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The present paper describes an algorithm for rapid solution of boundary value problems for 
the Helmholtz equation in two dimensions based on iteratively solving integral equations of 
scattering theory. CPU time requirements of previously published algorithms of this type are 
of the order FZ’, where n is the number of nodes in the discretization of the boundary of the 
scatterer. The CPU time requirements of the algorithm of the present paper are #3, and can 
be further reduced, making it considerably more practical for large scale problems. Cl 1990 
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1. INTR~OUCTION 

One of standard approaches to numerical treatment of boundary value problems 
for elliptic partial differential equations (PDEs) calls for converting them into 
second kind integral equations (SKIES) with subsequent discretization of the latter 
via appropriate quadrature formulae. Discretization of the resulting SKIES usually 
leads to dense large-scale systems of linear algebraic equations, which are in turn 
solved by means of some iterative technique, such as a generalized conjugate 
residual algorithm (see [ll, 231). Most iterative schemes for the solution of linear 
systems of this type require application of the matrix of the system to a sequence 
of recursively generated vectors. Applying a dense matrix to a vector is an order n2 
procedure, where n is the dimension of the matrix, which in this case is equal to the 
number of nodes in the discretization of the domain of the integral equation. As a 
result, the whole process is at least of the order n’, and for many large scale 
problems, this estimate is prohibitively large. 

In the present paper, we describe an algorithm for rapid application of matrices 
resulting from discretization of integral equations of scattering theory in two dimen- 
sions to arbitrary vectors. The algorithm requires an amount of work proportional 
to n4”, where n is the number of nodes in the discretization of the boundary of 
the scatterer, and when it is combined with a generalized conjugate residual-type 
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algorithm, the resulting process takes very few iterations to converge, leading to an 
order r74’3 algorithm for the solution of the original scattering problem. 

Reduction of boundary value problems for elliptic ‘PDEs to second kind integral 
equations is discussed in detail in [6, 16, 191. Numerical treatment of SKIES in the 
general case can be found, for example, in [3], and numerical solution of acoustic 
scattering problems in two dimensions by means of SK% is discussed in [18]. W’e 
present an algorithm for rapid solution of integral equations of classical potential 
theory (Laplace’s equation) in [20], and the algorithm of the present paper can be 
viewed as an extension of the approach of [20] to the case of the elmholtz 
equation. However, the analytical apparatus of the resent paper is considerably 
more complicated than the analytical apparatus of 201, reflecting ?he difference 
between the behavior of solutions of the Helmholtz equation and that of harmonic 
functions. 

Rrwmrk I.!. While the algorithm of the present paper has an asymptotic C 
time estimate n1~31 it can be easily modified into an order YI log(n) algorithm (see 
Subsection 4.4). However, it appears that this modification would not lead to 
significant improvement in actual calculation times for most problems of nrac- 
ticable size (n 6 20,000). 

The layout of the paper is as follows. In Section 2, we introduce the necessary 
notation and summarize the facts from mathematics and numerical anabysis to be 
used in the rest of the paper. In Section 3, we develop the mathematical apparatus 
of this paper (predominantly, functional analytic in nature), used in Section 4 to 
design an algorithm for the rapid evaluation of integral operators of scattering 
theory. In Section 5, the implementation of the algorithm is discussed and results of 
several numerical experiments are presented. Finally, Section 6 discusses ways in 
which the scheme can be generalized. 

2. BACKGROUND INFORMATION 

2.1. Notation 

We will be considering the situation depicted in Fig, 1. A fluid scatterer of 
arbitrary shape is embedded in a two-dimensional fIuid space. The boundary of the 
scatterer parametrized by its length will be denoted by 7 so that 7: CO, L] --P R’ is 
a Jordan curve, and the image of y will be denoted by r. The open intericr of p will 
be denoted by S2, so that r= 8~7. We will assume that :’ is at least c2, i.e., that a: 
each point it has at least two continuous derivatives. The interior normal to 1: at 
the point X= y(t) will be denoted by N(r), and it will always be assumed that 
ilN(r)lj = 1. The density of the scatterer will be denoted by pin, and the speed of 
sound in it will be denoted by tin. The density of the containing space wili be 
denoted by p”“‘, and the speed of sound in it will be denoted by cccL. We will denote 
the angular frequency of the source by w, and its location by x,, Finally, jve v+$ 
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denote the Helmholtz coefficients inside and outside the scatterer by ki, and k,,,, 
respectively (as is well known, ki, = m/ci”, k,,, = o/c““~). In the notation introduced 
above, we assume that pi” and pout are positive real numbers, and that tin, Put, and 
o are complex numbers such that Re(c’“) >O, Re(coUf)>O, Re(o) >O and 
Im(o) 3 0, Im(c’“) < 0, Im(cout) < 0. 

