elliptic differential operator in (1.1).

The proposed technique is particularly efficient for situations where (1.1) needs to be
solved for a sequence of different boundary data functions g. The method has two steps:
(1) For a given set of functions b, c, and d, an approximate Dirichlet-to-Neumann is con-
structed at cost proportional to the number of degrees of freedom used to discretize Ω.
(2) The solution ∂u/∂n for any given Dirichlet data g is constructed by application of the
approximate Dirichlet-to-Neumann operator at cost proportional to the number of degrees
of freedom used to discretize Γ (independent of the number of discretization points used
for Ω).

1.2. Motivation. While the present paper addresses the specific BVP (1.1) on a simple
square domain, the technique can easily be extended for building solution operators to
elliptic boundary value problems of the form

(1.2)

{
Au(x) = 0 x ∈ Ω
Bu(x) = g(x) x ∈ Γ,

where Ω is a domain in R2 or R3 with boundary Γ, where A is an elliptic partial differential
operator, and where B is a trace operator (representing boundary conditions like Dirichlet,
Neumann, mixed, etc.). The goal of this paper is to illustrate that when there is no body
load and the solution u and/or its derivatives are sought only near the boundary, the relevant

1



2

solution operator can be constructed at moderate cost, and applied almost instantaneously.
This opens up the possibility of high accuracy computational simulations to be carried out
in real time for 3D problems such as elasticity involving composite materials, electrostatics
in domains with variable conductivity, acoustic and electromagnetic scattering problems
(at long and intermediate wave-lengths at least), and many others.

1.3. Discretization. The method described is applicable to a variety of geometries and
discretization schemes (finite elements, finite differences, etc.). For simplicity of presenta-
tion, we restrict our attention to the model problem where a square domain Ω is discretized
via a finite difference scheme on a regular n× n square mesh. The resulting linear system
takes the form

(1.3) Au = b

where A is an n2 × n2 sparse matrix. For future reference, we let N = n2 denote the total
number of grid points.

Example: When (1.1) represents the Laplace equation (b = c = d = 0) and the standard five-point
finite difference stencil is used in the discretization, A consists of n× n blocks, each of size n× n,

A =


B −I 0 0 · · ·
−I B −I 0 · · ·
0 −I B −I · · ·
0 0 −I B · · ·
...

...
...

...

 , where B =


4 −1 0 0 · · ·

−1 4 −1 0 · · ·
0 −1 4 −1 · · ·
0 0 −1 4 · · ·
...

...
...

...

 ,

and where I is the n× n identity matrix.

1.4. Existing fast solvers. Existing techniques for solving (1.3) can roughly be divided
into two categories:

Iterative methods construct a sequence of successively more accurate approximate solu-
tions by applying the matrix A to a sequence of vectors. Since the N×N matrix A has O(N)
non-zero entries, the resulting solver has O(N) complexity whenever convergence is fast.
It is difficult to predict the convergence rate of iterative methods and often a customized
pre-conditioner is required to accelerate the schemes.

Direct methods such as Gaussian elimination which compute a solution in a single shot
are considered more stable and robust. Proper ordering of the nodes often allows Gaussian
elimination to be executed at O(N1.5) complexity [3], and the resulting “nested dissection”
approach is quite competitive for moderate problem sizes (up to about N ∼ 106). More
recently, it has been shown that by exploiting additional structure in the coefficient matrix,
the nested dissection method can be accelerated to (close to) linear complexity, [2, 6, 8].

1.5. Novelty of the present work. The techniques described in this paper are based on
recent work [2, 4, 6, 7, 8] building linear complexity direct solvers for matrices arising from
finite element and finite difference discretizations of elliptic partial differential equations.
The core observation is that in situations where a BVP such as (1.1) needs to be solved
for a sequence of different boundary data functions f , each solve beyond the first can be
executed in sub-linear complexity. To be precise, the complexity of additional solves can be
reduced to O(Nboundary) where Nboundary denotes the number of boundary nodes. In two
dimensions, it is often the case that Nboundary ∼ N0.5 which means that each solve beyond
the first has complexity O(N0.5). Very substantial speed-ups can result. Section 6 shows
that for a situation where N = 16, 000, 000 (and Nboundary ≈ 16, 000), the cost of executing



3

an accelerated nested dissection scheme on a standard desktop computer is 8 minutes, while
the cost of processing an additional boundary data function is only 0.1 seconds.

