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The present paper describes an algorithm for rapid solution of boundary value problems for
the Helmholtz equation in two dimensions based on iteratively solving integral equations of
scattering theory. CPU time requirements of previously published algorithms of this type are
of the order »?, where » is the number of nodes in the discretization of the boundary of the
scatterer. The CPU time requirements of the algorithm of the present paper are #n*3, and can
be further reduced, making it considerably more practical for large scale problems. © 1990

Academic Press, Inc.

1. INTRODUCTION

One of standard approaches to numerical treatment of boundary value problems
for elliptic partial differential equations (PDEs) calls for converting them into
second kind integral equations (SKIEs) with subsequent discretization of the latter
via appropriate quadrature formulae. Discretization of the resulting SKIEs usually
leads to dense large-scale systems of linear algebraic equations, which are in turn
solved by means of some iterative technique, such as a generalized conjugate
residual algorithm (see [ 11, 23]). Most iterative schemes for the solution of linear
systems of this type require application of the matrix of the system to a sequence
of recursively generated vectors. Applying a dense matrix to a vector is an order n’
procedure, where n is the dimension of the matrix, which in this case is equal to the
number of nodes in the discretization of the domain of the integral equation. As a
result, the whole process is at least of the order »° and for many large scale
problems, this estimate is prohibitively large.

In the present paper, we describe an algorithm for rapid application of matrices
resulting from discretization of integral equations of scattering theory in two dimen-
sions to arbitrary vectors. The algorithm requires an amount of work proportional
to n*3, where n is the number of nodes in the discretization of the boundary of
the scatterer, and when it is combined with a generalized conjugate residual-type
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SCATTERING THEORY IN TWO DIMENSIONS

algorithm, the resulting process takes very few iterations to converge, leading to an
order n*? algorithm for the solution of the original scattering problem.

Reduction of boundary value problems for elliptic PDEs to second kind integral
equations is discussed in detail in [6, 16, 19]. Numerical treatment of SKIEs in the
general case can be found, for example, in [3], and numerical solution of acoustic
scattering problems in two dimensions by means of SKIEs is discussed in [187. We
present an algorithm for rapid solution of integral equations of classical poteniial
theory (Laplace’s equation) in [20], and the algorithm of the present paper can be
viewed as an extension of the approach of [20] to the case of the Helmholiz
equation. However, the analytical apparatus of the present paper is considerably
more complicated than the analytical apparatus of {207, reflecting the difference
between the behavior of solutions of the Helmholtz equation and that of harmonic
functions.

Remark 1.1. While the algorithm of the present paper has an asymptotic CPU
time estimate #*3, it can be easily modified into an order # log(n) algorithm (see
Subsection 4.4). However, it appears that this modification would nct lead o
significant improvement in actual calculation times for most problems of prac-
ticable size {1 < 20,000).

The layout of the paper is as follows. In Section 2, we introduce the necessary
notation and summarize the facts from mathematics and numerical analysis o be
used in the rest of the paper. In Section 3, we develop the mathematical apparatus
of this paper (predominantly, functional analytic in nature), used in Section 4 o
design an algorithm for the rapid evaluation of integral coperators of scattering
theory. In Section 5, the implementation of the algorithm is discussed and results of
several numerical experiments are presented. Finally, Section 6 discusses ways in
which the scheme can be generalized.

2. BACKGROUND INFORMATION

2.1. Notrtation

We will be considering the situation depicted in Fig. 1. A fluid scatterer of
arbitrary shape is embedded in a two-dimensional fluid space. The boundary of the
scatterer parametrized by its length will be denoted by 7 so that y: [0, L] — R” is
a Jordan curve, and the image of y will be denoted by I'. The open interior of v wiil
be denoted by @, so that I'=0Q. We will assume that v is at least ¢?, ie., that a:
each point it has at least two continuous derivatives. The interior normal to v at
the point x=y{s) will be denoted by N(r), and it will always be assumed that
|N(7)| = 1. The density of the scatterer will be denoted by p™, and the speed of
sound in it will be denoted by ¢™ The density of the containing space will be
denoted by p°%, and the speed of sound in it will be denoted by ¢°**. We will dencte
the angular frequency of the source by w, and its location by x,. Finally, we wiil
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denote the Helmholtz coefficients inside and outside the scatterer by k,, and k,,,,
respectively (as is well known, k;, = w/c™, k., = w/c®"). In the notation introduced
above, we assume that p™ and p°** are positive real numbers, and that ¢ ¢°*, and
@ are complex numbers such that Re(c™)>0, Re(c®™)>0, Re(w)>0 and
Im(w) =0, Im(c™) <0, Im(c°*) <O0.

2.2, Single and Double Layer Potentials

For a Helmholtz equation

Vi +k*¢ =0, (21)

we will define the field ¢%: R*\{x,} > C' of a unit charge located at the point
X0 € R? by the formula

%o} = Holk [|x — xoll), (2.2)

where H, denotes the Hankel function of order zero. We will define the field qﬁ’;o_ A

of a unity dipole located at x, and oriented in the direction # € R? by the formula

k(x—xq, )

Xt J(x)= —H, (k| x—xoll)-
flx — xoll

Y xg.

(2.3)

For a continuous function ¢: [0, L] — C', the potential of a single layer of density
o on a curve y is a mapping P} : R> - C' defined by the formula

PY(x)= j: $¥ (%) o(0) dt (24)

and the potential of a double layer of density ¢ on a curve y is a mapping
P;,: R* > C' defined by the formula

PLolx)= | b wn(x) o) . (2.5)

Remark 2.1. Note that while both P}_and P} are defined on all of R? neither
P, nor the derivatives of P} are continuous in the neighborhood of I'. The exact
nature of their singularities is crucial for the derivation of Egs. (2.13), (2.14) of the
following subsection, and it is discussed in great detail in [18, 16].