2.2. Single and Double Layer Potentials 

For a Helmholtz equation 

V’d + k2d = 0, (21) 

we will define the field ~5:~: R2 \ {xi)} + C1 of a unit charge located at the point 
x0 E R2 by the formula 

4:,(x, = ffo(k /Ix- -4 ), (2.2) 

where H, denotes the Hankel function of order zero. We will define the field dtO,, 
of a unity dipole located at x0 and oriented in the direction h E R’ by the formula 

x~~,,M = -Wk lb - 4 j . 
k(x - x0, h) 

,Ix _ -yoI, (2.3) 

For a continuous function 0: [0, L] + C’, the potential of a single layer of density 
CJ on a curve 1’ is a mapping PE,: R2 + C’ defined by the formula 

f’:&) = jL d;&, o(t) dt 
0 

(2.4) 

and the potential of a double layer of density r~ on a curve y is a mapping 
P:,: R2 --, C’ defined by the formula 

P:,(x) = j-L 4;(t,.,v& o(t) dt. 
0 

(2.? 

Remark 2.1. Note that while both PE, and PL, are defined on all of R2, neither 
PLg nor the derivatives of Pz, are continuous in the neighborhood of f. The exact 
nature of their singularities is crucial for the derivation of Eqs. (2.13), (2.14) of the 
following subsection, and it is discussed in great detail in [lS, 161. 

2.3. Acoustic Scattering in Two Dimensions 

In the present paper, we will be considering the following problem: 
For a pair of continuous functions f, g: I--+ C’, find two mappings 4: D + C’, 

tj : R’\SZ -+ C I such that 

a. V’b+k;“@=O on 0 (2.6) 

b. V’$+k;,,lC/=O on R2\a (2.7) 
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c. p.fp-pt.+j- 011 &(- 

d. on F f,2.3 j 

e. $ satisfies the radiation condition at ‘x’, i.e., for any u E R’, there exists 
c E CL such that 

with k = k,,, 
The above five equations describe acoustic scattering from a two-dimensional 

uid inclusion in a fluid space in the frequency domain and have been studied in 
great detail (see, for example, [2, 10, 17, 18, 5-J). Their numerical solution, 
presents a number of serious difficulties, especially for large-scale problems. 
will follow the approach of [IS], which calls for reducing these equations to second 
kind integral equations and solving the latter numerically via the Nystrom 
algorithm (see [3]). As is shown in [17, 181, by introducing two new unknown 
functions 5, q : LO, L] + C ’ and representing the functions c$. $ in the form 

Eqs. (2.1)-(2.5) are reduced to a pair of second kind integral equations on tix 
boundary of the scatterer, 

+ $ -!- P;,,r’I 
( ON p”“’ 

-J- p;,,,” = g. 
Pi" 1 

(2.14) 

2.4. Iterative Solution Of Second Kind integral Equutions 

The system of equations (2.13), (2.14) satisfies the conditions of the Fredhokm 
theorems and can be efficiently solved by means of generalized conjugate residual- 
type iterative algorithms (see [ 11, 18, 231). Iterative solution of integral equations 
usually involves application of the integral operator in the left-hand side of the 
equation to a sequence of recursively generated functions, Applying an lntcgrat 
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operator to a function numerically is, generally speaking, an order n2 procedure, 
where n is the number of nodes in the discretization of the domain of the operator. 
The resulting CPU time estimate for the solution of the original scattering problem 
is also of the order n2 (see [3, IS]), which can be prohibitively expensive for large- 
scale problems. The rest of this paper is devoted to constructing an algorithm for 
numerically applying the integral operators in the left-hand side of Eqs. (2.13), 
(2.14) to arbitrary functions in a “fast” manner, i.e., for a cost less than n2 (the 
particular algorithm we have tested has an asymptotic CPU time estimate n”13). 