Technically, the method described is based on the classical nested dissection algorithm,
and uses the same type of recursive subdivision of the grid via a sequence of minimum-cut
partitions. For each one of the resulting sub-domains, we construct a reduced operator
that “lives” on the boundary of the sub-domain, and can be conceptually thought of as a
discrete analog of its Dirichlet-to-Neumann operator. These operators are in principle dense
matrices, but by exploiting data sparsity as in [7], linear overall complexity is achieved.

1.6. Outline of paper. The paper presents a linear scaling variation of the nested dis-
section method which computes the Dirichlet-to-Neumann operator. The first step is to
partition the domain into a quad-tree of nested boxes, see Section 2. For each of the small-
est boxes, a solution operator is computed. Hierarchically merging these operators, moving
up through the tree, the global Dirichlet-to-Neumann operator is computed, see Section 3.
The solution operators have internal structure (see Section 4) which is exploited to improve
the complexity of the method from O(N1.5) to O(N) see Section 5. Numerical experiments
illustrate the performance and scaling of the proposed method, see Section 6.

2. Tree structure

When the box domain contains a large number of points, computing the solution operator
directly is computationally prohibitive. Thus we tessellate the box into smaller boxes where
the solution operator can be computed for little cost. In this section, we describe the
simplest such tessellation.

Suppose the square domain Ω contains N = n2 points (n × n grid). Let Nleaf denote a
tuning parameter chosen so that a matrix of size Nleaf × Nleaf can be inverted quickly by
brute force. The optimal choice of Nleaf depends on the computing environment, but we
have found that Nleaf = 100 is often a good choice. Let L be the smallest integer such that
when Ω is partitioned into 4L equisized boxes, each box contains no more than Nleaf points.
These 4L small boxes are called the leaves of the tree. Merge the leaves by sets of fours
into boxes with twice the side length, to form the 4L−1 boxes that make up the next level
in the tree. This process is repeated until Ω is recovered. We call Ω the root of the tree.

The set consisting of all boxes of the same size forms what we call a level. We label
the levels using the integer ℓ = 0, 1, 2, . . . , L, with ℓ = 0 denoting the root, and ℓ = L
denoting the leaves.

3. A variation of the nested dissection algorithm

This section describes an accelerated direct solver that is particularly suitable for what
we call “pure” boundary value problems such as (1.1) in which there is no body load, and
where the solution is sought only near the boundary. The idea is to construct a solution
operator G that maps the given boundary data to the sought potential values (or flows) on
the boundary. Letting Nb denote the number of nodes on the boundary of the domain, G
is a dense Nb ×Nb matrix.

Technically, the solution operator G is constructed via a divide-and-conquer approach
(analogous to the one used in the classical nested dissection scheme): First a solution
operator is constructed for each “leaf” in the quadtree described in Section 2, then solution
operators for larger boxes are constructed via a hierarchical merging process in a single
sweep through the tree, going from smaller to larger boxes.

For a grid with N nodes, the process described in this section requires O(N1.5) operations
to construct the solution operator, and then each subsequent solve (which consists merely



4

of applying the solution operator) requires O(N) operations. Techniques for accelerating
these two costs to O(N) and O(N0.5), respectively, are then described in Sections 4 and 5.

3.1. The solution operator and the Schur complement. This subsection provides a
precise definition of the concept of a “solution operator” associated with a subdomain P
of the computational grid. For simplicity, we assume that P is a square or rectangular
domain. We partition P into interior nodes and boundary nodes:

P = Pi ∪ Pb,

where Pi is defined as the set of nodes that have all four neighbors inside P , see Figure 1.
(Note that the set P consists of all nodes at which the potential is unknown, and Pb is the
outermost ring of these nodes, not the nodes at which Dirichlet data is prescribed.)