2.3. Acoustic Scattering in Two Dimensions

In the present paper, we will be considering the following problem:
For a pair of continuous functions f, g: I’ - C', find two mappings ¢: Q2 — C’,
¥: R*\Q — C"' such that

V+kid=0 onQ (2.6)
b. VY +k2, =0 on R\Q 2.7
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pr-p—p°-y=f onl (2.8}

o

d. 5%(¢—l/l)=g on I (2.9}

Vr satisfies the radiation condition at oo, ie, for any xe R there exists
ce C' such that

o

lim y(z-x)-e W Sfny=¢ (210

[ e

with k =k ,,.

The above five equations describe acoustic scattering {from a two-dimensional
fluid inclusion in a fluid space in the frequency domain and have been studied in
great detail {see, for example, [2, 10, 17, 18, 51). Their numerical solution, however,
presents a number of serious difficulties, especially for large-scale problems. Here we
will follow the approach of [ 187, which calls for reducing these equations to second
kind integral equations and solving the latter numerically via the Nystrom
aigorithm (see [3]). As is shown in [17, 18], by introducing two new unknown
functions ¢, n: [0, L7 — C* and representing the functions ¢.  in the form

1 ;
$p=-—5 PLn+Pio (211

1 1 -
W = e P} n+P. 0. (2.12)

Egs. (2.1)(2.5) are reduced to a pair of second kind integral equations on tis
boundary of the scatterer,

[
o
b

_2i(pout+pin)0_+(P2

out 7

.

— P )+ (p™ Py = 0P )=,

out & ! - AmT

i 1Y 0 )
2i<———[+—.— N+-e (P —PL )
pou pm) ) aN Kout i )

d 1 1 N )
+5N<;5u"r Pgoum_ﬁ‘”?»mn)ﬂ- {2.14)

2.4 Iterative Solution Of Second Kind Integral Equations

The sysiem of equations (2.13), (2.14) satisfies the conditions of the Fredholm
theorems and can be efficiently solved by means of generalized conjugate residual-
type iterative algorithms (see [ 11, 18, 237). Iterative solution of integral equations
usually involves application of the integral operator in the left-hand side of the
equation 10 a sequence of recursively generated functions. Applving an integral
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operator to a function numerically is, generally speaking, an order n” procedure,
where # is the number of nodes in the discretization of the domain of the operator.
The resulting CPU time estimate for the solution of the original scattering problem
is also of the order n? (see [3, 18]), which can be prohibitively expensive for large-
scale problems. The rest of this paper is devoted to constructing an algorithm for
numerically applying the integral operators in the left-hand side of Egs. (2.13),
(2.14) to arbitrary functions in a “fast” manner, ie., for a cost less than »? (the
particular algorithm we have tested has an asymptotic CPU time estimate n*?).

Remark 22. Evaluating integral operators in the left-hand sides of Egs. (2.13),
(2.14) numerically can be viewed as evaluating the fields and normal derivatives of
the fields created on the curve y by charge and dipole distributions on that same
curve. In the following section, we develop an analytical apparatus for rapid evalua-
tion of fields (and derivatives of the fields) of distributions of charges and dipoles,
and in Section 4, we use this apparatus to construct an actual algorithm for rapid
evaluation of integral operators of the forms (2.13), (2.14).

2.5. Asymptotic Behavior of Bessel Functions

In agreement with standard practice, we will denote by J,, the Bessel function of
the first kind of order m, and by H,,, the Hankel function of order m. As is well
known (see, for example, [22]) J,, are analytic on the whole complex plane for all
values of m while H,, have a branch cut along the negative real axis and become
infinite at the origin. The asymptotic behavior of the functions J,,, H,, for large m
is given by the formulae

m— o <

lim Jm(z)-(i—rfl>m-,/(2nm)=1 (2.15)

and

lim Hm(z>-(%)m-<(}‘5m’= 1 (2.16)

(see [1,9.3.1, 9.3.2, 9.1.3]). For large z and fixed m, the asymptotic behavior of
J(z), H,(z) is given by the formulae

~ /(2 mn w e
\/ZJ,,,(Z)— (;)COS <Z—7—Z>=O<‘W>, (217)
—Im(z)
JzH,(z)- /G) ¢!z = mni2—4) O (e m( ) (2.18)

when z — o0, as long as Im(z) >0 (see [1, 9.2.5, 9.2.7]).
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3. RaPID EVALUATION OF RADIATION FIELDS

3.1. Partial Wave Expansions of Radiation Fields

If a function ¢: R* — C' satisfies the Helmholtiz equation {2.1) in an open disk
D of radius R with the center at the point x,e R? then there exists 2 unique
sequence o= {%,,}, m=0, +1, +£2, ... such that for any xe D,

+

glx)= 3 a,J.(kp)e™. {

m= —oC

(W5

In the above formula, p = [[x — x,ll and 8 is the angle between the vector x — x. and
the x axis.

If a function y satisfies Eq. (2.1) outside D and the radiation condition {2.10) at
2, then there exists a unique sequence f={f§,,}. m=0, +1, +2, .. such that for
any xe R\ D,

+ =
Yix)= Y B.H.lkp)e™.

#1==

(d
(e

A derivation of the formulae (3.1), (3.2) can be found, for example, in {167, and
we will refer to functions satisfying the Helmholtz equation as radiation fields, to
expansions of forms (3.1), (3.2) as J-expansions and H-expansions, respectively.
and to the point x, as the center of the expansions (3.1), {3.2).

The following lemma is a direct consequence of the formulae (2.15), {2.16} 1t
establishes the convergence rates of the expansions {3.1}, {3.2).