Remark 2.2. Evaluating integral operators in the left-hand sides of Eqs. (2.13), 
(2.14) numerically can be viewed as evaluating the fields and normal derivatives of 
the fields created on the curve 1’ by charge and dipole distributions on that same 
curve. In the following section, we develop an analytical apparatus for rapid evalua- 
tion of fields (and derivatives of the fields) of distributions of charges and dipoles, 
and in Section 4, we use this apparatus to construct an actual algorithm for rapid 
evaluation of integral operators of the forms (2.13), (2.14). 

2.5. Asymptotic Behaoior of Bessel Functions 

In agreement with standard practice, we will denote by J,,, the Bessel function of 
the first kind of order m, and by H,,,, the Hankel function of order m. As is well 
known (see, for example, [22]) J, are analytic on the whole complex plane for all 
values of nz while H, have a branch cut along the negative real axis and become 
infinite at the origin. The asymptotic behavior of the functions J,, H,,, for large m 
is given by the formulae 

(2.15) 
m - a 

and 

(2.16) 

(see [l, 9.3.1, 9.3.2, 9.1.31). For large z and fixed m, the asymptotic behavior of 
Jm(z), H,(z) is given by the formulae 

(2.17) 

(2.18) 

when z+ m, as long as Im(z)>O (see [l, 9.2.5, 9.2.71). 
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3. RAPID EVALUATION OF RADIATION FIELDS 

3.1. Partial Wauor E.xpansiom of Radiation ,Fields 

If a function 4: R’ ---f C’ satisfies the Helmholrz equation (2.1) in an open disk 
D of radius R with the center at the point .x-~E R’ then there exists a unique 
sequence c[ = $,,,), FW = 0, & 1, & 2, . . . such that for any .Y E D, 

In the above formula, p = //x - s0I/ and 8 is the angle between the vector .Y - sD and 
the x axis. 

If a function + satisfies Eq. (2.1) outside D and the radiation condition j2.10) at 
ZG, then there exists a unique sequence fl= {fin, j. .?n = 0, i 1, + 2, . . . such that for 
an.y x E R“iD, 

+ % 
l)(x) = 2 /?,,,H,(kp) e”““. j3.Zj 

,?I == -CL 

A derivation of the formulae (3.1), (3.2) can be found. for example, in [ 16ji and 
we will refer to functions satisfying the Helmholtz equation as radiation fields, to 
expansions of forms (3.1), (3.2) as J-expansions and M-expansions, respectively. 
and to the point .yO as the center of the expansions (3.1), (3.2). 

The following lemma is a direct consequence of the formulae (2.15), (2.15). It 
establishes the convergence rates of the expansions (3.1 j, (3.2). 

LEMMA 3. I. If D , c D is a disk of radius RI < R :i!tth rhe cerzter at sO then ?izere 
exists c > 0 such that for any I E D 1 and N > lkl 

I,fD2 2 D is a di.yk of radius R2 > R with the center at x0 tlzetr tlzrte e.uists c > 0 ex+ 
that for any x E R”,i,D, and N > lkl . R, 

Rewark 3.1. In numerical calculations, expansions (3.1 f. (3.2) are truncated 
after a finite number of terms, and the resulting expressions are viewed as 
approximations to the dields 4, $. If we want to approximate 4 by an expansion 
of the form (3.3) with an accuracy E then according to the above lemma, we !~ve 
to choose 

-lntE) + ink!’ 

” In(R) - ln(R,)/’ 
i, 3.5 :i 
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Since logarithm is a very slowly growing function, for medium and large scale 
problems, 

-In(c) + In(c!) 
In(R) - ln(R,) > 

-R,.IW; 

i.e., the number of terms in the approximation is almost independent of E and must 
be roughly equal to (k( R,. A similar calculation shows that for medium to large 
scale problems, the expansion (3.2) can be truncated after approximately N B Ikl R 
terms. 