Pb
Pi

(a) (b)

Figure 1. (a) Labeling of nodes for constructing the Schur complement of
a leaf. Pi are the interior nodes (hollow), and Pb are the boundary nodes
(solid). (b) After the merge, all internal nodes are “eliminated” but now all
nodes communicate directly (i.e. the Schur complement S is dense).

Let ub and ui denote the potentials at the boundary nodes and the interior nodes,
respectively. Reordering the equilibrium equation (restricted to P ), we find that ub and ui

must satisfy

(3.1)

[
Ab,b Ab,i

Ai,b Ai,i

] [
ub

ui

]
=

[
fb
fi

]
.

Since we assume that there is no body load, we know that fi = 0. (Note that in general
fb ̸= 0 since this term incorporates flows coming from neighboring domains.) Eliminating
ui from (3.1), we therefore find

Sub = fb,

where S is the matrix

(3.2) S = Ab,b − Ab,i A
−1
i,i Ai,b.

We refer to S as the Schur complement associated with the subdomain P ; the solution
operator is then G = S−1.

3.2. Merging two Schur complements. In this section, we present a technique for merg-
ing the Schur complements for two adjacent boxes. Let us call the two boxes Ω(w) and Ω(e)

(for “west” and “east”). Further, let P (w) and P (e) denote the nodes on the boundaries of

these two boxes, and let S(w) and S(e) denote Schur complements supported on these two
sets of boundary nodes, see Figure 2.



5

P1 P3 P4 P2

Ω(w) Ω(e)

(a) (b) (c)

Figure 2. (a) Labeling of nodes for the merge operation described in Sec-
tion 3. The nodes in P1 and P3 are round, and the nodes in P2 and P4 are
square. The hollow nodes are interior to the union of the two boxes Ω(w)

and Ω(e). (b) Connections between nodes before the merge. (c) Connections
between nodes after eliminating the interior (hollow) nodes.

The objective of the merge is to eliminate the nodes that are now “interior” to the larger
box formed by the union of the two smaller boxes; these nodes are marked as blue in Figure
2. To eliminate these points, we first partition the nodes in P (w) and P (e) so that

(3.3) P (w) = P1 ∪ P3, and P (e) = P2 ∪ P4,

and so that P1 ∪ P2 forms the boundary of the larger box, while the nodes in P3 ∪ P4 are
interior, see Figure 2. Partition the Schur complements S(w) and S(e) analogously:

S(w) =

[
S11 S13
S31 S33

]
, and S(e) =

[
S22 S24
S42 S44

]
.

Supposing that the interior edges are unloaded, equation (1.3) restricted to the union of
the two boxes now reads

(3.4)


S11 A12 S13 0
A21 S22 0 S24
S31 0 S33 A34

0 S24 A43 S44




u1

u2

u3

u4

 =


f1
f2
0
0

 ,

where Aij are the relevant sub-matrices of the original discrete Laplacian A. From (3.4),
one finds that the Schur complement of the union box is

(3.5) S =

[
S11 A12

A21 S22

]
−
[
S13 0
0 S24

] [
S33 A34

A43 S44

]−1 [
S31 0
0 S42

]
.

3.3. The full algorithm. For future reference, let us summarize the algorithm described:

(1) Construct a quad-tree: Partition the grid into a hierarchy of boxes as described in
Section 2.

(2) Process the leaves: For each leaf box in the tree, construct its Schur complement as
described in Section 3.1.

(3) Hierarchical merge: Loop over all levels of the tree, from finer to smaller. For each
box on a level, compute its Schur complement by merging the (already computed)
Schur complements of its children as described in Section 3.2.

(4) Process the root of the tree: After completing Step 3, the Schur complement for the
entire domain is available. Invert (or factor) it to construct the solution operator.



6

Remark 3.1. For simplicity, the algorithm is described in a level-by-level manner (process
all leaves first, then proceed one level at a time in going upwards). In fact, there is flexibility
to travel through the tree in any order that ensures that no node is processed before its
children. Since all Schur complements can be discarded once their information has been
passed on to a parent, smarter orderings can greatly reduce the memory requirements.