LEMMA 3.1, If D, c D is a disk of radius R, < R with the center ai xg then there
exists ¢ >0 such thar for any xe D, and N> |k|- R,

N

l¢(x)— Y o d(kp)e™

m= —N i N

A
™
/"‘-\
o
b
P
¥

If D, > D is a disk of radius R,> R with the center ar x, then there exists ¢ > such
that for any xe R*\D, and N> k| - R,

N

1w<x‘)— S B H, (ko) e

m= —N

/R \‘ o
<c{—1 . (2.4
\R,)/ -

Remark 3.1. In numerical calculations, expansions (3.1), {3.2} are truncated
after a finite number of terms, and the resulting expressions are viewed as
approximations to the dields ¢, . If we want to approximate ¢ by an expansion
of the form (3.3) with an accuracy ¢ then according to the above lemma, we have
to choose

—In(e) + In{e)\

N> . .
ma"(lk' Remm —mr))
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Since logarithm is a very slowly growing function, for medium and large scale
problems,

—In(e) +In(c)

max (Rl . lk', m

JRLCE
i.e., the number of terms in the approximation is almost independent of &£ and must
be roughly equal to |k| R,. A similar calculation shows that for medium to large

scale problems, the expansion (3.2) can be truncated after approximately N = |k| R
terms.

3.2. Translation Operators for H and J Expansions

For a real number >0, we will denote by X, the linear space of all two-sided
complex sequences a = {a,,}, m=0, +1, +2, ... such that for some ¢ >0,

2 m
o, | (—’5> Jm<c (3.6)
er

for all m>=r. We will denote by Y, the linear space of all complex sequences
B={B.}, m=0, +1, +2, .., such that for some c>0,

i m. /_
(Bl -(2”1) Jm<e | (3.7)

for all m>r. It is easy to see that X, Y,, and that the condition (3.6) is a very
restrictive one, since in order to satisfy it, the elements of the sequence {a,,} must
decay as (#/2)”/m!, while the condition (3.7) is a very mild one—it prohibits the
elements of {f,,} from growing faster than approximately (2/r)™-m!. By applying
formulae (9.3.1), (9.3.2) from [1], it is easy to show that in (3.1), (3.2), x€ Yy
and fe Y, z. Conversely, for any sequence a € Yz, the expansion (3.1) converges
inside D, and for any fie Y, the expansion (3.2) converges outside D. For a
natural #, we will denote by T, a linear mapping Y, — Y, converting a sequence
a={a,},m=0, +£1, +2, .. into a sequence &= {d,}, m=0, £ 1, £2, ... defined by
the formulae

for |m|<n

&, = Oy,
&,=0 for |m|zn+1.
Clearly, T,(Y,)< X,, and for obvious reasons, we will refer to 7', as truncation.
For the remainder of this section, D,, D,, D5 will denote three disks in R> such
that D, D, and D, nD;=J (see Fig. la). The centers and radii of these disks
will be denoted by c¢,, ¢,, ¢; and R, R,, R;, respectively. We will denote the
distance |lc, —¢,| by p,», and the distance [¢; —¢,]| by p,5. The angle between the
vector ¢, — ¢, and the x axis will be denoted by 6,,, and the angle between c; —c,
and the x axis will be denoted by 6,;. For a point xe R? we will denote [|x —c,||
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Fig. 1. A fluid scatterer imbedded in a iwo-dimensional fluic space.
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FiG. la. Three disks in the plane (Section 3).

by p;, |x—¢c,l by p,, and | x - c;|| by p;. Finally, the angles between the vectors
X—c¢y, X—c5, and X — ¢, and the x axis will be denoted by 8,, 6,, 8,, respectively.

Suppose that n is a natural number or 0. We will define a linear operator
Ut Xigra = X, as follows. If 4={qa,}, m=0, £1, +2,.. is an ekement of

Xipg, then U2 _(A)=B={b,}, m=0, £1, +2, .. is defined by the formula

(513

[
[e.9]

n
ii0 .
b= z e’ a,  Jikpy)
S

for all m=0, £1, £2,... An operator V7 .: ¥V — Y g will be defined by the
formula

bm = Z e‘ijlelz'n") [lmAJ]j{kpll)

Jj=-n

M
o
Nel
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for any A4={a,}, B={b,} such that B=V? (A). Finally, the operator

X4z, = Y u &, converting an arbitrary sequence 4 = {a,,} € X, z, into the sequence
B={b,,} € Yz, defined by the formula

= z e-ij(eu_n)amfjHj(kpii) (3]‘0)

j=—n
will be denoted by W
Uti Xir, = Xygrs V'

eyt

For any natural m, we will define the operators
Y e = Yikire Wiyt X\gg, by the formulae

(lfl

clm c1c3”

UIZI?I — T U"

cac) ey’

yver =1, Ve .- T

cjey [ Ta] m>

W =T, Wi Tn-
Remark 3.2. We will denote by Y the set of all two-sided complex sequences
{y:},i= £1, 42, ... When n is a natural number (as opposed to o), the formulae
(3.8), (3.9), (3.10) define mappings U" pr , W" . Y- Y that can be viewed as

(‘1(“ > C\C’ Cic3

7R
extensions of the mappings U7, V7., Wi . i
n _— n n n n n
UL 20| Xiagry — UC 20)? qu 2 Xikiry — chrl’ WC[”|X\HR1 Wﬂfz

Whenever there is no danger of confusion, we will make no distinction between

the mappings U" ey 4 mes» Wi, and the mappings U7, , V7., W7 ., respectively.
The following three lemmas justify our referring to the operators U, V7 ..
Wiy Ul Vi, Wi as translation operators, and will be used to shift the

origins of H and J expansions, and to convert H-expansions into J-expansions.
They are a direct consequence of the Graf’s addition theorem for Bessel functions
(see [1, (9.1.79)]).

LEMMA 3.2. Suppose that : R* - C" is a radiation field analytical in R*\D, and
satisfying the radiation condition (2.10) at oc. Suppose further that \ is represented
by an expansion

¥ = Y BuH(kps) €™ (3.11)

m= —xC

valid in R*\D,, and by an expansion

W)= Y BoH(kpy) ™ (3.12)

m= —wc

valid in R\D,. Then {B,,} =UZ, ({Bn})-
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LemMa 3.3. Suppose that ¢: R* — C' is a radiation field analvtical in D, and
represented by an expansion

+ 0o
¢(x)= Z amlm(kpi)eimgl {3%3\"
m= —x
valid in D., and by an expansion
+ or )
px)= 3 & Jnlkps)e™” (3.14;
m= —

valid in D,. Then {&,,} =VZ ({o.}).