3.2. Translation Operators for H and J Expansions 

For a real number r > 0, we will denote by 2, the linear space of all two-sided 
complex sequences CI = (a,}, m = 0, + 1, f 2, . . . such that for some c > 0, 

2m m 
I I-(-) a n* er 

&<c (3.6) 

for all nz >r. We will denote by Y, the linear space of all complex sequences 
/I = {/I,,}, M = 0, k 1, + 2, . . . . such that for some c > 0, 

er m 
IP I (-) m . 2112 

.,G<C (3.7) 

for all IIZ 3 r. It is easy to see that X,c Y,? and that the condition (3.6) is a very 
restrictive one, since in order to satisfy it, the elements of the sequence (elm} must 
decay as (r/2)“/m!, while the condition (3.7) is a very mild one-it prohibits the 
elements of (pnl} f rom growing faster than approximately (2/r)“‘.nz!. By applying 
formulae (9.3.1), (9.3.2) from [l], it is easy to show that in (3.1). (3.2), ME YlklR 
and (s E Y,,,,. Conversely, for any sequence CI E Y,k,R, the expansion (3.1) converges 
inside D, and for any PE YlklR, the expansion (3.2) converges outside D. For a 
natural n, we will denote by T,, a linear mapping Y, --) Y, converting a sequence 
a = (cc,~}, m = 0, _+ 1, f 2, . . . into a sequence ~5 = {a,, ), m = 0, _+ 1, +2, . . . defined by 
the formulae 

OZm=Cl, for (nzl <n 

d ,=o for (ml 2 n + 1. 

Clearly, T,( Y,) c X,, and for obvious reasons, we will refer to T, as truncation. 
For the remainder of this section, D,, D,, D, will denote three disks in R2 such 

that D, c D, and D, n D, = @ (see Fig. la). The centers and radii of these disks 
will be denoted by c,, c2, C~ and R,, R,, R,, respectively. We will denote the 
distance j(c2 - c,Ij by plz, and the distance Ijcj - cr(I by pIJ. The angle between the 
vector c2 - cr and the x axis will be denoted by d12, and the angle between c3 -c, 
and the x axis will be denoted by (II,. For a point x E R2, we will denote IIx - c1 I/ 
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FIG. 1. A fluid scatterer imbedded in a two-dimensional l?uid space. 

FIG. la. Three disks in the plane (Sectioc 3). 

by pi3 /IX - czl/ by pz, and (Ix - c3(I by p3. Finally, the angles between the vectors 
x--c[, .x--z, and X- c3 and the x axis will be denoted by 8,, 8,, OX, respectively. 

Suppose that M is a natural number or CC. We will define a linear opera% 

qL.: : X,k,R? + X,k,R, as follows. If A = (a,>, m = 0, + 1, f2, . . . is an ekmenr of 
XlkjRz then U:,,.,(A) = B= (b,), m = 0, + 1, +_2, . . . is defined by the formula _ 

b,= i ph2 a m- jJjikp123 (3.8) 
,= --n 
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for any A = (a,,}, B= {b,, )- such that B= V:,,,(A). Finally, the operator 
Xv&?1 -+ YIW, converting an arbitrary sequence A = (a,} E X,k,R, into the sequence 
B = @m 1 E Y,,,,, defined by the formula 

b, = i e-iice13-n’ a,,zPjHj(kpz3) 
j= -n 

(3.10) 

will be denoted by W:,,,. For any natural nz, we will define the operators 
K;, : XlklR, -+ Xl,,,, , V’f:F2: YlklR, + YlklR2, WZz3 : XIkIR, by the formulae 

= Tm . 

. Tm,, 

W ;z3 = T,,, . Wf,,, . Tm. 

Remark 3.2. We will denote by Y the set of all two-sided complex sequences 
(yi}, i= kl, +2, . . . . When n is a natural number (as opposed to CC ), the formulae 
(3.8), (3.9), (3.10) define mappings OF,,,, pilCz, mtlflCj: Y-t Y that can be viewed as 
extensions of the mappings U&,, V&i, CVXcj i.e., 

~:,,,,,,I, = ulf2c,7 2 :,,:,x,,,,, = VlfZC,’ e,c!,X,k,R = Kc,. L 

Whenever there is no danger of confusion, we will make no distinction between 
the mappings OF,,,, FF,,,, @,C, and the mappings U&, VF,,,, WE,,, respectively. 

