
A Fast Direct Solver for Elliptic Problems on General Meshes in 2D

Phillip G. Schmitz

Department of Mathematics

The University of Texas at Austin

Lexing Ying

Department of Mathematics and ICES
The University of Texas at Austin

Abstract

We present a fast direct algorithm for solutions to linear systems arising from 2D elliptic equations. We
follow the approach in Xia et al. (2009) on combining the multifrontal method with hierarchical matrices.
We present a variant of that approach with additional hierarchical structure, extend it to quasi-uniform
meshes, and detail an adaptive decomposition procedure for general meshes. Linear time complexity is
shown for a quasi-regular grid and demonstrated via numerical results for the adaptive algorithm.

Keywords: elliptic equations, fast algorithms, multifrontal methods, hierarchical matrices, sparse matrix.
2008 MSC: 65F05, 65F30, 65F50

1. Introduction

In this paper we will consider the solution of an elliptic problem such as

−div(a(x)∇u(x)) + V (x)u(x) = f(x) on Ω, u = 0 on ∂Ω (1)

in a two dimensional domain Ω where a(x) > 0 and V (x) > 0. There are two main classes of solvers for
sparse linear systems: direct [1] and iterative [2] methods. We will only be concerned with direct methods
in this paper.

Clearly the näıve inversion of the sparse matrix should be avoided and a sparse Cholesky decomposition
should be used instead. However, the efficiency of the sparse Cholesky decomposition depends on choosing
a reordering to reduce fill-in of non-zeros in the factors. Various graph-theoretic approaches such as the
(approximate) minimum degree algorithm [3] or nested dissection [4] can be used to determine a good
reordering, but finding the optimal ordering in general is difficult.

The most efficient direct method for solving this problem is the multifrontal method with nested
dissection [5, 6, 1, 7] (referred to as multifrontal method in short in the rest of this paper). The central
idea of this method is to partition the domain using a nested hierarchical structure and generate the
LU (or LDLt) factorization from the bottom up to minimize the fill-ins. The computational cost of the
multifrontal method scales like O(N1.5) in two dimensions where N is the number of degrees of freedom.
The multifrontal method is often formulated in a block factorization form in order to take full advantage of

Email addresses: pschmitz@math.utexas.edu (Phillip G. Schmitz), lexing@math.utexas.edu (Lexing Ying)

Preprint submitted to Journal of Computational Physics September 20, 2011

the existing dense linear algebra routines (BLAS3). Though quite efficient for many applications, it might
still be quite costly when N is very large.

Recently Xia et al. have worked on improving the multifrontal method with nested dissection to achieve
linear complexity, O(N) in [8]. The main observation is that the fill-in blocks of the LDLt factorization
are highly compressible using the hierarchical semiseparable matrix [9] or H-matrix [10] frameworks. By
representing and manipulating these blocks efficiently within these frameworks [11], one obtains linear
or almost linear complexity algorithms for the solution of the discrete system. In [8], this program is
carried out in the setting of regular Cartesian grids. A similar approach is proposed in [12] where a spiral
elimination order replaces the multifrontal nested dissection method. Recently, a substantial amount of
research has also been devoted to developing direct solvers for linear systems from integral equations. In
[13] an essentially linear complexity algorithm is presented for the 2D non-oscillatory integral equations,
while an O(N1.5) algorithm has appeared recently in [14] for the 3D non-oscillatory case. Fast direct solvers
for oscillatory kernels are still out of reach both in 2D and 3D.

The main contribution of the current paper is to extend the approach of [8] to achieve linear complexity
in the more general settings of unstructured and adaptive grids. The rest of this paper is structured
as follows. In Section 2, we introduce the hierarchical partitioning used in this paper and review the
multifrontal method. Our hierarchical structure is essentially a quadtree, but it also supports a natural
hierarchical partitioning of geometric components of the algorithm so that unnecessary re-orderings are
avoided for the algorithms in the later sections. Section 3 describes the algorithm that combines the nested
dissection multifrontal method and the hierarchical matrix algebra. Our presentation follows the idea in
[8] but is slightly different in the representation and inversion of the Schur complement matrices. For
the experts, [8] inverts these matrices with a bottom-up algorithm, while the description here follows a
top-down algorithm. The main advantage of our approach is that it provides the basic setup to address
more general grids and extension to 3D. Section 4 describes the generalization of the algorithm to quasi-
uniform unstructured meshes, while Section 5 presents the algorithm for an adaptive mesh featuring a
range of element sizes and densities (which may, for example, arise from the mesh having been adaptively
refined for a particular problem). Theoretical complexity analyses are complemented by numerical results
demonstrating the properties of the proposed algorithm.

2. Hierarchical Partitioning and Multifrontal Method

Our algorithm and hierarchical matrix decomposition is closely tied to our geometric decomposition
while in [8] the matrix manipulations and the relationships between matrices on different levels is more
abstract. The steps needed to combine matrices as one moves up a level in our decomposition flow naturally
from easily being able to identify which geometric sets of vertices give rise to which blocks in our matrices.

For simplicity, we assume that the domain of interest Ω is [0, 1]2. We introduce a uniform (P2Q + 1)×
(P2Q + 1) Cartesian grid covering [0, 1]2, where P is a positive integer of O(1) and Q will turn out to be
the depth of the hierarchical decomposition to be introduced. The Cartesian grid is further triangulated
to support piecewise linear basis functions (see Figure 1). Since the Dirichlet zero boundary condition is
specified in (1), we will be concerned with solving for the values of u at the N = (P2Q − 1) × (P2Q − 1)
interior vertices. We often use lowercase Greek letters α and β to denote these vertices.

2.1. Hierarchical Partitioning

We discretize (1) on the above triangulation with piecewise-linear continuous finite element basis func-
tions {φα(x)}. Each φα(x) is equal to 1 at vertex α and 0 on the other vertices. The stiffness matrix M

2

is then given by

(M)αβ =

∫
[0,1]2
∇φα(x) · a(x)∇φβ(x) + V (x)φα(x)φβ(x)dx.

Denote the whole domain Ω = [0, 1]× [0, 1] by D0; 0,0 and more generally define the contiguous blocks on a
level q with

Dq; i,j =

[
i

2q
,
i+ 1

2q

]
×
[
j

2q
,
j + 1

2q

]
for 0 ≤ i, j < 2q

for 0 ≤ q ≤ Q. Clearly at level q, there are 2q × 2q blocks whose union is equal to Ω. Notice that Dq; i,j is
defined to be a closed set so it contains vertices on its boundary. For each DQ; i,j, we can introduce a small
matrix MQ;i,j, which is the restriction of M to the vertices in DQ; i,j, and formed via

(MQ;i,j)αβ =

∫
DQ; i,j

∇φα(x) · a(x)∇φβ(x) + V (x)φα(x)φβ(x)dx, (2)

where α and β are restricted to the vertices in DQ; i,j since all basis functions centered on vertices outside
DQ; i,j are zero inside DQ; i,j. It is clear that these matrices MQ;i,j sum (after suitable injection) to the full
matrix M .

Let Q be the deepest level of our hierarchical decomposition. Using the blocks introduced above, the
whole domain is partitioned into 2Q × 2Q contiguous blocks

DQ; i,j =

[
i

2Q
,
i+ 1

2Q

]
×
[
j

2Q
,
j + 1

2Q

]
for 0 ≤ i, j < 2Q

as illustrated in Figure 1 (for the case Q = 3). There blocks are called leaf level blocks and the number of
vertices in each of them is (P + 1)× (P + 1) = O(1).

Figure 1: Left: The whole domain is decomposed into 8×8 blocks on the leaf level with
5× 5 vertices in each block (away from the domain boundary). Middle: Decomposed
into 4×4 blocks on the next level with 9×9 vertices in each block. Right: Decomposed
into 2× 2 blocks on yet the next level.

We denote the set of vertices in DQ; i,j by VQ; i,j. The vertices of VQ; i,j can be decomposed into elements
(which are vertex set themselves), depending on how many different blocks the faces containing that vertex
belong to.

3

• Facet element, which includes the vertices contained in a single block. There is only one facet element
for each block.

• Segment element, which includes the vertices shared by 2 blocks. There are 4 segment elements (top,
bottom, left, and right) for each block and each segment element is shared by two blocks.

• Corner element, which contains only a corner where 4 blocks meet. There are 4 corner elements for
each block and each corner element is shared by 4 blocks.

Notice that the boundary of a block (away from the boundary of the domain) is made up of 4 segments
of length P −1 and 4 corners. It is convenient to label these facet, segment, and corner elements uniformly
in a Cartesian fashion as follows. All elements at leaf level Q are labelled as EQ; i,j with 0 ≤ i, j ≤ 2Q+1.
The vertex set VQ; i,j of DQ; i,j is then made up of the 9 elements

EQ; 2i,2j+2 EQ; 2i+1,2j+2 EQ; 2i+2,2j+2

EQ; 2i,2j+1 EQ; 2i+1,2j+1 EQ; 2i+2,2j+1

EQ; 2i,2j EQ; 2i+1,2j EQ; 2i+2,2j

where the facet element EQ; 2i+1,2j+1 is unique to the block DQ; i,j but the surrounding elements are shared
with the neighboring blocks. It is straightforward that the type of element is determined by the parity of
i and j, as indicated in the following table

Element i (mod 2) j (mod 2)
Corner 0 0

Segment 1 0
Segment 0 1

Facet 1 1

To support the multifrontal algorithm to be described, we regard the vertex set VQ; i,j of the block
DQ; i,j as the disjoint union of the interior vertices and those on the boundary of the block (i.e. shared
with other blocks). More precisely, we have

VQ; i,j = IQ; i,j] BQ; i,j, IQ; i,j = EQ; 2i+1,2j+1, BQ; i,j =
⋃
+

0≤i′,j′≤2
(i′,j′)6=(1,1)

EQ; 2i+i′,2j+j′ .

Here we use the symbol] to distinguish disjoint union from the more general union ∪. In Figure 2 we show
how the vertices VQ; i,j in the block DQ; i,j are the disjoint union of the 9 elements EQ; 2i,2j, . . . , EQ; 2i+2,2j+2

where 1 element EQ; 2i+1,2j+1 is in the “interior” IQ; i,j of the block and the other 8 are on the “boundary”
BQ; i,j of the block.