LEMMA 3.4. Suppose that y: R* — C' is a radiation field analytical outside the
disk D, and satisfying the radiation condition (2.10), and thai it is representzd in
R*\D, by the expansion (3.12). Then inside the disk Ds, the function \ car be
represented in the form

+ oo
A
)

iﬁ(x) = Z ”/'me(kPn) esz}; (31 B

m= —xc

i

with{y,.} =W ;M( i ﬁm}),

Under the conditions of Lemma 3.2, we will define a radiation field a7,
R*D; - C' by the expression

+ o
ralX)= Y 8.H,(kp,)e™ (3.16)
With the coefficients {6,,}, m=0, &1, +2, .. defined by the formula {§,}=

U [3,,” ) Slmllarly, under the conditions of Lemma 3.3, we will define a radiation
field y? ! by the formula

c1er’

¢r )= 3. J,(kpy) e {

m= —

(%)
-
]

with {5,,)}= V' ({2,,}). Finally, under the conditions of Lemma 3.4, we wil

c1c

denote by ., the radiation field D; —» C' defined by the formula

4+

Profx)= 3 8,dalkos)e™™ (3.18)

m= —x

with the sequence {J,}, m=0, 1, +2,.. defined by the formula {5,}=
W (B} )

Obv10usly, oo {x)=y(x) for any xe R*\D,, ¢ (x)=¢(x) for any xe D,, and
zﬁqq{x\— {x) for any xe D;, and we will view the mappings ¥, , 7 .. ¥, as

approximations to the mappings ¥, ¢, and v, respectively. ’

e
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3.3. Diagonalization of Translation Operators

TueoreM 3.1. (a) For any natural n, each of the operators U, , V7 ., Wi .,
is a bounded scalar type operator (see [8, Vol.III]). Their sets of eigenvectors

coincide and are given by the formula

e,={e""}, m=0, +1, +2, .. (3.19)
with g€ [0, 27].
(b) The spectral representations of the operators U7, V7., W7 . are
respectively
n2m
Ulei=]  4ul9) P, da, (3.20)
a2n
V=]~ mig) P, da, (3:21)
e = viq) P, da (322)

0

where P, is a rank one operator projecting Y on its subspace spanned by the vector
e, and commutmg with each of the operators U7, V7, ., W7 ., and the functions 1,,,

s Vi [0,20] = C! are defined by the formulae

H

/ln(q)z Z eiim(qi—gl”‘]nz(kplz)’ (323)
Haq)=Y, e T g (kpy,), (3.24)
v(g)= Y e Mt mH (kpys). (3.25)

Proof. An inspection of the formulae (3.8), (3.9), (3.10) shows that the map-
pings U_,., Vi.,, W7, are convolutions of the sequence {a,,}, m=0, +1, +2, ..,
with the finite sequences

{e i1z ']m(kpl;‘)}’ m= 07 i 1’ iz’ (326)
{e—imwnrn) Jm(kplz)}’ m=0, +1, +£2, .. (3-27)
{e—im(olg——ﬂ) Hm(kaZ)}, m:(), ilv iza evy (328)

respectively. Convolutions with finite sequences are diagonalized by the Fourier
transformation (see, for example, [8, 15]), which proves (a). We obtain (b) by
applying the Fourier transformation to the sequences (3.26), (3.27), (3.28). 1
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Remark 3.3 For the mappings U7, ,, V%, the above theorem can be extended
to the case n=cc. As in well known, for any ze C!, ¢ {0, 2],

~
—
(3]
—
m-
3
o]
m-.
o
Q
&
D
T
2
Rel

m= —0oC

(see, for example, [1, 9.1.217), and for n = oc the expressions {3.20), {3.21} assume
the form

A’:‘[:(q) — elkplgcos(q + lel* 533(}/
(a)___e!’-’cm:COS(q*Lgl:*")‘ {330

However, Theorem 3.1 cannot be extended to the case of the operator W7 | since
the latter is unbounded (see [8, Vol. 111 ]).

Remark 34. In numerical calculations, the operators U™, V27 . W™ wi.t'h

sufficiently large »n, m will be viewed as approximations to the oéjerat(l)rs U, : P
W ., (see Remark 3.1). Clearly, applying either of the operators U7, Vi, W7
numerically to an arbitrary sequence is an order nm procedure, which can be
prohibitively expensive for large scale problems. However, it follows from the above

theorem that the operators U7 , V", Vv, Wi are convolutions of sequences

of lengths n, m, and such convolutions can be evaluated in order (n + m) log{n + m)
operations by means of the fast Fourier transformarion {see [4. 127]).

34. Asymptotic Forms of Radiation Fields

In this subsection, we introduce an alternative form of the expansions {2.1), {3.
and the mappings U7, V7., W7, providing a simple physical interpretaticn o"’
the Lemmas 3.2-3.4 and the Theorem 3.1.

For the expansion (3.2), we will consider a function F, .: [0.2n] — C' defined

by the formula

ki e
F, \0(9)— 11m Yt x+x)- /(f) e L. Y ‘i) plma (3.3
v 'x‘)
with x = (cos §, sin #). Substituting (2.18), (3.2), into (3.32}, we obtain
Fy ol0)= Z Boe e (3.33)

m= —x

which provides an explicit expression of F, . via the coefficients {$,,}, and we will
refer to F, ., as the asymptotic representation of the field ¥ with the origin at x,.