3.4. Asymptotic complexity of the algorithm. As before, let N = n2 denote the total
number of points in the grid, let Nleaf denote the maximum number of points on a leaf, and
let L denote the number of levels so that N ≤ 4LNleaf .

The cost to process one leaf in Step 2 in Section 3.3 is O(N3
leaf). Since there are 4L

leaves, the total cost of Step 2 is therefore 4LN3
leaf ∼ N N2

leaf . Since Nleaf is a small
constant number (in principle one could set Nleaf = 1) the leaf processing cost is O(N).

Next consider the cost of constructing the Schur complement of a box on level ℓ in
executing Step 3 in Section 3.3. Note that all boxes involved have O(n 2−ℓ) points along
each side. Since some matrices in (3.5) are dense, the cost for each merge is proportional to
(n 2−ℓ)3 = n3 2−3ℓ. Since we need to compute 22ℓ Schur complements on level ℓ, the total

cost of Step 3 is then
∑L

ℓ=1 2
2ℓ n3 2−3ℓ = n3

∑L
ℓ=1 2

−ℓ ≈ n3.
Since the cost of the final inversion/factorization in Step 4 is clearly n3, the total cost of

the algorithm in Section 3.3 is O(n3) = O(N1.5).

4. Compressible matrices

To improve the scaling of the nested dissection method, a more efficient technique for
evaluating (3.5) will be implemented. We will exploit that while the matrices Sij are all
dense, they in the present context have additional structure: Sij is when i ̸= j to high
precision rank deficient, and Sii has a structure that we call Hierarchically Block Separable
(HBS). This section briefly describes the HBS property, for details see [5]. We note that the
HBS property is very similar to the concept of Hierarchically Semi-Separable (HSS) matrices
[9, 1] which has previously been used in an analogous context [2]. Other researchers have
used the somewhat related H-matrix concept for similar purposes [6, 8].

4.1. Block separable. Let M be an mp×mp matrix that is blocked into p×p blocks, each
of size m×m. We say that M is “block separable” with “block-rank” k if for τ = 1, 2, . . . , p,
there exist n × k matrices Uτ and Vτ such that each off-diagonal block Mσ,τ of M admits
the factorization

(4.1)
Mσ,τ = Uσ M̃σ,τ V∗

τ , σ, τ ∈ {1, 2, . . . , p}, σ ̸= τ.
m×m m× k k × k k ×m

Observe that the columns of Uσ must form a basis for the columns of all off-diagonal blocks
in row σ, and analogously, the columns of Vτ must form a basis for the rows in all the off-
diagonal blocks in column τ . When (4.1) holds, the matrix M admits a block factorization

(4.2)
M = U M̃ V∗ + D,

mp×mp mp× kp kp× kp kp×mp mp×mp

where

U = diag(U1, U2, . . . , Up), V = diag(V1, V2, . . . , Vp), D = diag(D1, D2, . . . , Dp),

and

M̃ =


0 M̃12 M̃13 · · ·

M̃21 0 M̃23 · · ·
M̃31 M̃32 0 · · ·
...

...
...

 .



7

4.2. Heirarchically Block-Separable. Informally speaking, a matrix M is Heirarchically
Block-Separable (HBS), if it is amenable to a telescoping block factorization. In other words,

in addition to the matrix M being block separable, so is M̃ once it has been reblocked to
form a matrix with p/2×p/2 blocks. Likewise, the middle matrix from the block separable

factorization of M̃ will be block separable, etc.
For example, a “3 level” factorization of M is

(4.3) M = U(3)
(
U(2)

(
U(1) M̃(0) (V(1))∗ + B(1)

)
(V(2))∗ + B(2)

)
(V(3))∗ + D(3),

where the superscript denotes the level.
The HBS representation of an N ×N matrix requires O(Nk) to store and to apply to a

vector. In addition, there exist an O(Nk2) inversion technique, see [5].

5. Structured matrix algebra in nested dissection

In this section, we apply the structured matrix techniques introduced in Section 4 to
reduce the complexity of the solver of Section 3 from O(N1.5) to O(N). The key task that
we need to accelerate is the construction of the Schur complement for a parent box from the
Schur complements of its two children. The formula that need to be evaluated is, cf. (3.5),

(5.1) S =

[
S11 A12

A21 S22

]
−
[
S13 0
0 S24

] [
S33 A34

A43 S44

]−1 [
S31 0
0 S42

]
.