Based on what we have introduced so far, we can define the vertex sets and elements for blocks at
other levels from bottom up. For a fixed level q < Q, suppose that Vq+1; i,j, Iq+1; i,j, Bq+1; i,j, and Eq+1; i,j

are already defined for blocks Dq+1; i,j on level q + 1. Then for a block Dq; i,j, its vertex set Vq; i,j is defined
to be the union of the boundary vertices of its child blocks, i.e.

Vq; i,j = Bq+1; 2i,2j ∪ Bq+1; 2i+1,2j ∪ Bq+1; 2i,2j+1 ∪ Bq+1; 2i+1,2j+1.

Notice that only the boundary vertices on level q + 1 appear in this definition and the reason is that only
these vertices “survive” to the next level (level q) in the multifrontal algorithm. The vertex set Vq; i,j is
further decomposed into two parts

4

EQ; 2i,2j EQ; 2i+2,2j

EQ; 2i,2j+2 EQ; 2i+2,2j+2

EQ; 2i,2j+1 EQ; 2i+2,2j+1

EQ; 2i+1,2j

EQ; 2i+1,2j+1

EQ; 2i+1,2j+2

DQ; i,j

Figure 2: Left: The block DQ; i,j whose set of vertices VQ; i,j is the disjoint union of
9 elements EQ; 2i,2j, . . . , EQ; 2i+2,2j+2. Right: Near the boundary of the whole domain,
some of these elements may be empty.

• Iq; i,j: interior vertices that are interior to the block Dq; i,j

• Bq; i,j: boundary vertices that are shared with neighboring blocks.

More precisely, using the definition of the elements from level q + 1 we have

Iq; i,j = Eq+1; 4i+1,4j+2] Eq+1; 4i+3,4j+2] Eq+1; 4i+2,4j+1] Eq+1; 4i+2,4j+3] Eq+1; 4i+2,4j+2

and

Bq; i,j = (Eq+1; 4i+1,4j] Eq+1; 4i+2,4j] Eq+1; 4i+3,4j)
⋃
+ (Eq+1; 4i+1,4j+4] Eq+1; 4i+2,4j+4] Eq+1; 4i+3,4j+4)⋃

+ (Eq+1; 4i,4j+1] Eq+1; 4i,4j+2] Eq+1; 4i,4j+3)
⋃
+ (Eq+1; 4i+4,4j+1] Eq+1; 4i+4,4j+2] Eq+1; 4i+4,4j+3)⋃

+ Eq+1; 4i,4j] Eq+1; 4i+4,4j] Eq+1; 4i,4j+4] Eq+1; 4i+4,4j+4

This decomposition of Vq; i,j into Iq; i,j and Bq; i,j is illustrated in the following diagram

Eq+1; 4i,4j+4 Eq+1; 4i+1,4j+4 Eq+1; 4i+2,4j+4 Eq+1; 4i+3,4j+4 Eq+1; 4i+4,4j+4

Bq; i,j
Eq+1; 4i,4j+3 Eq+1; 4i+2,4j+3 Eq+1; 4i+4,4j+3

Eq+1; 4i,4j+2 Eq+1; 4i+1,4j+2 Eq+1; 4i+2,4j+2 Eq+1; 4i+3,4j+2 Eq+1; 4i+4,4j+2

Iq; i,j
Eq+1; 4i,4j+1 Eq+1; 4i+2,4j+1 Eq+1; 4i+4,4j+1

Eq+1; 4i,4j Eq+1; 4i+1,4j Eq+1; 4i+2,4j Eq+1; 4i+3,4j Eq+1; 4i+4,4j

5

The interior Iq; i,j at level q consists of 5 elements from level q + 1: 4 segments and 1 corner, while the
boundary Bq; i,j is made up of 16 elements from level q + 1: 8 segments and 8 corners. In order to support
the algorithms to be described, we need introduce a decomposition of Bq; i,j into elements at level q. To do
that, we create new elements on level q by combining elements from level q + 1. The rules for combining
elements are as follows

Corner Eq; 2i,2j = Eq+1; 4i,4j

Segment Eq; 2i+1,2j = Eq+1; 4i+1,4j] Eq+1; 4i+2,4j] Eq+1; 4i+3,4j

Segment Eq; 2i,2j+1 = Eq+1; 4i,4j+1] Eq+1; 4i,4j+2] Eq+1; 4i,4j+3

More specifically, each new segment at level q is the disjoint union of 3 contiguous elements (a segment
element, a corner element and another segment element) from level q + 1. Alternatively, we can consider
the segment on level q as being composed of the segment-corner-segment group of child elements on level
q + 1. In this way a natural geometric hierarchy is created for the segment elements and Bq; i,j can be
represented at level q as the union of 4 segments and 4 corners.

Bq; i,j = Eq; 2i+1,2j] Eq; 2i+1,2j+2] Eq; 2i,2j+1] Eq; 2i+2,2j+1

⋃
+ Eq; 2i,2j] Eq; 2i+2,2j] Eq; 2i,2j+2] Eq; 2i+2,2j+2.

This new decomposition of Bq; i,j at level q is illustrated in the following diagram

Eq; 2i,2j+2 Eq; 2i+1,2j+2 Eq; 2i+2,2j+2

Bq; i,j

Eq; 2i,2j+1 Eq; 2i+2,2j+1

Eq; 2i,2j Eq; 2i+1,2j Eq; 2i+2,2j

This process of generating Vq; i,j, Iq; i,j, Bq; i,j, and elements on level q from the ones on level q + 1 is
repeated until we reach the top level q = 0. At level 0, due to the zero Dirichlet boundary condition
specified in (1), V0; 0,0 is made up the vertices on the largest cross inside the domain, I0; 0,0 = V0; 0,0, and
B0; 0,0 = ∅.

Let us illustrate the above discussion using a concrete example with Q = 3. At level Q = 3, we start
with 8× 8 blocks on the leaf level. Each block D2; i,j on level 2 is the union of four child blocks D3; i′,j′ with
bi′/2c = i and bj′/2c = j for 0 ≤ i, j < 4. The vertices associated to D2; i,j will be

V2; i,j = B3; 2i,2j ∪ B3; 2i+1,2j ∪ B3; 2i,2j+1 ∪ B3; 2i+1,2j+1,

which again decomposes into two disjoint sets, the boundary B2; i,j which contains vertices shared with
other blocks on level 2 and the interior I2; i,j which contains vertices unique to that block. Now we can
continue by combining 4 adjacent child blocks on level 2 to obtain the vertex set for D1; i,j:

V1; i,j = B2; 2i,2j ∪ B2; 2i+1,2j ∪ B2; 2i,2j+1 ∪ B2; 2i+1,2j+1

6

for 0 ≤ i, j < 2 and again decompose these sets on level 1 into B1; i,j and I1; i,j. Repeating this procedure
one more time we arrive at level 0 with vertex set V0; 0,0, (empty) boundary B0; 0,0 and interior I0; 0,0 with

V0; 0,0 = I0; 0,0 = E1; 2,1] E1; 2,3] E1; 1,2] E1; 3,2] E1; 2,2.

As we pointed out earlier, the segment elements on the higher levels are naturally endowed with a hierar-
chical structure, for example:

E1; 2,1 = E2; 4,1] E2; 4,2] E2; 4,3
= (E3; 8,1] E3; 8,2] E3; 8,3)

⋃
+ E3; 8,4

⋃
+ (E3; 8,5] E3; 8,6] E3; 8,7).

This hierarchical decomposition leads to a tree-like structure on the vertex sets illustrated in Figure 3.
Notice that the interior vertex sets Iq; i,j on a fixed level q are disjoint. In fact all Iq; i,j are disjoint and
their union over all possible choices of 0 ≤ q ≤ Q, 0 ≤ i, j < 2q is the set of interior vertices of the whole
domain.

Figure 3: Geometric tree of vertex sets resulting from a domain decomposition. Left:
Blocks at different levels along a tree path from the leaf level to the top level. The
gray regions denote the interior vertices Iq; i,j for each block. Right: The union of all
interior vertex sets Iq; i,j is equal to the whole set of interior vertices.

2.2. Multifrontal Method

We now describe the multifrontal method using the hierarchical structure introduced above. Our
presentation tends to emphasize the geometric aspect rather than the algebraic aspect of the method.
More traditional presentations can be found in standard references [6, 7]. The basic tool of multifrontal
method is the block LDLt decomposition induced by the Schur complement. For a 2× 2 block matrix(

A Bt

B C

)
,

the Schur complement gives rise to a factorization(
A Bt

B C

)
=

(
I

BA−1 I

)(
A

S

)(
I A−1Bt

I

)
7

where S = C −BA−1Bt.
Let us first consider the matrix MQ;i,j defined in (2) for the leaf block DQ; i,j. Since it is restricted to

the vertices in VQ; i,j = IQ; i,j] BQ; i,j, we obtain a 2× 2 block matrix decomposition of MQ;i,j:

MQ;i,j =

(
AQ;i,j Bt

Q;i,j

BQ;i,j CQ;i,j

)
= LQ;i,j

(
AQ;i,j

SQ;i,j

)
LtQ;i,j, (3)

where AQ;i,j : IQ; i,j → IQ; i,j, BQ;i,j : IQ; i,j → BQ; i,j, CQ;i,j : BQ; i,j → BQ; i,j, and

LQ;i,j =

(
IIQ; i,j

BQ;i,jA
−1
Q;i,j IBQ; i,j

)
.

Here and from now on, we always order the interior vertices IQ; i,j in front of the boundary ones BQ; i,j.
Extending each MQ;i,j by zeros for the vertices not in VQ; i,j and taking the sum over all of them, we get

M =
∑
i,j

MQ;i,j.

Now extend LQ;i,j to the whole vertex set by setting it to be identity on the complement of VQ; i,j. Since
the interior vertex sets IQ; i,j are disjoint for different blocks DQ; i,j, each one of the LQ;i,j commutes with
another distinct LQ;i′,j′ . Therefore,

LQ :=
∏
i,j

LQ;i,j

is well defined. Note that these LQ;i,j and this product LQ is useful in our presentation but is never formed
explicitly in the actual algorithm, only the BQ;i,jA

−1
Q;i,j calculated during the Schur complement is used in

our algorithms (detailed later).
We will develop a suitable ordering for the rows and columns of M as we proceed. Define

IQ :=
⋃
+
i,j

IQ; i,j and BQ :=
⋃
i,j

BQ; i,j.