In order to define an asymptotic representation of the field ¢ in (3.1}, we wili
have to introduce an additional assumption that

+ <

Y fal=e<x (32

m= —x

(%]
Lad
£
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which guarantees that the expansion (3.1) converges on the whole R? By

combining (2.17) and (3.1), it is easy to show that for any Ae[0,2n] and
x = (cos 8, sin 8), there exist unique numbers V,, ¥, such that

llm lp(f'x‘*‘X()) _\/(2kn.t)__(e(kt—n/4)i_ U9+€——(kt—7r/4)i_ V6)=07 (335)

and that the numbers U,, V, are defined by the formulae

+ 00

0'9 — Z (dm . e~(m7r,’2)i) . eime, (336)
+ oo . )

Vo= Y (t,-e™2). e, (3.37)

Now, we will define the function G, ,: [0, 2n] —» C' by the formula
G, (0)=U, (3.38)

and refer to it as the asymptotic representation of the field yy with the origin at x,.
The following three lemmas establish that the asymptotic representations of the
fields ¥, ¢ diagonalize the translation operators U , V7 ., W7 . All three are an

cact? c1e2” cjey”

immediate consequence of Lemmas 3.2-3.4 and Theorem 3.1.

LEMMA 3.5. Under the conditions of Lemma 3.2, for any 6€[0,2n],
Fw,q(e):sz,c;(H)'Aoo(g) (339)
with A..: [0, 2n]} — C"' defined by (3.30).

LEMMA 3.6. Under the conditions of Lemma 3.3, for any 6€ [0, 2n],
with u.: (0,211 — C* defined by (3.31).

LeMMA 3.7. Under the conditions of Lemma 3.4, for any e >0 there exists N>0
such that for any n= N,

W(x)—g¢,.(x) <e (3.41)

for any xe D, where ¢,: R?— C' is a radiation field analytical inside D with the
asympiotic representation defined by the formula

Gypey="ul0) Fy o, (0), (3.42)
and the function v,: [0, 2n] — C' is defined by (3.25).
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The following two lemmas are a direct consequence of the Theorem 3.1,
Lemmas 3.5, 3.6 and the Remark 3.3. They provide explicit expressions for the
asymptotic representations of the fields generated by a charge and a dipole located
at an arbitrary point and for the values and the derivatives of a field given by iis
asymptotic representation.

Lemma 3.8. Suppose that under the conditions of the Lemma 3.2, the field  is

. , § _ ik . . . 2 far 31754
defined by the formula y = ¢, ie., it is the field of a unity charge located at the poin:
x. Then the asvmptotic representation of the field y with the center ¢, is given by the
formuia

Fy . (0)=e Hewosv=oi (343)

;

If the field v is given by the formula = ¢* ,, ie., it is the field of a unity dipcle
located at the point x and oriented in the direction h, then the asympiotic represenia-
tion of {3.12) with the center at ¢, is given by the formula

F'I/‘q(g) =ik COS(@ —_ gh) e ikpyoes(8 ~91), :344

where 0, is the angle berween the vector h and the x axis.

LemMa 3.9. Suppose that under the conditions of the Lemma 3.3, the field (3.13}
has the asympiotic representation G, : [0,2n] - C'. Then for any xe D, he R’
such thar |kl =1,

1 s 27 N i L N
¢‘X) :_2__ G¢ (1(6) _e—mmcm{ﬂ—ﬁﬂ 6167 {343\5
T Jo ’

d ik p2n TP
SO ) =5 | GuO)cos(0—0, e FneCMgh (3.46)
0

3.5. Numerical Evaluarion of Translation Operators

For the rest of this paper, we will view the asymptotic representations (3.33),
(3.38) (as opposed to the expansions of the forms {3.1), (3.2)) as our principal tool
for representing radiation fields. Lemma 3.8 permits one to calculate asymptotic
representations of fields of distributions of charges and dipoles without evaluating
the coefficients of their H-expansions, and Lemma 3.9 provides a tool for calcu-
lating the fields and derivatives of the fields with given asymptotic representations
without having to evaluate the coefficients of J-expansions of these fields.

For a radiation field y: R?>— C' analytical outside D, and satisfying the
radiation condition (2.10), and an integer n > 2, we will denote by £, the fnite
sequence «,, ds, .., a, defined by the formulae

a,=F, . (r;}, {3473
i—1
w, =21 ( ), i=12,.,0 {3.48}

n
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Similarly, for a radiation field ¢ analytical inside D, and possessing and asymptotic
representation G, ., we will denote by G . the sequence b,, b,, ..., b, defined by the
formula

b;=Gy . (w;). (3.49)

Obviously, Fy ., G are tabulations at n equispaced nodes on the interval
[0,2n] of the functions F, ., G, respectively, and we will view Fy ., G} .
as finite-dimensional projections of the asymptotic representations of the ¢, ¢
radiation fields.

For a finite sequence G, = ={b,, by, .., b,}, we will consider a radiation field
G, . R*— C" defined by the formula

Z‘:Ih—\

(_;; “ Z tkplcos(wj~01). (350)
Clearly, (3.50) is a trapezoidal approximation to the integral (3.45), and we will
look upon (3.50) as an approximation to the field ¢. Differentiating (3.50) with
respect to x, we obtain the formula

d 4 & ik Hh”

d ¢L\( +th)lt=h_

z b co (IV _ ) —ikpycos(n;— 01) (351)

for any he R? and we will view (3.51) as an approximation to (3.46).
Finally, we will define mappings P72 Q™ S™ . C"— C” by the formulae

e ? ciep? cley”t
P:’;_ﬁl( 19 225 w0 Zn) = (/lm(u’l) *Zys Am(wZ) *Z25 s j'm(wn) : Zn), (352)
QZ’(I‘ (Zlv “23 = Zn) = (.um(wl) “Zy, ﬂm(Wz) "2y ey .um(wn) 'Zn)’ (353)
Sz’c];(zh 25 vy Zn) = (vm(wl) 2y vm(w‘Z) *Z225 e Vm(n'") 'Zn)5 (354)

with the functions 4,,, u,,, v,, defined by (3.20), (3.21), (3.22). It is easy to see
from the formulae (3.22)-(3.23), (3.52)-(3.54) and the Theorem 3.1 that under the
conditions of the Lemmas 3.2-3.4,

P (Fy )=F7,

141

clcz(G; q) ':/(‘7’

ST Fy . )=Gh s

c1e3

c?

with U=y, V=¢7.,, W=y, and we will look upon the operators P, Q0

2012 ciez?