The following -three lemmas justify our referring to the operators Uz,,, , VF,,,, 

w:,,,, u::, 3 vlf:)rz, W’$ as translation operators, and will be used to-shift the 
origins of-H and J expansions, and to convert H-expansions into J-expansions. 
They are a direct consequence of the Graf’s addition theorem for Bessel functions 
(see [l, (9.1.79)]). 

LEMMA 3.2. Suppose that II/ : R2 -+ C’ is a radiation field analytical in R’ \D2 and 
satisfying the radiation condition (2.10) at cc’. Suppose further that $ is represented 
by an expansion 

Y(X) = c P,, H,,(kp,) eimo2 (3.11) 
m= --x 

valid in R2 \D2, and by an expansion 

t)(x) = y p,, H,,(kp,) eimQ1 
n,= -cc 

(3.12) 

valid in R*\B,. Then {fl,,,> = U&((/?nz}). 
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LmiM.~ 3.3. Suppose that I$: R’ + C’ is a radiation fieia’ analytical in D, and 
represented by an expansion 

w/id in D: , and by an expansion 

LEMMA 3.4. Suppose that II/: R2 ---f C ’ is a radiation peid anail-tical outside the 
disk D, and satisjj+ng the radiation condition (2.10), arzd that it in represented in 
R2’\,6, by the expansion (3.12). Then inside the disk D,, the functiora + cat: 6~ 
represetlted ii? the JForm 

+ 3c 
W)= 1 y,,J,,(kp lj i ezmB3 (3.15) 

111 = -cc 

Under the conditions of Lemma 3.2, we will define a radiation field d’zz,., 
R” ‘,., D 1 4 C ’ by the expression 

with the coefficients {6,,), m=O, f.1, +2, . . . defined by the formula (S,,,; = 
CT;,,,; { /?,,,I ). Similarly, under the conditions of Lemma 3.3, we will define a radiation 
field $‘f,,?: D, -+ C” by the formula 

(3.17) 

with I&,) = V:,Cr( {an,)). Finally, under the conditions of Lemma 3.4, we wih 
denote by $z,,, the radiation field D3 -+ C’ defined by the formula 

with the sequence (s,,,), rn = 0, + 1, +a, . . . defined by the formula is,,, 1 = 
K,,.J ~B,, > 1. 

Obviously, +zC,(x)=$(x) for any .xER~\B~: q5,:,,(x)=&xj foor any -xECO~~ and 
$~c,(.~)=~(~) for any XE D,, and we will view the mappings $yYc-, , 4rfiCCT I$:,~; as 
approximations to the mappings II/, 4, and $, respectively. 
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3.3. Diagonalizution of Translation Operators 

THEOREM 3.1. (a) For any natural n, each of the operators lJ&, V:r,,Z, WF,,.,, 
is a bounded scalar type operator (see [S, Vol. III]). Their sets of eigenvectors 
coincide and are given by the formula 

with q E [0, 27~1. 

e4= {eiqm>, m=O +1 +7 , - , --,... (3.19) 

(b) The spectral representations of the operators Ur2=, , VF,c2, WF,,., are 
respectively 

U&., = 1’” 4(q) f’, 4 
0 

(3.20) 

*27z 

v:,,, = J P,,(Y) f’, 4, o 

w;,,, = j’” v,(q) P, 4, 
0 

(3.21) 

(3.22) 

where P, is a rank one operator projectirlg Y on its subspace spanned by the vector 
e4 and commuting with each of the operators UFZCIr Vzl,Z, W:,,,, and the flmctions A,,, 
p,, v,: [0,271] + Cl are defined by the formulae 

A,(q) = i e-i’n(q+B1l) J,,,(kp,,), 
WI= -n 

(3.23) 

p,Jq) = i e--im(q+812-n)J,,(kP12), 
nl= -n 

v,,(q) = i epirncqs eupn’ H,(kp,,). 
m= -,I 

(3.24 j 

(3.25 j 

ProoJ An inspection of the formulae (3.8), (3.9), (3.10) shows that the map- 

pings K2,, y VZ,c23 W;,,, are convolutions of the sequence {a,,,}, m = 0, + 1, 22, . . . . 
with the finite sequences 