The union of these two sets covers the entire set of vertices for which we constructed M , and hence we can
write

M =

(
AQ Bt

Q

BQ CQ

)
= LQ

(
AQ

SQ

)
LtQ,

where AQ : IQ → IQ, BQ : IQ → BQ, CQ : BQ → BQ, and SQ = CQ − BQA
−1
Q Bt

Q. For each DQ−1; i,j, define
a matrix MQ−1;i,j : VQ−1; i,j → VQ−1; i,j to be the sum of the matrices SQ;i′,j′ of its four child blocks DQ; i′,j′ .
From the fact that the union of VQ−1; i,j is indeed BQ, it is not difficult to see that SQ is in fact of the
sum of all MQ−1;i,j (if we extend each MQ−1;i,j to be zero outside VQ−1; i,j). Now recall that each VQ−1; i,j
decomposes into IQ−1; i,j and BQ−1; i,j. It then induces a decomposition of BQ into the union of

IQ−1 :=
⋃
+
i,j

IQ−1; i,j and BQ−1 :=
⋃
i,j

BQ−1; i,j.

and provides a 2× 2 block form for MQ−1;i,j:

MQ−1;i,j :=

(
AQ−1;i,j Bt

Q−1;i,j
BQ−1;i,j CQ−1;i,j

)
8

where AQ−1;i,j : IQ−1; i,j → IQ−1; i,j, BQ−1;i,j : IQ−1; i,j → BQ−1; i,j, and CQ−1;i,j : BQ−1; i,j → BQ−1; i,j. We can
then perform another Schur complement on this 2× 2 block matrix to obtain

MQ−1;i,j = LQ−1;i,j

(
AQ−1;i,j

SQ−1;i,j

)
LtQ−1;i,j.

Now the combined effect of
LQ−1 :=

∏
i,j

LQ−1;i,j,

where again we extend the LQ−1;i,j by the identity over the rest of BQ, is to factor SQ into

SQ = LQ−1

(
AQ−1

SQ−1

)
LtQ−1,

where AQ−1 : IQ−1 → IQ−1 and SQ−1 : BQ−1 → BQ−1, and therefore

M = LQ

(
AQ

SQ

)
LtQ = LQLQ−1

AQ AQ−1
SQ−1

LtQ−1L
t
Q,

where we abuse notation extending LQ−1 by the identity on IQ as required. Recall that LQ−1 was the
product of the LQ−1;i,j extended by the identity and we have continued this process to the entire vertex
set. Continuing in this fashion at level q, we decompose Bq+1 as Iq] Bq with

Iq :=
⋃
+
i,j

Iq; i,j and Bq :=
⋃
i,j

Bq; i,j,

introduce 2 × 2 block matrices Mq;i,j for each Vq; i,j, and apply the Lq;i,j matrices. Finally, at level 0, we
stop at B1 = I0 (since B0 = ∅) and obtain the following factorization for M

M = LQLQ−1 · · ·L1

AQ

AQ−1
. . .

A1

A0

Lt1 · · ·LtQ−1LtQ,

where Aq : Iq → Iq. Each of the Aq for q = 0, . . . , Q will in fact be block diagonal if we treat

Iq :=
⋃
+

0≤i,j<2q

Iq; i,j,

taking each of the sets Iq; i,j in turn for our ordering.
The solution to (1) can then be found by applying

M−1 = L−tQ L
−t
Q−1 · · ·L

−t
1

A−1Q

A−1Q−1
. . .

A−11

A−10

L−11 · · ·L−1Q−1L
−1
Q

9

to the right side of the linear system, which can be constructed in O(N1.5) steps and applied in O(N logN)
steps. To see this, consider Q levels with leaf blocks of size (P +1)× (P +1) so that N ' (P2Q)2 = P 222Q.
For each level q, we use s(q) ' P2Q−q to denote the segment size. Then, the cost of multiplying the matrices
for each block on level q will be O(s(q)3) while the cost of a matrix-vector multiply will be O(s(q)2). Thus
the total cost, suppressing constants, for setting up M−1 will be

Q∑
q=0

(s(q))3 · 22q =

Q∑
q=0

P 323(Q−q) · 22q = O(N1.5)

and that for applying it to a vector

Q∑
q=0

(s(q))2 · 22q =

Q∑
q=0

P 222(Q−q) · 22q = O(N logN)

since Q = O(logN).

3. Multifrontal Method with Hierarchical Matrices

In [8], Xia et al. proposed bringing the computational cost to linear complexity O(N) by combining the
nested dissection multifrontal method with hierarchical matrices. Roughly speaking, hierarchical matrices
are the matrices for which the degrees of freedom are grouped and ordered into hierarchical clusters using
a notion of geometric closeness and the off-diagonal blocks in this ordering are numerically low-rank. Due
to this low-rank property, an N×N hierarchical matrix can be stored efficiently with O(N logN) space by
approximating the off-diagonal blocks at all scales with low-rank factorizations. Moreover, most of matrix
operations such as matrix-vector product, matrix addition, matrix multiplication, matrix inversion, and
some matrix factorizations, can be carried out in the hierarchical matrix algebra in essentially linear time,
possibly with extra logarithmic factors. This topic has experienced rapid development in the past ten years
and more details on hierarchical matrices can be found, for example, in [10] and [9].

The main observation of Xia et al. in [8] is that the matrices Mq;i,j and its submatrices introduced
in the multifrontal algorithm can be represented using hierarchical matrices. Therefore, the Schur com-
plement calculations can be performed with hierarchical matrix algebra in almost linear time. In order
to accommodate our adaptive algorithms where the nested dissection stops at different levels for different
areas of a mesh we use a top-down construction and manipulation of hierarchical matrices in contrast to
Xia et al.’s bottom-up approach. Table 1 lists the numerical ranks obtained in a test for a large aligned
Cartesian mesh. The ranks exhibit logarithmic growth with small initial values and increase at most by 2
each time the matrix dimension doubles. This logarithmic growth of the numerical ranks is important for
the complexity analysis in Section 3.3.

The algorithm and implementation proposed in [8] is rather complicated. It was not straightforward
to us, at least, how to generalize their approach to unstructured and adapted meshes. We argue that the
geometric decomposition introduced in Section 2 provides us with a more natural hierarchical structure on
which the hierarchical matrix operations of Mq;i,j and its submatrices can be defined more explicitly and
efficiently.

Recall that the matrix Mq;i,j is defined as a linear map from Vq; i,j to itself. Since Vq; i,j is made up of
21 elements from level q + 1, Mq;i,j has a 21 × 21 block structure. From its 2 × 2 block structure formed
by Iq; i,j and Bq; i,j, it induces

10

Segment size s 31 63 127 255 511 1023 2047
A−1 8 9 11 12 13 15 16
B 10 11 13 15 16 18 –
S 10 11 13 15 16 18 19

Table 1: The maximum numerical ranks for factorized matrices in square off-diagonal
blocks observed while solving −∆u = f with εa = 10−12 and εr = 10−6. These grow
like O(log s).

• a 5× 5 block structure for Aq;i,j,

• a 16× 5 block structure for Bq;i,j, and

• a 16× 16 block structure for Cq;i,j and Sq;i,j,

where each block in all three cases represents the interaction between two elements on level q + 1. If the
interaction is between two disjoint blocks, the block is then stored in factorized form since it is considered
off-diagonal. For example, as Bq;i,j is between Iq; i,j and Bq; i,j, all its blocks are in factorized form.

If the interaction is a self-interaction, the hierarchical matrix structure is used. For example, the large
diagonal blocks of Aq;i,j, Cq;i,j, and Sq;i,j represent interaction between a segment element Eq+1; i,j on level
q+1 and itself and they are hence in hierarchical form. The hierarchical structure of these blocks naturally
appears from the geometric decomposition discussed in Section 2. Let us recall that each segment Eq+1; i,j

(above the leaf level) is decomposed into the union of two segments and a corner from level q+1. Using this
decomposition, the self-interaction of this segment can be naturally represented as a 3 × 3 block matrix,
with each block representing the interaction between the constituting elements from level q + 1. Each
off-diagonal block can be represented in the low-rank factorized form, while the two large diagonal blocks
associated with two segments from level q + 1 are again represented as 3× 3 block matrices hierarchically
if level q+ 1 is above the leaf level. A typical example is illustrated in Figure 4. The decomposition of the
whole Mq;i,j matrix is illustrated in Figure 5.

One extra important structure appears in Sq;i,j : Bq; i,j → Bq; i,j. Recall that the boundary Bq; i,j also
has a decomposition in terms of eight elements on level q, which implies that the matrix Sq;i,j also has an
8 × 8 block decomposition on level q. The transformation of the 16 × 16 decomposition of Sq;i,j into its
8× 8 decomposition is an important part of our algorithm and will be detailed later.

3.1. Algorithms

Under our geometric hierarchical setup, the multifrontal factorization of M with hierarchical matrices
takes two stages

1. At the leaf level we calculate MQ;i,j, which is the restriction M to DQ; i,j, and then perform the Schur
complement to obtain SQ;i,j.

2. Move up level by level combining the 4 child Sq+1;i′,j′ matrices into the matrix Mq;i,j which again,
after the Schur complement, provides the matrix Sq;i,j of the parent block.

Algorithm 1 shows how the factorized form of M is constructed. Here we use the following convention of
referring to a submatrix: if G ∈ R|J |×|J | is a matrix whose rows and columns are labeled by the index set
J then for X ⊂ J we write G(X ,X) ∈ R|X |×|X | for the submatrix of G consisting of the rows and columns
in X . Manipulating this matrix affects the underlying values in G.

11

~_

~_

factorized form as the product of
Low rank submatrix approximated in

two smaller matrices

Figure 4: Hierarchical subdivision of the sub-block of a matrix representing a segment-
segment self-interaction.

Algorithm 1 (Setup the factorization of M).