ST, as discretizations of diagonal forms of the operators U7, Vi, W7 .
In order to estimate the number of nodes in the discretizations (3.47), (3.49)
required to obtain a given accuracy ¢ in the evaluation of the fields ¢, i we will

need the following well known fact (see, for example, [7]).
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LemMa 3.10. For any integer m, n such that n=2\mj, the n-poinr trapezoidal
quadrature rule on the interval {0,2n] integrates the function ™ exactly.

Remark 3.5. By combining the above lemma with Remark 3.1, it is easy see that
the number # of nodes in the discretization G} ., of the function G, @ [0. 2n] — £
has to be approximately equal to 21k|R,, and is almost independent of the

accuracy ¢ with which the field ¢ is being calculated.

Lemmmas 3.5-3.7 provide a tool for shifting the origins of asymptotic expansions
of radiation fields, and for converting asymptotic representations of the form {3.32;
into asymptotic representations of the form (3.38) for a cost proportional (o #,
where u is the number of nodes in the discretization {3.48} of the interval [0, Zr
In the following two sections, this apparatus is used to construct an algorithm for
rapid evaluation of integral operators of Secticn 2.

4. Raprip EVALUATION OF INTEGRAL OPERATORS OF SECTION 2

in this section, we describe an algorithm for rapid evaluation of the field and the
normal derivative of the field created on a curve y by charge and dipole distribu-
tions on that same curve. For definitiveness, we will be discussing the evaluation of
the field created by a charge distribution. The algorithms evaluating the normat
derivative of the field created by a charge distribution, and the field and the nermatl
derivative of the ficld created by a dipole distribution are quite similar.

4.1. Notation

We will consider the situation depicted in Fig. 2. The curve y is discretized inic
equispaced nodes x,, x,,.., x,, and we will denote the spacing between the
adiacent nodes by #. Suppose that for each i=1.2, ..., n, a charge g, of strength o,

FiG. 2. Definition of the seis 4, #,. .

3%1/86/2-12
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is located at the point x,. In this section, we describe an algorithm for rapid calcula-
tion of approximations g,=1, 2, ..., n to the sums

G (x;)= Z Gj¢§/(xi) (4.1)
2
fori=1,2,.., n Clearly, this is an order n® process (evaluating # fields at » points).
However, if we are interested in evaluating (4.1) with a finite accuracy (which is
always the case in practical calculations), Theorem 3.1 and Lemmas 3.7, 3.8, 3.9 can
be used to speed up the process.

For an integer m >2, we will define the points ¢, 15, ... ¢,,,; on the interval
[0, L] by the formula #,=(i—1)L/m, subdividing the interval [0, L] into m
segments of equal length and denote the center of the ith segment by z,, so that
z;=t;+ L/(2m). For each natural j=1, 2, .., m, we will denote by A4, the set of all
charges a; such that x,ey([t;, t,,]), and D, the circle of radius r = L/(2m) with
the center at y(z;). We will denote by W, the union of all A4, such that |z;,—z,| > 3r,
and W, the union of all 4, such that ||z;—z;| <3r. Obviously. 4,= D, for any
j=1,2, .., m Also, it follows from the triangle inequality that

min | x— y||>r

ye4
for any i, j such that 4,c W,. Finally, we will denote by ¢; the field of all charges
a; such that x,c 4, and observe that if x,€ 4; then

Gd(xp)z z ¢,—(Xp)+ Z O-i¢/)(c,('xp)' (42)
A, W, x e W,
4.2. Detailed Description of an Order n*"* Algorithm

In this subsection, M, N will denote “sufficiently large” integer numbers. The
actual choice of the numbers M, N is discussed in the following subsection. We will
evaluate the fields (4.1) in five steps.

Step 1. Using Lemma 3.8, obtain discretized asymptotic representations F 2’1' )
of the fields ¢, for all j=1,2, .., m.

Step 2. For every pair of natural numbers i, je[l, m] such that A,c W,
calculate the representation

Gyt =S (F gaizp) (4.3)

v(-;,‘).v(:,)

of the field ¥, =41, ., and view it as a finite-dimensional approximation to the
asymptotic representation of the field ¢, on D,.

Step 3. For each natural je [ 1, m], calculate the sum

Gy en= 2 Gy e (4.4)

A, =W,
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and view the field ;=3 ¢, as an approximation to the field 3 , -y, ¢;, and
G .., as a finite-dimensional approximation to the asymptotic representation of
1 on D

J 8

Step 4. For each natural je [1, m], evaluate
'.Ej(xi) = G.p,.-,v:_-j;(xi) {4.5)
for all 7 such that x,ey({1;,¢,,]) and look upon (4.5} as an approximation o
Ej/j(xl} - L

Step 5. Foreach j=1,2, .., m, evaluate the sum
Ui(x;) + ‘Z_ aquf';'p(xl-) (4.6}
xpe W,

for all 7 such that x,ey([¢;,r,,,]) and view (4.6} as an approximation te G ix;).

4.3. Choice of Parameters and CPU Time Estimate

In the estimates below, a, b, ¢, d, e are coefficients determined by the compuier
system, language, particular implementation of the aigorithm, etc.

Step 1. Obviously, this step will require order r-N operations (tabulating
F;;,‘vw:ﬁ at N nodes on the interval [0, 2n] for each of the nodes x,, x5, .., x,}
According to the Remark 3.5, N ~ |k] - L/m, and the CPU time estimate for this step
becomes a -#- k| - Lim.

Step 2. For each of the pairs i, j such that A, W, evaluating {4.3) will require
order N operations (see (3.54)), and the total number of such pairs is less than =7,
which results in the CPU time estimate of b-m* -n~b-m? - k| . Lim=b -m. k| - L
for this step.

Step 3. Obviously, evaluating the sums (4.4) for all j=1,2,..,m is an order
c-m-N~c-m-N~c-m-\k|-Lim=c-|k|-L procedure.

Step 4. Evaluating (4.5) for each i=1, 2, ..., n is an order N procedure, resuiting
in the total CPU time estimate for this step of d-#n-N~d-n-lk|k- Lim.