Observe that S13, S31, S24, and S42 all have low (numerical) rank, so the second term in
(5.1) is itself a low-rank matrix, and once it has been computed, the task of forming S
consists merely of a low-rank update that is inexpensive.

Now the task of forming the second term in (5.1) is simple once we have computed the
matrices

(5.2)

[
X3

X4

]
=

[
S33 A34

A43 S44

]−1 [
R3

R4

]
,

where R3 and R4 are defined by

(5.3) R3 =
[
S31 0

]
and R4 =

[
0 S42

]
.

It is easily seen that X3 and X4 defined by (5.2) can be expressed as

(5.4) X3 = (S44 − A43S
−1
33 A34)

−1(R4 − A43S
−1
33 R3)

and

(5.5) X4 = S−1
33 R3 − S−1

33 A34X4.

The formulas (5.4) and (5.5) can be rapidly evaluated since:

• S33 is an HBS matrix and so S−1
33 can be computed rapidly.

• A34 and A43 are anti-diagonal matrices. Thus the product A43S
−1
33 A34 is HBS and

can be computed rapidly.
• S44 − A43S

−1
33 A34 is the sum of two HBS matrices and is also HBS.

• The matrices R3 and R4 have low (numerical) rank.

6. Numerical experiments

In this section, we illustrate the capabilities of the proposed method for constructing
solution operators for problems of the form

(6.1)

{
−∆u(x) + b(x)ux(x) + c(x)uy(x) + d(x)u(x) = 0, x ∈ Ω = [0, 1]2,

u(x) = g(x), x ∈ Γ,



8

where b, c, and d are functions defined on Ω, and the boundary data g is defined on Γ.
Section 6.1 substantiates the claims regarding asymptotic costs and reports on the accuracy
of proposed method for several different model problems. Section 6.2 illustrates the scaling
of the proposed technique with timing results.

For all problems, the domain is discretized with a uniform grid of n×n points so that the
grid spacing is h = 1/(n−1). Equation (6.1) is discretized with the finite difference scheme
corresponding to the five point stencil. For example, when a node k is in the interior of Ω,
the discretization of the differential operator in (6.1) is

1

h2
[
4u(k)− u(kn)− u(ks)− u(kw)− u(ke)

]
+

1

h
b(k)

[
u(ke)− u(kw)

]
+

1

h
c(k)

[
u(kn)− u(ks)

]
+ d(k)u(k),

where ke, kn, kw, ks denote the grid points to the “east”, “north”, “west”, and “south” of
k, respectively.

All experiments are run on a Lenovo laptop computer with 2.4GHz Intel i5 processor
and 8GB of RAM. The method was implemented in Matlab. While this implementation
is unoptimized, we believe it is sufficient for illustrating the potential of the proposed
technique. Additionally, for all experiments the tolerance of the HSS representation of the
Schur complement matrix is set to 10−7. For all experiments, let N = n2.

6.1. Range of problems with optimal scaling. The proposed method for constructing
Dirichlet-to-Neumann operators has been applied to several problems to investigate its
asymptotic complexity. The problems are:

• Laplace: Let b(x) = c(x) = d(x) = 0.
• Diffusion-Convection I: Let c(x) = d(x) = 0 and the convection in the x direction
be constant: b(x) = 100.

• Diffusion-Convection II: Same as Diffusion-Convection I, but with b(x) = 100.
• Diffusion-convection III: Introduce a divergence free convection field by setting
b(x) = 125 cos(4πy) and c(x) = 125 sin(4πx), and d(x) = 0.

• Diffusion-convection IV: Introduce a convection field with sources and sinks by
setting Let b(x) = 125 cos(4πx), c(x) = 125 sin(4πy), and d(x) = 0.

• Helmholtz I: Consider the Helmholtz equation corresponding to a domain that is
roughly 1.5× 1.5 wavelengths large: b(x) = c(x) = 0 and d(x) = −100.