1: for i = 0 to 2Q − 1 do
2: for j = 0 to 2Q − 1 do
3: Calculate the matrix MQ;i,j as in (2).
4: Invert AQ;i,j using dense matrix methods.
5: SQ;i,j ← CQ;i,j −BQ;i,jA

−1
Q;i,jB

t
Q;i,j

6: Store A−1Q;i,j, BQ;i,j and SQ;i,j

7: end for
8: end for
9: for q = Q− 1 to 1 do
10: for i = 0 to 2q − 1 do
11: for j = 0 to 2q − 1 do
12: Start with zero Mq;i,j

13: for i′ = 0, 1 do
14: for j′ = 0, 1 do
15: Mq;i,j(Bq+1; 2i+i′,2j+j′ ,Bq+1; 2i+i′,2j+j′)←Mq;i,j(Bq+1; 2i+i′,2j+j′ ,Bq+1; 2i+i′,2j+j′)+Sq+1;2i+i′,2j+j′

16: end for
17: end for

18: Define Mq;i,j =

(
Aq;i,j Bt

q;i,j

Bq;i,j Cq;i,j

)
19: Invert Aq;i,j
20: Sq;i,j ← Cq;i,j −Bq;i,jA

−1
q;i,jB

t
q;i,j

21: Store A−1q;i,j and Bq;i,j

22: Merge and Store Sq;i,j
23: end for

12

Boundary

2,3

1,0

3,0

1,4

3,4

10

4,4

Interior

4 5 6

8

9

7

1 2 3

15 16

13 14

12

11

10iii

iv

vi ii

4

3

2

1

0

0 1 2 3 4offsets

Element

Segment
Combined

0,3

0,1

4,1

4,3
0,0
4,0
0,4

4,2

0,2

2,4

2,0

1,2

3,2

2,1

i ii iii iv v 97 118521 3 4 6 12

2,2

Factorized

Hierarchical

Dense

14 15 1613

H

H

H

H
H

H

H
H

H

H

H
H

H

Figure 5: Block decomposition of Mq;i,j into 21 = 5 + 16 blocks. The relative sizes of segments and corners
is typical of leaf elements and in general for higher levels the segments would be much more dominant. On
the top we have labeled the blocks sequentially using i to v for the interior and 1 to 16 for the boundary
with the corresponding elements numbered in the accompanying diagram. On the left we have used the
element offsets 0, 0 to 4, 4.

24: end for
25: end for
26: Start with zero M0;0,0

27: for i′ = 0, 1 do
28: for j′ = 0, 1 do
29: M0;0,0(B1; i′,j′ ,B1; i′,j′)←M0;0,0(B1; i′,j′ ,B1; i′,j′) + S1;i′,j′

30: end for
31: end for
32: Invert A0;0,0

33: Store A−10;0,0

The step Merge Sq;i,j in Algorithm 1 is required because, as we mentioned earlier, one needs to reinter-
pret the 16× 16 block structure corresponding to the 16 boundary elements at level q+ 1 as an 8× 8 block
structure corresponding to the 8 merged boundary elements on level q. While the 4 corner vertices are un-

13

affected, the segment-corner-segment merging of child elements is reflected in combining 3× 3 submatrices
into a new submatrix. The vertex ordering we built up from the leaf level ensures that, in fact, these 9
submatrices form a contiguous 3 × 3 group. Thus no rearrangement of the rows and columns of Sq;i,j is
required. In terms of the hierarchical matrix representation, if the new submatrix is on the diagonal and
should have a hierarchical representation this is achieved by simply reinterpreting the 3 × 3 submatrices
as part of a new hierarchical decomposition. On the other hand, if the new submatrix is off-diagonal and
should be represented in factorized form, this “recompression” can be performed efficiently using QR fac-
torizations since the major parts are already in factorized form. These two cases are illustrated graphically
in Figure 6.

Reinterpret as Hierarchical Recompress as Factorized

H
H H

Figure 6: Illustration of two components of the merge procedure, reinterpreting a
group of matrices as hierarchical and recompressing into a new factorized form.

Note that this merge step is only required to maintain the expected complexity of the hierarchical
matrix algebra. The usual permutations and “extend-add” operations of general multifrontal approaches
are avoided because the node ordering and hierarchical division of our matrices is built up from the lowest
level to be compatible with the nested disection. Step 15 of Algorithm 1 which adds together the child
Sq+1;i′,j′ matrices is the analogue of “extend-add” but is mainly injection with some dense matrix addition.
The geometric separation of the child domains ensures that at most one of the child Sq+1;i′,j′ matrices
contributes to any of the 8× 8 un-merged child segment-segment interactions in the parent Mq;i,j. While
the illustration in Figure 5 features segments that are the same size and aligned with each other we shall
see later in Section 4 that our algorithm does not rely on all the segments being the same size or aligned
with a grid. The resulting pattern of entries in the parent Mq;i,j block matrix follows from the topological
relationships of exactly four shared segments from the children meeting in the central corner (away from
the domain boundaries) and the segment-corner-segment child elements on the parent boundary combining
to form the parent segments.

To solve the original Mu = f , we compute u = M−1f using the multifrontal decomposition of the
matrix M−1:

M−1f = L−tQ L
−t
Q−1 · · ·L

−t
1

A−1Q

A−1Q−1
. . .

A−11

A−10

L−11 · · ·L−1Q−1L
−1
Q f.

To carry out this calculation, we first apply each factor L−1Q;i,j in L−1Q , then those from L−1Q−1 and so on. Once

we have completed all the L−1q;i,j, we apply the diagonal blocks A−1q;i,j, and then all the L−tq;i,j for q = 1 . . . Q.

14

If we write uIq; i,j for the (consecutive) group of components of u corresponding to the set of vertices Iq; i,j,
and similarly uBq; i,j , then the solution can be calculated as in Algorithm 2 where we combine the action
of A−1q;i,j and L−1q;i,j since they are the only ones which affect uIq; i,j on the first pass from the leaves to the
root of the tree.

Algorithm 2 (Solving Mu = f).

1: u← f
2: for q = Q to 1 do
3: for i = 0 to 2q − 1 do
4: for j = 0 to 2q − 1 do
5: uIq; i,j ← A−1q;i,juIq; i,j
6: uBq; i,j ← uBq; i,j −Bq;i,jA

−1
q;i,juIq; i,j

7: end for
8: end for
9: end for
10: uI0; 0,0 ← A−10;0,0uI0; 0,0
11: for q = 1 to Q do
12: for i = 0 to 2q − 1 do
13: for j = 0 to 2q − 1 do
14: uIq; i,j ← uIq; i,j − A−1q;i,jBt

q;i,juBq; i,j
15: end for
16: end for
17: end for

3.2. Implementation details

In our implementation, the matrices at several lowest levels are in fact represented as dense matrices,
instead of hierarchical matrices. This is to avoid small dense matrix computations and to achieve the best
complexity at several lowest levels (see the discussion on page 300 of [11]).

We refer the reader to [10] for details on hierarchical matrix operations but present some aspects of
our implementation. The underlying dense matrix algebra is performed using BLAS and LAPACK (in
particular Intel’s MKL), for example matrix inversion of dense matrices is performed via LU-factorization.

The inversion of a hierarchical matrix proceeds using row operations on the block structure. This
requires the inversion of the hierarchical matrices on the diagonal and so the problem is recursive. The
recursion ends when the matrices on the diagonal are dense and no longer hierarchical, and then the inver-
sion is performed using the dense matrix techniques described above. Thus inversion requires hierarchical
matrix multiplication and addition which we now discuss.

We utilize a simplified one dimensional setting with bisection to illustrate the approach.
The index set J 0

1 is partitioned hierarchically with bisection which stops when each set J `
i contains

only a small number of indices. We denote the restriction of a matrix G to J `
i and J `

i′ by G`
i,i′ .

Matrix addition and subtraction. Consider the sum of two matrices G and H with their off-diagonal
factorizations denoted by G`

i,j ≈ U `
i,j(V

`
i,j)

t and H`
i,j ≈ X`

i,j(Y
`
i,j)

t. Under the block matrix notation, the
sum is (

G1
1,1 G1

1,2

G1
2,1 G1

2,2

)
+

(
H1

1,1 H1
1,2

H1
2,1 H1

2,2

)
=

(
G1

1,1 +H1
1,1 G1

1,2 +H1
1,2

G1
2,1 +H1

2,1 G1
2,2 +H1

2,2

)
.

15

Figure 7: 1D domain decomposition into sets J `
i at level `, with corresponding self-

interaction matrix decomposition at level 4. The dark blocks are dense while the
others are low rank and can be represented in factorized form.

First,
G1

1,2 +H1
1,2 ≈ U1

1,2(V
1
1,2)

t +X1
1,2(Y

1
1,2)

t =
(
U1
1,2 X

1
1,2

) (
V 1
1,2 Y

1
1,2

)t
.

Notice that the new factorized form for the sum will have an increased size compared to those for G1
1,2

and H1
1,2. One needs to recompress the last two matrices in order to prevent the size of the low rank

factorization from increasing indefinitely. More precisely, if U1
1,2 has width r1 and X1

1,2 has width r2, then

using (U1
1,2 X

1
1,2) = QR and (V 1

1,2 Y
1
1,2) = Q̃R̃, the sum we seek is QR(Q̃R̃)t = Q(RR̃t)Q̃t, and we need

only perform the SVD, RR̃t = ŪΣ̄V̄ t, on a square matrix of size r1 + r2. Finally the resulting factors for
the sum will have width r′ ≤ r1 + r2 if we keep r′ of the singular values (and associated columns from Ū
and V̄) for our truncated SVD. Thus(

U1
1,2 X

1
1,2

) (
V 1
1,2 Y

1
1,2

)t
= QŪΣ̄︸ ︷︷ ︸

width r′

(Q̃V̄︸︷︷︸
width r′

)t

The same procedure is carried out for G1
2,1 +H1

2,1 to compute the necessary factorization.
Second, let us consider the diagonal blocks. G1

1,1 +H1
1,1 and G1

2,2 +H1
2,2 are done recursively since they

are two sums of a similar nature to our original sum, but of smaller size. Eventually the diagonal blocks
are dense and standard matrix addition is performed.

Matrix-vector multiplication. Assuming the vector is also decomposed according to the index sets block
multiplication is performed. The two matrices from each factorized off-diagonal form are dense and the
on-diagonal hierarchical matrices are treated recursively. Eventually the diagonal blocks are dense and
standard matrix-vector multiplication is performed. It should be clear that a similar procedure works for
vector-matrix multiplication

Matrix multiplication. Let us consider the product of two matrices G and H with their off-diagonal fac-
torizations given again by G`

i,j ≈ U `
i,j(V

`
i,j)

t and H`
i,j ≈ X`

i,j(Y
`
i,j)

t. In block matrix form, the product
is (

G1
1,1 G1

1,2

G1
2,1 G1

2,2

)
·

(
H1

1,1 H1
1,2

H1
2,1 H1

2,2

)
=

(
G1

1,1H
1
1,1 +G1

1,2H
1
2,1 G1

1,1H
1
1,2 +G1

1,2H
1
2,2

G1
2,1H

1
1,1 +G1

2,2H
1
2,1 G1

2,1H
1
1,2 +G1

2,2H
1
2,2

)
.