Step 5. Evaluating the sum (4.6) for each i=1,2,..#n is an order n'm
procedure, with the resulting CPU time estimate of e n*/m for this step.

Summing up the time estimates for the Steps 1-5, we obtain the following time
estimate for the whole process,

T=A-n-|k|-Lim+b-m-k|-L+c-|ki L+tm, (a7

gl

with 4 =a+d, and we would like to choose m in such a manner that {4.7) would
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be minimized. Differentiating (4.7) with respect to m, and setting the resulting
derivative to zero, we obtain

A-n-lk|-L+e-n?
mmm—\/ I (48)

and the corresponding minimum of (4.7) is equal to

Tpin=2A-n-|k| -L+e-nz-\//b-|k| -L+c-lk|-L. (4.9)

If the calculations are performed with a fixed number of nodes per wavelength
(which is often a reasonable assumption), » is proportional to |k|L, and (4.9)
assumes the form

Tonin ~ (1] - L) (4.10)

or
T i ~ 132 (4.11)

which for large # is considerably smaller than %

4.4. Further Reduction of the CPU Time Estimate of the Process

The approach of the above subsection can be used recursively by subdividing
each of the sets A4, into subsets {B, }, j=1, 2, .., m with appropriately chosen 7 and
representing the fields ¢, as sums ¢,=3", ¢;, where ¢; is the field created by all
charges a, such that g,e B;. A calculation similar to the one in the preceding
section shows that such an algorithm will have an asymptotic CPU time estimate
of n*?.

In [20], such a subdivision process is used recursively to obtain an order #
algorithm for numerical evaluation of integral operators of classical potential
theory (Laplace’s equation). By reproducing the construction of Section VII of
[20] almost literally, one can obtain an order nlog(n) algorithm for evaluating
(4.1). However, our estimates indicate that for problems of practicable size
(n<20,000), the improvement in actual computation times obtained by replacing
an order »n*? algorithm with an order nlogn algorithm would not be very
significant.

5. IMPLEMENTATION AND NUMERICAL RESULTS

5.1. Implementation

In implementing the algorithm of the present paper, we closely followed [18], as
far as the formulation of the system of integral equations (2.13), (2.14) and their
discretization are concerned. Equations (2.13), (2.14) were discretized by means
of the Nystrom algorithm, which calls for replacing the integrals with finite
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guadrature formulae and the integral equations with systems of Lnear algebraic
equations respectively (sec [3, 18]). Since the kernels of the equations (2.13),
{2.14) are logarithmically singular, quadrature formulae suitable for functions with
iogarithmic singularities have to be employed. and we used a fourth-order
convergent formula of the type discussed in [21]). Discretization of Egs. (2.13),
(2.14} by means of the Nystrom algorithm leads to large scale, asymptotically well-
conditioned systems of linear algebraic equations (see [37]), to which we apply a
version of the generalized conjugate residual algorithm {see [i11}). Solution of a
linear system by means of a generalized conjugate residual-type algorithm involves
application of the matrix of the system tc a sequence of recursively generated
vectors, which is accomplished by means of the algorithm of the preceding section
{we implemented an order n*? version of the process). As is well known, in order
to converge to a relative accuracy &, a generalized conjugate residual-type algorithm
requires order — K -log(e) iterations, where K is the condition number of the matrix
of the system being solved. This results in the total CPU time estimate of the order
—n? 3. log(e) for the solution of the Egs. (2.13), (2.14}, since the application of the
Nystrom algorithm to these equations leads to well-conditioned linear sysiems {see
T37). After the system of Egs. (2.13), (2.14) is solved, evaluating the scattered feld
at any point x ¢ /" involves two numerical integrations over { {evaluafing the feld
of the charge distribution and that of the dipole distribution}, which is an crder &
procedure. This brings us to the estimate

t
Risiv

=k

Tsove= —a-logle)-n* +b-n-m

for obtaining the solution of the problem (2.6}—(2.10), where m is the number of
points in R* where the solution has to be calculated.

5.2. Numerical Results

We have applied the algorithm of the present paper to several acoustic scattering
problems in two dimensions. In the three examples presented below, all calculaticns
were performed in single precision on a VAX-8600 computer, and all timings are
reported in seconds of CPU time on that machins.

ExampLE a. Scattering from a circular inclusion. In this case, the problem
possesses an analytical solution, providing a convenient way to verify the accuracy
of the algorithm. In our example, the radius of the scatterer was 100 ft, and us
center was at the origin. The densities inside and outside the scatterer were [.2 and
1.0, respectively, and the speeds of sound were 20 and 8, respectively, The ambient
field was generated by a cylindrically symmetric source located at the point
{100, 100), and the scattered field obtained by the algorithm of the present paper
was compared to the analytical result at 40 equispaced points located on the circle
of radius 110 with the center at the origin (see Fig. 3). The calculation was
performed with the angular frequency of the source varying from 10 to 320, and in
all cases the boundary of the scatterer was discretized at 10 nodes per wavelength,
which usually results in three to four digit accuracy. In Table I, @ iz the angular
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F1G. 3. Acoustic scattering from a circular inclusion.

frequency, » is the number of nodes on the boundary of the scatterer (at 10 nodes
per wavelength), ¢ is the resulting mean square error at 40 receivers, and m is the
number of iterations the generalized conjugate residual algorithm (GCRA) took to
converge to 4-digit accuracy. Following observations can be made from Table L.

1. The accuracy of the solution obtained with a given number of nodes per
wavelength is virtually independent of the frequency.

2. The number of iterations required by the GCRA to obtain a given
accuracy is almost independent of the frequency.

TABLE 1

CPU Times and Accuracies for the Example a

w n = m T(s)
10 128 0.766E-3 5 36
20 257 0.594E-3 6 83
40 514 0.629E-3 6 179
80 1028 0.620E-3 6 612
160 2056 0.708E-3 6 1696
320 4112 0.727E-3 6 4328
640 8224 0.693E-3 6 10.5017
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thy

3. The actual CPU times required by the algorithm grow somewhat eraticaliy
as a function of the number of nodes on the boundary, but seem tc be in agreement
with the theoretical CPU time estimate of the algonthm.