• Helmholtz II: Consider the Helmholtz equation corresponding to a domain that is
roughly 10× 10 wavelengths large: b(x) = c(x) = 0 and d(x) = −4005.

• Helmholtz III: Consider the Helmholtz equation near a resonance: b(x) = c(x) = 0
and d(x) = −λ10 + 10−5, where λ10 is the tenth eigenvalue of the discrete Laplace
operator which are known analytically.

• Helmholtz IV: Consider a sequence of Helmholtz problems where the wave-number
is increased to keep a constant 40 points per wave-length: b(x) = c(x) = 0 and

d(x) = −
(
2πn
40

)2
.

• Random Laplacian I: Let the matrix A reflect an elliptic equilibrium problem on a
network instead of a continuum PDE. In this case, the network is the square grid
where each link is assigned a random conductivity between varying between 1 and
2. The potential at any single node is the weighted average of the potentials of its
four neighbors, where the weights are the conductivities.

• Random Laplacian II: Same as Random Laplacian I, but now the conductivities
vary between 1 and 1000.



9

Table 1 reports the amount of memory M(n) in MB required to store the Dirichlet-
to-Neumann operator for each problem as well as the ratio of M(n) to n. The solution

technique will scale linearly for the problems where the M(n) grows linearly with n or M(n)
n

remains constant. Helmholtz IV is the only problem for which the method will not scale
linearly.

Table 2 reports two errors:
e1 - the l2-error in the vector S−1 r where r is a unit vector of random direction
e2 - the l2-error in the first column of S−1

A slight loss in accuracy is observed for Helmholtz I, IV and Random II problems. There
is a substantial loss in accuracy for the Helmholtz III problem. This is to be expected since
the matrix A is close to being numerically singular.

Problem n = 256 n = 512 n = 1024 n = 2048
Laplace 0.83 (3.2e-3) 1.62 (3.2e-3) 3.18 (3.1e-3) 6.27 (3.1e-3)

DiffConv I 0.91 (3.5e-3) 1.75 (3.4e-3) 3.32 (3.2e-3) 6.52 (3.2e-3)
DiffConv II 1.10 (4.3e-3) 1.84 (3.6e-3) 3.62 (3.5e-3) 6.87 (3.4e-3)
DiffConv III 0.86 (3.4e-3) 1.70 (3.3e-3) 3.32 (3.2e-3) 6.55 (3.3e-3)
DiffConv IV 0.97 (3.8e-3) 1.83 (3.6e-3) 3.43 (3.3e-3) 6.59 (3.2e-3)
Helmholtz I 0.86 (3.4e-3) 1.67 (3.3e-3) 3.25 (3.2e-3) 6.34 (3.1e-3)
Helmholtz II 1.04 (4.1e-3) 1.91 (3.7e-3) 3.56 (3.5e-3) 6.78 (3.3e-3)
Helmholtz III 0.86 (3.4e-3) 1.67 (3.3e-3) 3.29 (3.2e-3) 6.42 (3.1e-3)
Helmholtz IV 0.89 (3.5e-3) 1.74 (3.4e-3) 3.59 (3.5e-3) 7.89 (3.9e-3)
Random I 0.83 (3.2e-3) 1.64 (3.2e-3) 3.22 (3.1e-3) 6.34 (3.1e-3)
Random II 0.82 (3.2e-3) 1.64 (3.2e-3) 3.23 (3.2e-3) 6.36 (3.1e-3)

Table 1. Memory M(n) in MB required to store the solution operator for

the problems listed in Section 6.1. The quantity M(n)
n is reported in paren-

thesis.

Problem e1 e2
Laplace 1.08e-6 4.9e-8

DiffConv I 6.44e-6 1.71e-6
DiffConv II 1.44e-6 1.3e-8
DiffConv III 3.12e-6 2.49e-7
DiffConv IV 3.05e-6 2.49e-7
Helmholtz I 5.55e-5 8.00e-8
Helmholtz II 2.54e-6 4.53e-7
Helmholtz III 6.30e-2 1.389e-1
Helmholtz IV 2.86e-4 9.20e-5
Random I 5.94e-6 2.41e-6
Random II 2.35e-4 3.15e-4

Table 2. Errors e1 and e2 for the solution operator for the problems listed
in Section 6.1.