16

First, the off-diagonal block

G1
1,1H

1
1,2 +G1

1,2H
1
2,2 ≈ G1

1,1X
1
1,2(Y

1
1,2)

t + U1
1,2(V

1
1,2)

tH1
2,2.

The computation G1
1,1X

1
1,2 is multiplication of a hierarchical matrix with a dense matrix with a small

number of columns and proceeds in essentially the same way as matrix-vector multiplication and similarly
(V 1

1,2)
tH1

2,2 mimics vector-matrix multiplication. Once they are done, the remaining sum is then similar to
the sum of the factorized off-diagonal parts of the matrix addition algorithm. The other off-diagonal block
G1

2,1H
1
1,1 +G1

2,2H
1
2,1 is done in the same way.

Next, consider the diagonal blocks. Take G1
1,1H

1
1,1 +G1

1,2H
1
2,1 as an example. The first part G1

1,1H
1
1,1 is

done using recursion. The second part is

G1
1,2H

1
2,1 ≈ U1

1,2 (V 1
1,2)

tX1
2,1︸ ︷︷ ︸ (Y 1

2,1)
t.

Performing the middle product first minimizes the computational cost. The final sum G1
1,1H

1
1,1 +G1

1,2H
1
2,1

is done using a matrix addition algorithm similar to the one described above. The same procedure can be
carried out for the computation of G1

2,1H
1
1,2 +G1

2,2H
1
2,2.

In general the hierarchical Schur complement matrices on level q combine in groups of 4 by injection
and addition to form the hierarchical matrix on level q−1 (see Figure 5 for the typical structure of this new
hierarchical matrix). The Schur complement calculation then involves hierarchical matrix operations and
results in a new hierarchical matrix representing the Schur complement. Only for the lowest levels where
we have chosen to use dense matrices instead of hierarchical ones will the Schur complement be dense.

3.3. Complexity

For the complexity analysis, recall that a leaf node at level Q contains (P + 1)× (P + 1) vertices and
N ' (P2Q)2 = P 222Q = O(22Q). Here all logarithms are taken with base 2.

At level q, the size of a segment element is s(q) = P2Q−q = O(2Q−q), therefore the matrices Mq;i,j,
Aq;i,j, Bq;i,j, Cq;i,j, and Sq;i,j are all of dimension O(s(q)). A crucial quantity is the rank of the off-diagonal
blocks of these matrices. In our case the rank varies within the hierarchical form but we have observed
that the rank increases logarithmically with segment size, so that the maximum rank will be O(log s(q)).
This agrees with the experimental observations of Börm [15] regarding the ranks of the factorized blocks
for the inverse of an elliptic operator, although he found a theoretical bound of O((log s(q))3). To cover
both the observed and theoretical bounds we will continue our analysis with the general ansatz that the
rank will be O((log s(q))ρ) for some integer ρ ≥ 1.

In Algorithm 1, the dominant computation is the formation of the Schur complement for each block
Dq; i,j, which involves inversion, multiplications, and addition of hierarchical matrices. The cost of these
operations is given in [11] as O(r2(log n)2n) where r is the maximum rank of the factorized parts, n × n
the full size of the matrix and log(n) the number of block subdivisions (depth of the decomposition tree)
in the hierarchical form. In our case, since r = O((log s(q))ρ) and n = O(s(q)), this is equal to

O((log s(q))2ρ · (log s(q))2 · s(q)) = O((log s(q))2ρ+2 · s(q)).

Now, since there are 22q Schur complements at each level and Q levels in total, the overall cost of Algorithm
1 is on the order of

Q∑
q=0

(Q− q)2ρ+2 · 2Q−q · 22q = O(22Q) = O(N).

17

In Algorithm 2, the dominant cost is the matrix vector multiplication in the hierarchical matrix form.
In [11], this cost is shown to be of order O(r2(log n)2n) where r is again the maximum rank of the factorized
parts, n× n is the size of the matrix. At level q, r = O((log s(q))ρ) and n = O(s(q)), and the cost is

O((log s(q))2ρ · log s(q) · s(q)) = O((log s(q))2ρ+1 · s(q)).

Summing this cost over 22q Schur complements at each of Q levels gives the cost of Algorithm 2:

Q∑
q=0

(Q− q)2ρ+1 · 2Q−q · 22q = O(22Q) = O(N).

To further speed up the addition of the hierarchical matrices one can use probabilistic [16] low-rank
approximants instead of those calculated via SVD, but in the multiplication of two factorized low-rank
matrices of size n× n and rank r we still need O(nr2) multiplications.

3.4. Numerical Results

All numerical tests are run on a 2.13GHz processor. Execution times are measured in seconds for the
Setup phase (Algorithm 1) and the Solve phase (Algorithm 2).

To test our algorithm we setup the factorized form of M and solve 100 random problems generated as
follows: Select x? ∈ RN with independent standard normal components, and calculate f = Mx? using the
sparse original M . Then solve Mx = f and determine the worst relative L2 error

||x− x? ||2
||x? ||2

over the 100 samples.
Following [10] we construct the low rank approximations at the hierarchical levels using common matrix

manipulations such as QR and SVD. During these procedures we keep only (the part of the decomposition
corresponding to) those singular values

1. larger than the absolute cutoff εa and

2. within the relative cutoff εr of the largest singular value.

Addition and multiplication of hierarchical matrices also involves these kinds of truncated SVD. These two
parameters, εa and εr, can be varied depending on the specific problem and the desired accuracy of the
output.

The first test is the Laplace equation −∆u = f on [0, 1]2 with zero Dirichlet boundary condition. In
Table 2 we show how the setup time and the error vary using fixed εa = 10−12 and various choices of εr.
The resulting error compares well with the chosen value of εr, with each improvement of 10−2 on εr costing
about a 5% increase in runtime. The increase in runtime from N = 16129 to N = 16769025 is reasonably
close to the expected linear increase of 4 each step.

Notice from the results in Table 2 that the error increases slightly with N ([8] experienced a similar
increase). To compensate for this, we can reduce εr as N increases as shown in the second test, which uses
fixed εa = 10−12 and starts with εr = 10−6 . The results in Table 3 show that the reduction of εr results
in a minor impact on computational cost. Because a smaller εr implies higher ranks, the runtime scaling
is slightly worse for the second set, but still close to the ideal factor of 4. The error remains relatively
constant as desired. Alternatively, one could use our solver as a preconditioner for PCG or GMRES if

18

εr = 10−4 εr = 10−6 εr = 10−8 εr = 10−10

N Q Setup Error Setup Error Setup Error Setup Error

16129 4 0.84 1.34e-04 0.84 1.47e-06 0.85 8.22e-09 0.84 5.24e-11

65025 5 3.75 2.66e-04 3.85 2.13e-06 3.92 2.70e-08 3.94 1.70e-10

261121 6 16.14 7.60e-04 16.84 5.68e-06 17.27 5.37e-08 17.63 4.07e-10

1046529 7 67.59 1.37e-03 71.23 1.58e-05 72.76 9.60e-08 75.72 1.05e-09

4190209 8 282.24 2.38e-03 295.41 2.77e-05 306.69 2.99e-07 320.26 2.29e-09

16769025 9 1167.50 4.62e-03 1226.11 6.38e-05 1277.76 4.56e-07 1337.95 6.49e-09

Table 2: Numerical results for a uniform mesh on [0, 1]2 using εa = 10−12 and various
choices of εr for −∆u = f .

εr = 10−6 Halved each step

N Setup Solve Error Setup Solve Error

16129 0.84 0.02 1.47e-06 0.85 0.02 1.47e-06

65025 3.85 0.11 2.13e-06 3.86 0.11 9.41e-07

261121 16.84 0.49 5.68e-06 16.93 0.49 1.44e-06

1046529 71.23 2.08 1.58e-05 72.39 2.06 1.32e-06

4190209 295.41 8.89 2.77e-05 305.49 8.90 1.46e-06

16769025 1226.11 36.90 6.38e-05 1266.18 36.74 1.16e-06

Table 3: Numerical results for a uniform mesh using εa = 10−12 and εr = 10−6 for
−∆u = f . In the second set of results εr was initially 10−6 for N = 16129 and then
it was halved for each increase in size.

better accuracy is desired. Plotting runtime against N on a log-log plot as in Figure 8 allows us to compare
the growth in runtime for the setup and solve algorithms with linear growth.

In the third test reported in Table 4 we solve −div(a(x)∇u) = f on [0, 1]2 with zero Dirichlet boundary
condition for a more general a(x) which jumps between 10−2 and 102 with εa = 10−12 and εr = 10−10

rather than εr = 10−6 to accommodate the jumps of order 104 in a(x). The runtime scaling is again close
to the optimal value and the error is well controlled.

In the fourth test with results shown in Table 5 we study the case of positive V (x) in −∆u+V (x)u = f .
One experiment uses V (x) chosen uniformly in [0, 105], while the second experiment uses V (x) that takes
value 0 on 95% of the triangles and 105 on the remaining 5%. The scaling for the two scenarios is very
similar but the one with the jumps is slightly slower.

In the fifth test displayed in Table 6 we show how the algorithm can be extended to slightly more
general V (x) which are chosen uniformly in [−100, 100] and [−100, 0]. In the latter case we set εr = 10−8

in order to maintain an error near our target 10−6. This demonstrates that, while some adjustments have
to be made for a non-positive definite system, the algorithm still works well with close to optimal runtime
scaling.

19

10
4

10
5

10
6

10
7

10
8

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

N

T
im

e
(s

)

Linear

Setup

Solve

Figure 8: A log-log plot of the time taken for the setup and solve phases of the
algorithm against the number of degrees of freedom, along with t = 10−5N for com-
parison.

N Setup Solve Error

16129 0.86 0.02 6.24e-06

65025 3.94 0.11 1.21e-05

261121 17.54 0.51 3.15e-05

1046529 74.95 2.25 8.21e-06

4190209 317.93 9.95 1.26e-06

Table 4: Numerical results for a uniform mesh on [0, 1]2 using εa = 10−12 and εr =
10−10 for −div(a(x)∇u) = f where a(x) jumps by 104 from one subset of the domain
to another, more specifically a(x) ≡ 10−2 except for two regions [0.25, 050]2 and
[0.50, 0.75]2 where a(x) ≡ 102.