ExaMPLE b. Scattering from a lense-shaped object. In the situation depicted in
Fig. 4, the speed of sound in the containing space is 30 ft/s, and the speed of sound
inside the scatterer is 20 ft/s. Both upper and lower surfaces of the scatterer are
circular with the radius of curvature 1 ft, so that the focal distance of the resciting
lence is 2 ft. Three cylindrically symmetric sources are iocated at the points I II,
and IIT respectively have the frequency F=7162 Hz, resulting in the wavelengts
(.0041888 ft outside the scatterer, and 0.0027925ft inside the scatierer. The
ampiitude of the field generated by this configuration on the screen is depicied in
Fig. 5. Clearly, the laws of geometrical optics should be applicable to this situation
with a reasonabie degree of accuracy, since the lense is about 240 exterior {or 3560
interior} wavelengths in diameter, and a careful examination of the Fig. 5 shows
this to be the case. In order to produce Fig. 5, the surface of the lense in Fig. 4 was
discretized into 6134 nodes (with 10 nodes per wavelength), resulting in a system
of linear algebraic equations of dimension 12268. The solution of this problem with
a two-digit accuracy took 3358 s of CPU time on a VAX-8600.

ExaMPLE c¢. Radiation from a worm-shaped object. In this numerical experi-
ment, a source of angular frequency w =640 was located inside an inclusion of a

sources

|
|

F16. 4. Acoustic scattering from a lense-shaped inciusion.
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Fig. 5. Amplitude of the field measured along the screen in Fig. 4.

complicated shape in a fluid two-dimensional space (see Fig. 6). The densities inside
and outside the inclusion were 1.25 and 1.0, respectively, and the speeds of sound
were 20 and 25, respectively. The boundary of the inclusion was discretized at 10
nodes per wavelength, resulting in the total number of 5078 nodes on the boundary
of the inclusion. The calculation took 3867 seconds of CPU time to obtain the
solution with two-digit accuracy, and the amplitude of the field as measured by
receivers in Fig. 6 is displayed in Fig. 7.
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FiG. 6. Acoustic radiation from a worm-shaped inclusion.
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F16. 7. Amplitude of the field measured by receivers in Fig. 6.

Remark 5.1. An alternative approach to the solution of problems of types b-¢
would be to impose a finite difference grid on the region containing the scatierer.
impose some form of absorbing boundary conditicns {see, for example, T137) arf the
poundary of the discretized region, and attempt to solve the resulting system of
linear algebraic equations iteratively. At 10 nodes per wavelength, the grid in
Examples b, ¢, would be at least of the size 4000 x 4000 nodes, and the condition
number of the resulting system would be of the order (4000)* ~ 107, Naturally, at :0
nodes per wavelenth, the sharp boundary of the scatierer would be resoived quite
poorly, yielding an accuracy of the solution of perhaps one digit. Even ignoring the
difficulties associated with the quality of existing non-reflecting boundary condition,
the problem is, clearly, unmanageable.

6. GENERALIZATIONS AND CONCLUSIONS

6.1, Other Boundary Conditions

In the present paper, we have been solving the problem (2.6} 12.13},
corresponding to the scattering of sound from a fluid inclusion in a fluid space.
Obviously, the two classical acoustical scattering probiems (Dirichlet and
Neumann problems for the Helmholtz equation, corresponding tc scattering from

a cavity and from a rigid inclusion respectively) can be solved in a similar manner.
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Generally, whenever a scattering problem is reduced to a set of second kind integral
equations on the boundary of the scatterer by means of some form of Stoke’s
theorem, the algorithm of Section 4 provides a tool for solving these equations in
order n*? operations.

6.2. Multiple Scatterers

The case of multiple scatterers does not differ substantially from the case of a
single scatterer. The scattered field inside each scatterer is represented in a manner
precisely similar to the one used to solve a single scatterer problem. The scattered
field outside the scatterers is represented by the sum of the fields of single and
double layer potentials on the surfaces of all scatterers. The whole procedure is
completely straightforward.

6.3. Three-Dimensional Version of the Theory

Three-dimensional equivalents of the expansions (3.1), (3.2) are well known (see,
for example, [16]), and those of the mappings U7, , V7 ., W7, are fairly easy to
define. However, in two dimensions, the translation operators U7, , V7 .., W7, are
convolutions, and the diagonal form of the latter is well known from the standard
theory of the Fourier integral (see Theorem 3.1). In three dimensions, no such
ready-made analytical apparatus is available, and the proof of an equivalent of the
Theorem 3.1 is considerably more involved. Furtunately, diagonal forms of the
three-dimensional analogues of the operators U7, , V7., W7, can be obtained by
a generalization of the technique used in [22] to derive Graf’s addition theorem,
permitting fast solvers for scattering problems in three dimensions to be

constructed. Details of this generalization will be reported at a later date.

6.4. Conclusions

One of principal difficulties arising in the solution of large-scale scattering
problems of integral equations is the fact that the Green’s function for the
Helmbholtz equation decays slowly. As a result, the kernels of the obtained integral
equations are not sparse, and their discretization leads to dense large-scale systems
of linear algebraic equations. Solution of such systems is an extremely expensive
process (see [9, 11]), which limits the usefulness of the whole approach.

In Section 4 of the present paper, we construct an algorithm for rapid application
of the matrices resulting from discretization of integral equations of scattering
theory to arbitrary vectors. The asymptotic CPU time estimate of the algorithm is
n*? and can be reduced to nlog(n), where n is the number of nodes in the
discretization of the boundary of the scatterer. By combining the approach of the
Section 4 with a generalized conjugate residual type process, we obtain an order
—n*3log(e) algorithm for the solution of the integral equations (2.13), (2.14) of
acoustic scattering theory. This results in acceptable computation times even for
large-scale scattering problems (see preceding section), as long as the solution has
to be evaluated at a limited number of points.
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