6.2. Performance. The proposed method is applied to construct the solution operator
resulting from the finite difference discretization of two problems: Laplace and Helmholtz
IV.



10

In these experiment, we increase the number of discretization points from 5122 to 40962.
Table 3 reports:
Tsolve - the time in seconds for constructing the Dirichlet-to-Neumann operator
Tapply - the time in seconds for applying the Dirichlet-to-Neumann operator to a vector
As predicted from the previous section, the time to construct the Dirichlet-to-Neuman

operator for the Laplace problem grows linearly with N while the time to construct the
operator for the Helmholtz IV problem does not. Notice the cost of applying the solution
operator to a vector scales as O(

√
N) for both problems.

N Laplace Helmholtz IV
Tsolve Tapply Tsolve Tapply

(sec) (sec) (sec) (sec)
5122 13.44 0.013 50.78 0.013
10242 45.25 0.027 193.58 0.027
20482 135.01 0.058 765.35 0.056
40962 450.73 0.107 3167.56 0.115

Table 3. Times for the approximation of the Dirichlet-to-Neumann oper-
ator for the Laplace and Helmholtz IV problems via the accelerated nested
dissection method.

7. Conclusions

This paper presents a fast method for constructing the Dirichlet-to-Neumann operator
for elliptic problems with no body loads. Numerical results indicate that the method
scales linearly with the number of discretization points N for a variety of problems. Since
application of the solution operator scales linearly with the number of boundary points
(typically O(

√
N)), constructing the solution for multiple right-hand sides is essentially free

once the Dirichlet-to-Neumann operator is built. For a problem involving approximately
16 million unknowns, it takes about 8 minutes to build the solver, and 0.1 seconds to apply
it to a right-hand side.

The fast direct solver described here relies on the intermediate dense matrices being
compressible in the sense of being either of low rank, or having the HBS structure described
in Section 4. It is currently not well understood exactly when this holds, but the numerical
experiments in Section 6 indicate that the property is remarkably stable across a broad
range of test problems.

Acknowledgements: The work reported was supported by NSF grants DMS0748488 and
DMS0941476.

References

[1] S. Chandrasekaran and M. Gu, A divide-and-conquer algorithm for the eigendecomposition of symmetric
block-diagonal plus semiseparable matrices, Numer. Math. 96 (2004), no. 4, 723–731.

[2] S. Chandrasekaran, M. Gu, X.S. Li, and J. Xia, Superfast multifrontal method for large structured linear
systems of equations, SIAM J. Matrix Anal. Appl. 31 (2009), 1382–1411.

[3] A. George, Nested dissection of a regular finite element mesh, SIAM J. Numer. Anal. 10 (1973), 345–363.
[4] A. Gillman, Fast direct solvers for elliptic partial differential equations, Ph.D. thesis, University of

Colorado at Boulder, Applied Mathematics, 2011.
[5] A. Gillman, P. Young, and P.G. Martinsson, A direct solver with o(n) complexity for integral equations

on one-dimensional domains, 2012, To appear in Frontiers of Mathematics in China.
[6] R. Kriemann L. Grasedyck and S. Le Borne, Domain decomposition basedH-LU preconditioning, Numer.

Math. 112 (2009), no. 4, 565–600. MR MR2507619 (2010e:65200)



11

[7] P.G. Martinsson, A fast direct solver for a class of elliptic partial differential equations, J. Sci. Comput.
38 (2009), no. 3, 316–330. MR MR2475654 (2010c:65041)

[8] P. Schmitz and L. Ying, A fast direct solver for elliptic problems on general meshes in 2d, 2010, In
review.

[9] Z. Sheng, P. Dewilde, and S. Chandrasekaran, Algorithms to solve hierarchically semi-separable systems,
System theory, the Schur algorithm and multidimensional analysis, Oper. Theory Adv. Appl., vol. 176,
Birkhäuser, Basel, 2007, pp. 255–294.