4. Quasi-uniform Mesh

In this section, we discuss how to extend the approach described above to quasi-uniform meshes, which
are those with

1. the angles of every triangle uniformly bounded away from zero, and

2. a bounded ratio between the area of the largest and smallest triangles.

Common ways to extend algorithms involving nested disection to unstructured meshes [8, Sec 4.6] use
graph partitioning algorithms, such as in [17] or other algebraic [18] methods to determine a node ordering
and hierarchical disection. However, there is little control over the topology of the resulting disection and
the meeting of separators from different levels. Since our method relies strongly on the clean geometric

20

V uniformly in [0, 105] V jumps between 0 and 105

N Setup Solve Error Setup Solve Error

11618 0.79 0.02 3.78e-09 0.90 0.02 4.31e-08

46865 3.96 0.11 1.44e-08 4.26 0.13 9.16e-08

188249 17.17 0.52 3.69e-08 18.26 0.48 1.42e-07

754577 75.72 2.30 8.67e-08 79.79 3.02 2.80e-07

3021473 332.44 7.94 1.75e-07 353.59 11.65 6.51e-07

Table 5: Results for −∆u+ V (x)u = f with a positive V (x). Here we use εa = 10−12

and εr = 10−6. In the first set of results V (x) is chosen uniformly in [0, 105] and in
second set of results V (x) is identically 105 on a randomly chosen 5% of the triangles
and identically 0 on the remaining 95%.

V uniformly in [−100, 100] V uniformly in [−100, 0]

εr = 10−6 εr = 10−8

N Setup Solve Error Setup Solve Error

16129 0.95 0.03 1.47e-06 1.01 0.03 8.37e-07

65025 4.09 0.13 2.12e-06 4.58 0.15 7.03e-06

261121 18.49 0.55 5.74e-06 20.33 0.66 3.07e-06

1046529 78.28 2.34 1.57e-05 86.69 2.78 6.29e-06

4190209 328.57 9.98 2.77e-05 369.58 11.78 9.55e-06

Table 6: Slightly more general V (x) is also possible. Here are the results for an
aligned Cartesian mesh using εa = 10−12 for −∆u + V (x)u = f , where for small
negative V (x) we have to adjust εr to maintain the error around 10−6.

hierarchy to provide a node ordering and permutation free matrix algebra we introduce our own, more
geometric, approach that preserves the relationship between segments and corners and their parents and
children in the resulting geometric hierarchy.

4.1. Algorithm

We first decompose the triangles into a hierarchical structure as follows. Cartesian grid lines are overlaid
on the domain, dividing it into 2Q × 2Q blocks as the uniform case. Now triangles may fall partly in one
of these areas and partly in another. So the contiguous blocks of faces are chosen by assigning a triangle
to the block in which its centroid falls. The vertices of all the triangles in the block form the vertex set for
that block.

In the quasi-uniform case the vertex classification is slightly more difficult because blocks may meet
at a vertex which is shared by only 3 blocks instead of the consistent 4 blocks in the uniform case. This
situation is illustrated in Figure 9. To overcome this issue we introduce the notion of a generalized corner,
which can be a group of vertices instead of a single one. This concept allows us to recover the regular

21

relationship between segments and corners that we observed in the uniform setting where 4 segments meet
at a corner. Now similar to the Cartesian case, the vertices VQ; i,j can be classified into three types of
elements:

• Facet element, which includes the vertices contained only in 1 block.

• Segment element, which includes the vertices on the border between 2 blocks.

• Generalized corner element, which includes the vertices shared by at least 3 blocks near a corner.

This definition can lead to generalized corners with more than 1 vertex, but at most a small number such
as 3. Once this classification is available, we can define the elements EQ; i,j, the interior set IQ; i,j, and the
boundary set BQ; i,j as before. The relative sizes of segments and corners is not affected too much and the
contribution of the corners to BQ; i,j and IQ; i,j is still much less than that of the segments. In Figure 10
(left) we illustrate that 4 out of the 9 generalized corners contain more than one vertex.

Figure 9: 4 blocks meeting in a generalized corner.

Note that, though the number of vertices on a particular segment between two generalized corners
may vary, the topological relationship between the four segments and four corners surrounding the facet
is the same as in the aligned Cartesian case. Though there are alternative approaches to the domain
decomposition that avoid the introduction of the cornering vertices, our scheme has the advantages of
allowing the boundary between two blocks to be shared easily and leading to natural hierarchical groupings
of segment-corner-segment. Other schemes can lead to double boundary layers and difficult groupings. We
could also use a decomposition similar to the one in [8] where the domain is divided into two pieces each
time, alternating between directions parallel to one axis and then the other. This leads to a tree of double
the depth and the need to handle two different forms of lifting values from the matrices corresponding to
one level to the level above (merging the parts in the Schur complement matrices and combining two child
Schur complement matrices into the parent matrix). Once EQ; i,j, IQ; i,j, BQ; i,j are available, we can define
these sets for higher level blocks, similar to what has been done in the uniform Cartesian case.

22

640 combined interior 124 combined interior

64 interior

640 combined interior

124 combined interior

64 interior

828 Total on finest layer

Level 1

Level 0

Level 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0

0

0

00000

0

0

0

0

0

0

0

0

0

00000000

0

0

0

0

0

0

0 0

0

0

0

00

0

0 0

0 46 8 41 7 43 6 39

7

45

7

39

8

38844639640

7

48

9

38

10 1 8 2

7

1

7

28261

7

7

2 5 1 7

33933

39 7 35

8 1

1

17

15

30

33

34

27

64

Level 0

Level 1

Level 2

16 (9+2+5) 15 (7+1+7)

Figure 10: Decomposition of a quasi-uniform mesh illustrating the use of generalized
corners. Left: the block structure at the leaf level. Right: the sizes of Vq; i,j, Iq; i,j,
and Bq; i,j at different levels.

While the sizes of the segments may vary the hierarchical relationship is still the same and all the main
steps of the algorithm go through as before. Algorithms 1 and 2 depend only on the definition of the
combinatorial relationship between the elements Eq; i,j. Thus the block decomposition of the matrices and
Algorithms 1 and 2 apply without major modification. The changes to be aware of include allowing for
variable size corners (all corners in the uniform case have exactly size 1) and segments, and making the
merging procedure more flexible.

Now in the more general case, when the lengths of the segments are not equal, the analysis would be
harder but to obtain the same complexity we need only have the average segment size on a level halve
each time and the range of segment sizes be bounded by multiples of the average. This would ensure that
our decomposition tree would remain the same sort of logarithmic depth and the ranks of the off-diagonal
blocks will grow at the same sort of rate.

4.2. Numerical Results

The first test on a quasi-uniform mesh on [0, 1]2 is for the equation −div(a(x)∇u) = f where a(x)
is a constant on each triangle chosen independently and uniformly from [10−2, 102]. The results with
εa = 10−12 and εr = 10−6 are shown in Table 7. The runtime scaling is almost linear as expected and
the error approximately doubles with each quadrupling of the problem size, as before. The increase of the
error can be remedied easily by decreasing εr as N increases, as shown in the Cartesian case.

The second test is on a more general quasi-uniform mesh on an annulus for −∆u = f using εa = 10−12

and εr = 10−6. The results are shown in Figure 11 with similar scaling and error behavior. Notice that

23

N Setup Solve Error

11618 0.79 0.02 8.21e-07

46865 3.73 0.10 3.05e-06

188249 16.61 0.46 6.53e-06

754577 71.28 1.94 1.18e-05

3021473 306.40 8.43 2.17e-05

Table 7: Numerical results for a quasi-uniform mesh on [0, 1]2 using εa = 10−12 and
εr = 10−6 for −div(a(x)∇u) = f where a(x) is chosen uniformly from [10−2, 102].

there are many small or empty blocks created by the uniform subdivision—we will show how to remedy
this in the next section.

5. Adaptive Decomposition

For more general domains this regular geometric subdivision method may be non-optimal, since some
leaves will have fewer internal vertices than others, if the mesh is denser in some areas than others. It
would increase efficiency to take these things into account when subdividing. In this section we generalize
our approach to the setting of adaptive meshes.

5.1. Domain Decomposition Procedure

In the uniform and quasi-uniform cases, the leaf level elements are determined first and the other
elements are built from the bottom up. Now, since we do not know where and on what level we shall stop
dividing, we have to work from the top down, dividing elements as required.

We start by specifying a constant which is the maximum number of vertices allowed in a leaf block.
The square bounding box of the domain is divided into 4 equally sized pieces and every face is assigned to
a different one of these blocks depending on the position of the centroid. The total number of vertices in
(the faces in) each block is compared to the desired leaf size, and if greater the block is divided again. All
the blocks on the same level are examined and divided as required. Once all these blocks have been visited
the blocks in the next level are evaluated and divided if necessary. Eventually all the blocks will contain
less than the desired amount of (non-boundary) vertices. Let us illustrate the division of leaf elements on
level q into new leaf elements on level q + 1 using the specific example with two neighboring blocks Dq; 0,0
and Dq; 1,0, which cover Eq; i,j (for 0 ≤ i ≤ 4 and 0 ≤ j ≤ 2) and share the elements Eq; 2,j (for 0 ≤ j ≤ 2):

Eq; 0,2 Eq; 1,2 Eq; 2,2 Eq; 3,2 Eq; 4,2

Eq; 0,1 Eq; 1,1 Eq; 2,1 Eq; 3,1 Eq; 4,1

Eq; 0,0 Eq; 1,0 Eq; 2,0 Eq; 3,0 Eq; 4,0

24

N Setup Solve Error

134080 12.83 0.34 1.35e-6

538496 54.27 1.42 3.23e-6

2158336 240.80 5.92 6.12e-6

8642048 1055.56 25.24 1.29e-5

Figure 11: Numerical results for a quasi-uniform mesh on an annulus using εa = 10−12

and εr = 10−6 for −∆u = f .

After dividing Dq; 0,0, we obtain

Eq+1; 0,4 Eq+1; 1,4 Eq+1; 2,4 Eq+1; 3,4 Eq+1; 4,4 Eq; 3,2 Eq; 4,2

Eq+1; 0,3 Eq+1; 1,3 Eq+1; 2,3 Eq+1; 3,3 Eq+1; 4,3
?

Eq+1; 0,2 Eq+1; 1,2 Eq+1; 2,2 Eq+1; 3,2 Eq+1; 4,2
? Eq; 3,1 Eq; 4,1

Eq+1; 0,1 Eq+1; 1,1 Eq+1; 2,1 Eq+1; 3,1 Eq+1; 4,1
?

Eq+1; 0,0 Eq+1; 1,0 Eq+1; 2,0 Eq+1; 3,0 Eq+1; 4,0 Eq; 3,0 Eq; 4,0

25

Firstly, four new leaf corners at the lower level are inherited from the upper level

Eq+1; 0,0 = Eq; 0,0 Eq+1; 4,0 = Eq; 2,0 Eq+1; 0,4 = Eq; 0,2 Eq+1; 4,4 = Eq; 2,2

The leaf facet Eq; 1,1 needs to be divided into 4 new facets, 4 segments and 1 corner at the center

Eq; 1,1 −→

Eq+1; 1,3 Eq+1; 2,3 Eq+1; 3,3

Eq+1; 1,2 Eq+1; 2,2 Eq+1; 3,2

Eq+1; 1,1 Eq+1; 2,1 Eq+1; 3,1

Now the new leaf blocks will have their own sets of internal vertices Iq+1; 0,0, . . . , Iq+1; 1,1 and boundary
vertices Bq+1; 0,0 . . . ,Bq+1; 1,1, so the facets are determined by

Eq+1; 1,1 = Iq+1; 0,0 ∩ Eq; 1,1, Eq+1; 3,1 = Iq+1; 1,0 ∩ Eq; 1,1,
Eq+1; 1,3 = Iq+1; 0,1 ∩ Eq; 1,1, Eq+1; 3,3 = Iq+1; 1,1 ∩ Eq; 1,1.

For convenience, set

B′q+1; 0,0 = Bq+1; 0,0 ∩ Eq; 1,1, B′q+1; 1,0 = Bq+1; 1,0 ∩ Eq; 1,1,
B′q+1; 0,1 = Bq+1; 0,1 ∩ Eq; 1,1, B′q+1; 1,1 = Bq+1; 1,1 ∩ Eq; 1,1.

These are the parts of the boundaries of the new leaves that are inside Eq; 1,1 which will determine the new
leaf elements. Then intersecting 3 at a time and taking the union (recall that our generalized corner is
given where more than 2 blocks meet, and they will meet on their common boundary layers—there are 4
ways to pick 3 blocks to test and so we need to take the union of the 4 possible intersection results)

Eq+1; 2,2 = (B′q+1; 0,0 ∩ B′q+1; 1,0 ∩ B′q+1; 0,1) ∪ (B′q+1; 0,0 ∩ B′q+1; 1,0 ∩ B′q+1; 1,1)

∪ (B′q+1; 0,0 ∩ B′q+1; 0,1 ∩ B′q+1; 1,1) ∪ (B′q+1; 1,0 ∩ B′q+1; 0,1 ∩ B′q+1; 1,1),

we can define the new central corner. From there the 4 new leaf segments between the new leaf facets
will be determined, since we want those vertices where the 2 new leaf blocks meet along their common
boundary but wish to exclude the central corner they may share. Thus

Eq+1; 2,1 = (B′q+1; 0,0 ∩ B′q+1; 1,0) \ Eq+1; 2,2, Eq+1; 2,3 = (B′q+1; 0,1 ∩ B′q+1; 1,1) \ Eq+1; 2,2

and
Eq+1; 1,2 = (B′q+1; 0,0 ∩ B′q+1; 0,1) \ Eq+1; 2,2, Eq+1; 1,2 = (B′q+1; 1,0 ∩ B′q+1; 1,1) \ Eq+1; 2,2.

To determine how the segment Eq; 2,1 is divided into new leaf elements Eq+1; 4,1] Eq+1; 4,2] Eq+1; 4,3 we first
determine the corner that will be created at the middle of the old segment

Eq+1; 4,2 = (Bq+1; 1,0 ∩ Bq+1; 1,1) ∩ Eq; 2,1,

then the new leaf segments above and below will be

Eq+1; 4,1 = (Bq+1; 1,0 ∩ Eq; 2,1) \ Eq+1; 4,2 and Eq+1; 4,3 = (Bq+1; 1,0 ∩ Eq; 2,1) \ Eq+1; 4,2.

26

The breakdown of the other 3 segments on the sides of Eq; 1,1 is similar.
A complication arises because, since segments are shared between neighboring blocks, two blocks may

arrive at a different decomposition of the parent segment into segment-corner-segment. So the segment-
corner-segment group in the middle between the two blocks, the elements Eq+1; 4,1, Eq+1; 4,2 and Eq+1; 4,3, has
been highlighted with ? and # since these elements are only completely determined by the block divisions
on one side if the block on the other side is never further divided.

Eq; 0,2 Eq; 1,2 Eq+1; 4,4 Eq+1; 5,4 Eq+1; 6,4 Eq+1; 7,4 Eq; 8,4

Eq+1; 4,3
Eq+1; 5,3 Eq+1; 6,3 Eq+1; 7,3 Eq; 8,3

Eq; 0,1 Eq; 1,1 Eq+1; 4,2
Eq+1; 5,2 Eq+1; 6,2 Eq+1; 7,2 Eq; 8,2

Eq+1; 4,1
Eq+1; 5,1 Eq+1; 6,1 Eq+1; 7,1 Eq; 8,1

Eq; 0,0 Eq; 1,0 Eq+1; 4,0 Eq+1; 5,0 Eq+1; 6,0 Eq+1; 7,0 Eq; 8,0

So we may, for example, find Eq+1; 4,1
? 6= Eq+1; 4,1

#. To resolve this, if another decomposition already exists
we intersect the two tentative segments as follows

Eq+1; 4,1 = Eq+1; 4,1
? ∩ Eq+1; 4,1

and Eq+1; 4,3 = Eq+1; 4,3
? ∩ Eq+1; 4,3

#

to form the new leaf segments. The middle corner is then found from

Eq+1; 4,2 = Eq; 2,1 \ (Eq+1; 4,1] Eq+1; 4,3),

which has the effect of possibly increasing the size of this element

Eq+1; 4,2 ⊇ Eq+1; 4,2
? ∪ Eq+1; 4,2

#.

This approach is clearly motivated by the idea of the generalized corner introduced in Section 4. Now all
four affected child blocks which meet at this corner have consistent boundary elements. In Figure 12 we
show part of a mesh illustrating this phenomenon.

Once the adaptive decomposition is complete, elements occur at all levels, some of which are the
boundaries of blocks which have since been divided, i.e. they are not leaf elements and have children.
These are deleted, leaving only a consistent decomposition of all the vertices into leaf elements (which may
not have similar sizes or depths in the tree). Then, as in the non-adaptive case, the segments and corners
on all levels above the leaves are built up by taking ordered sequences of vertices for the child elements
and merely copying them in the case of parent corners, or concatenating them to form the segment-corner-
segment structure of the parent segment.

The factorized form of M in the adaptive case has a similar structure to the uniform case except that
each level is no longer full and leaves, with their associated dense matrices, can occur on various levels.
Again we proceed level by level starting from the deepest occupied level Q, and construct the products

Lq :=
∏
i,j

Lq;i,j and the factorization

M = LQ

(
AQ

SQ

)
LtQ = LQLQ−1

AQ AQ−1
SQ−1

LtQ−1L
t
Q,

27

Figure 12: The common segment (left) on the border between the two sides (a) and
(b) is divided differently from the top and from the bottom, this division is reconciled
by reducing the length of the child segments and increasing the central corner to 2
vertices.

where AQ : IQ → IQ, AQ−1 : IQ−1 → IQ, and SQ−1 : (IQ]IQ−1)c → (IQ]IQ−1)c. The remaining vertices
in the block decomposition are no longer simply the boundary of level Q− 1 but the whole domain is still
the disjoint union of all the Iq and we get as before

M = LQLQ−1 · · ·L1

AQ

AQ−1
. . .

A1

A0

Lt1 · · ·LtQ−1LtQ,

where Aq : Iq → Iq. As before, the matrices Aq are block diagonal once we collect all the non-empty Iq; i,j
in a given order for each level q.

In the adaptive case it may happen that two segments may not be subdivisible to the same degree, and
so the corresponding submatrices will be subdivided further with respect to the rows than columns (or vice
versa) as illustrated in Figure 13. This means that our choice of hierarchical matrix structure does not
follow a common pattern among all the child Sq+1;i′,j′ matrices that we wish to combine into the parent
Mq;i,j matrix. Thus when we perform the multiplications required for the Schur complement we may have
to merge and split blocks so that the two hierarchical matrices we wish to multiply become compatible.

5.2. Complexity

The complexity analysis in the adaptive case is much harder because we have little control over how
segment sizes are distributed and how deep the decomposition tree may be. The cost of hierarchical matrix
multiplication depends on the number of steps in the hierarchical decomposition. If this grows linearly
instead of logarithmically with N we expect worse performance. The actual scaling will depend on the
depth of the tree in various areas and how those trees are combined. Our numerical experiments suggest

28

Figure 13: Hierarchical matrix representing the interaction between segments with
different subdivisions.

that the algorithm will retain linear or almost linear scaling as long as the difference between the least and
most refined areas of the mesh is no more than 10 steps which seems reasonable for most meshes. Further
investigation may reveal the precise characteristics of meshes retaining good performance.

Similarly the cost of the actual decomposition process depends on the number of times a vertex appears
before the leaf level and how densely populated the boundaries of the decomposition regions are compared
to the interiors (each vertex has to be checked on every level it appears and the set manipulations cost
s log s for sets of size s). This would usually lead to O(N logN) or O(N log2N) but if the mesh density
increases too quickly near a particular point there may only be a constant number of vertices in the
leaves at each level leading to a very deep decomposition and worse scaling. If this becomes a problem
in practice the cost could be amortized over potentially numerous calculations on the same mesh or
consolidated with an h-adaptive scheme. By integrating with the mesh subdivision process one could use
the added information about the distribution of the newly created vertices to choose the two dividing lines
to approximately equalize the number of vertices in each of the 4 resulting subblocks instead of simply
choosing the midpoints to obtain 4 equal areas.

5.3. Numerical Results

While the observed scaling remains very similar, the actual runtime depends on the choice of leaf size.
Increasing leaf size (and memory consumption) improves runtime up to a certain point, and then the dense

29

calculations start to dominate and runtime increases again. In Table 8 we show the results of the uniform
and adaptive approach to solving −∆u = f using εa = 10−12 and εr = 10−6 for a non-uniform square
similar to the one in Figure 14. The runtime scaling and value is the best for the adaptive approach with
maximum leaf size 350 while for our largest example the comparable uniform and adaptive versions, with
respective maximum leaf sizes 309 and 300, demonstrate a decrease of about 1/3 in runtime from 514.67
to 347.38 using the adaptive approach.

Figure 14: An adaptive decomposition of a mesh showing leaf blocks on various levels.

Finer Coarser Adaptive

N Q
Max

Setup Q
Max

Setup
Maximum Leaf Size

Leaf Leaf 200 300 350 400

14689 5 77 2.23 4 239 1.12 0.83 0.76 0.78 0.79

59201 6 86 10.52 5 269 5.61 4.03 3.62 3.71 3.78

237697 7 88 47.66 6 291 26.18 18.72 16.46 16.19 16.66

952577 8 89 206.89 7 303 116.50 85.45 76.58 73.11 74.32

3813889 9 90 897.74 8 309 514.67 386.87 347.38 308.77 335.34

Table 8: Setup times for a non-uniform square using εa = 10−12 and εr = 10−6

for −∆u = f . The first 2 sets are from the non-adaptive approach with variable
maximum leaf size, and the second 4 from the adaptive approach with indicated
maximum leaf size.

Another type of mesh for which the adaptive approach is suited is one that has been selectively refined

30

and the ratio of largest to smallest triangles is quite large such as in the case illustrated in Figure 15. Note
there is almost perfectly linear scaling in the adaptive case as N increases from 1547911 to 3104328 while
the uniform version leads to very large maximum leaves and a huge jump in runtime for those problems
that did not exhaust the available memory.

Finally, in Figure 16 we compare the adaptive and uniform approaches for a non simply-connected
domain for −∆u = f with the usual εa = 10−12 and εr = 10−6. The adaptive approach has a smaller
advantage here because the triangle size is relatively uniform and only the distribution needs to be accom-
modated.

6. Conclusion and Future Work

We have presented a fast algorithm for approximate solutions of the large sparse linear systems arising
from elliptic equations via the finite element method. This algorithm is asymptotically linear in runtime
and memory requirements. An explicit procedure for dealing with general, quasi-uniform meshes was
described, as well as an adaptive decomposition method that offers improved performance.

We have only demonstrated the approach for piecewise linear elements but one could generalize the
approach to work with different discretizations such as spectral elements or different methods such as
the discontinuous Galerkin [19] method. One could incorporate our adaptive decomposition method and
calculation of the solution into an h-adaptive mesh refinement system [20] as in [21] so that new degrees of
freedom could be incorporated incrementally, where only the parts of the mesh which have been refined (and
their parents in the decomposition tree) would require new calculations. Similarly one could incrementally
take into account the degrees of freedom added and removed via a p-adaptive system, and eventually
hp-adaptive systems.

These ideas can be extended to other finite element bases as long as the support of the basis elements
is localized. The boundary layer between blocks might have to be enlarged to ensure that there is no
interaction between the internal vertices at the leaf level when the stencil support grows larger than the
one neighborhood. The approach can also be extended to non-symmetric matrices (a simple test solving
−∆u + b(x) · ∇u = f using slightly modified algorithms produced similar results to those for −∆u = f).
One could extend to a tetrahedral mesh in three dimensions but the boundaries between the “cubes” of
tetrahedra would have to be carefully managed.

We have not discussed parallelization of the calculations [22], but since all of the calculations on the same
level are independent they (as well as the underlying block matrix multiplications) could be performed
in parallel. Only once there are fewer blocks per level than processors would extensive inter-processor
communication be required. Large scale parallel multifrontal solvers such as MUMPS [23] illustrate the
possible gains of parallelization.

Another situation where the algorithm could be adjusted to improve performance is where a(x) and/or
V (x) is perturbed locally and repeated calculations are required—a calculated factorization could be
largely reused as only the parents of the blocks containing the vertices with changed values would have to
be recalculated.

Acknowledgements: P.S. and L.Y. are partially supported by the NSF grant DMS-0846501. L.Y. is
also partially supported by a Sloan Research Fellowship.

31

Uniform Adaptive

Leaves Leaf 289

N Refined Min Max Q Setup Solve Setup Solve

16129 25 25 5 2.20 0.03 1.07 0.07

40386 1/2 25 81 5 2.98 0.08 2.67 0.18

88963 1/4 25 289 5 6.48 0.30 6.05 0.41

186180 1/8 9 289 6 16.46 0.67 13.00 0.87

380677 1/16 4 289 7 44.18 1.40 26.78 1.77

769734 1/32 4 1089 7 259.75 9.70 57.61 3.85

1547911 1/64 4 4225 7 5923.37 - 111.63 7.64

3104328 1/128 - - - - - 223.82 15.21

Figure 15: Top: Uniform mesh on [0, 1]2 selectively refined on [0, x]× [0, 1] to produce
a large range of triangle size and density. Bottom: Numerical results for different
values of N .

32

Uniform Q = 7 Adaptive, leaf< 100

N Setup Solve Error Setup Solve Error

442108 66.28 1.47 4.20e-06 69.59 1.58 4.70e-06

1773052 345.70 6.98 1.01e-05 298.11 7.35 1.00e-05

7101436 1335.54 29.19 2.22e-05 1194.24 29.47 2.19e-05

Figure 16: Setup and Solve times for a punctured annulus mesh using εa = 10−12 and
εr = 10−6 for −∆u = f . In the second set of results the adaptive decomposition was
used.

33

[1] T. A. Davis, Direct methods for sparse linear systems, Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 2006.

[2] Y. Saad, Iterative Methods for Sparse Linear Systems, Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 2 edition, 2003.

[3] P. R. Amestoy, T. A. Davis, I. S. Duff, An approximate minimum degree ordering algorithm, SIAM
Journal on Matrix Analysis and Applications 17 (1996) 886–905.

[4] B. Hendrickson, E. Rothberg, Improving the run time and quality of nested dissection ordering, SIAM
Journal on Scientific Computing 20 (1998) 468–489.

[5] J. A. George, Nested dissection of a regular finite element mesh, SIAM Journal on Numerical Analysis
10 (1973) 345–363.

[6] I. S. Duff, J. K. Reid, The multifrontal solution of indefinite sparse symmetric linear equations, ACM
Transactions on Mathematical Software 9 (1983) 302–325.

[7] J. W. H. Liu, The multifrontal method for sparse matrix solution: Theory and practice, SIAM Review
34 (1992) 82–109.

[8] J. Xia, S. Chandrasekaran, M. Gu, X. S. Li, Superfast multifrontal method for large structured linear
systems of equations, SIAM Journal on Matrix Analysis and Applications 31 (2009) 1382–1411.

[9] J. Xia, S. Chandrasekaran, M. Gu, X. S. Li, Fast algorithms for hierarchically semiseparable matrices,
Numerical Linear Algebra with Applications (2009).

[10] W. Hackbusch, L. Grasedyck, S. Börm, An Introduction to Hierarchical Matrices, Technical Report
21, Max-Plank-Instituit für Mathematik in den Naturwissenschaften, Leipzig, 2001.

[11] L. Grasedyck, W. Hackbusch, Construction and Arithmetics of H-matrices, Computing 70 (2003)
295–334.

[12] P.-G. Martinsson, A fast direct solver for a class of elliptic partial differential equations, Journal of
Scientific Computing 38 (2009) 316–330.

[13] P. G. Martinsson, V. Rokhlin, A fast direct solver for boundary integral equations in two dimensions,
Journal of Computational Physics 205 (2005) 1–23.

[14] L. Greengard, D. Gueyffier, P.-G. Martinsson, V. Rokhlin, Fast direct solvers for integral equations
in complex three-dimensional domains, Acta Numerica 18 (2009) 243–275.

[15] S. Börm, Approximation of solution operators of elliptic partial differential equations by H- and
H2-matrices, Numerische Mathematik 115 (2010) 165–193.

[16] E. Liberty, F. Woolfe, P.-G. Martinsson, V. Rokhlin, M. Tygert, Randomized algorithms for the
low-rank approximation of matrices, Proceedings of the National Academy of Sciences of the USA
104 (2007) 20167–20172.

34

[17] J. Xia, Robust and efficient multifrontal factorization for large discretized PDEs, in: M. Berry, et al.
(Eds.), High Performance Scientific Computing: Algorithms and Applications, Springer, Berlin, 2011.
Proceedings of a conference held October 11-12, 2010 at Purdue University, West Lafayette, Indiana,
U.S.A.

[18] L. Grasedyck, R. Kriemann, S. Le Borne, Parallel black box H-LU preconditioning for elliptic bound-
ary value problems, Computing and Visualization in Science 11 (2008) 273–291.

[19] D. N. Arnold, F. Brezzi, B. Cockburn, L. D. Marini, Unified analysis of discontinuous Galerkin
methods for elliptic problems, SIAM Journal on Numerical Analysis 39 (2001/02) 1749–1779.

[20] L. Demkowicz, J. Kurtz, D. Pardo, M. Paszyński, W. Rachowicz, A. Zdunek, Computing with hp-
adaptive finite elements. Vol. 2, Chapman & Hall/CRC Applied Mathematics and Nonlinear Science
Series, Chapman & Hall/CRC, Boca Raton, FL, 2008. Frontiers: Three-dimensional elliptic and
Maxwell problems with applications.

[21] L. Grasedyck, W. Hackbusch, S. Le Borne, Adaptive geometrically balanced clustering of H-matrices,
Computing 73 (2004) 1–23.

[22] L. Lin, C. Yang, J. Lu, L. Ying, W. E, A fast parallel algorithm for selected inversion of structured
sparse matrices with applications to 2D electronic structure calculations, Technical Report LBNL-
2677E, Lawrence Berkeley National Lab, 2009.

[23] P. R. Amestoy, I. S. Duff, C. Vömel, Task scheduling in an asynchronous distributed memory multi-
frontal solver, SIAM J. Matrix Anal. Appl. 26 (2004/05) 544–565.

35