{epimeL2 J,(kp,,)}, nz = 0, * 1, +2, . . . (3.26) 

{e-i”‘(B1”~n)J,(kplz)), in = 0, * 1, + 2, . . . (3.27 j 

{e-im(et3-n) H,Jkp12)}, m=O,fl +3 , - -, . . . . (3.28) 

respectively. Convolutions with finite sequences are diagonalized by the Fourier 
transformation (see, for example, [8, 151) which proves (a). We obtain (b) by 
applying the Fourier transformation to the sequences (3.26), (3.27), (3.28). 1 
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Renzurk 3.3 For the mappings UF,,.,, v:,,,, the above theorem can be extended 
to the case II = E. As in well known, for any z E Cl9 8 E [0,2x], 

(see, for example, [l, 9.1.21]), and for iz = #xx the expressions (3.201, (3.21) assume 
the form 

L(4)=e rkp,~cos(y + +I q 2,:n: \- .A,: 
~,(0)=eikpl~coriqc81~-nl, 13.31) \ L 

However, Theorem 3.1 cannot be extended to the case of the operator WjfL7 since 
the latter is unbounded (see [IS, Vol. III]). 

Remark 3.4. In numerical calculations, the operators Uzy:,, V$,, W’:i:yj, with 
sufficiently large H, m will be viewed as approximations to the operators UF,,., 5 s’:,<,. 
W;,c, (see Remark 3.1). Clearly, applying either of the operators U:;“r5, P’$!!, W$; 
numerically to an arbitrary sequence is an order iznz procedure, which car, be 
prohibitively expensive for large scale problems. However, it follows from the above 
theorem that the operators Uzy;,, P’lf:f>, L.7zzz, W’f;:, are convolutions of sequences 
of lengths 17. m, and such convolutions can be evaluated in order (n + m) log(rr t W) 
operations by means of the fast Fourier transformation (see [4, 121). 

3.4. .4symptoric Forms of Radiation Fields 

In this subsection, we introduce an alternative form of the expansions it.1 ), i3.2) 
and the mappings U’f,,,, I$,,, W;,C,, providing a simple physical interpretation of 
the Lemmas 3.2-3.4 and the Theorem 3.1. 

For the expansion (3.2), we will consider a function Fti.liO: [O, 2rc] -+ C’ defined 
by the formuia 

with s = (cos 8. sin 0). Substituting (2.18), (3.2), into (3.32) we obtain 

which provides an explicit expression of F,,,, via the coefficients (/3,,z)9 and we will 
refer to F,.,, as the asymptotic representation of the field $ with the origin a.: yr;. 

In order to define an asymptotic representation of the Geld 4 in [3.h), we wili 
have to introduce an additional assumption that 
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which guarantees that the expansion (3.1) converges on the whole R2. By 
combining (2.17) and (3.1), it is easy to show that for any 8 E [O, 2~1 and 
x = (COS 8, sin 0), there exist unique numbers VO, c/, such that 

lim ~(t..r+~~).J(2~~t)-((e(~~-=~~)~. Ue+e-(kf-nj4)i. Ve)=O, (3.35) 
t-m 

and that the numbers UQ, V, are defined by the formulae 

r;, = y cam . e - (mC)i ) . eim8, 
m= -m 

ve = +f (a, . e(md)ij . einf@. 
nr = ~- 7.2 

Now, we will define the function GB,-YO: [0, 2n] + C r by the formula 

G,.&J! = Ue 

(3.36) 

(3.37) 

(3.38) 

(3.39) 

(3.40) 

and refer to it as the asymptotic representation of the field ti with the origin at x0. 
The following three lemmas establish that the asymptotic representations of the 

fields $, 4 diagonalize the translation operators U&,, V&, WXc3. All three are an 
immediate consequence of Lemmas 3.2-3.4 and Theorem 3.1. 

LEMMA 3.5. Uplder the conditions of Lemma 3.2, -for an}, 0~ [0,27c], 

F,,c,(@) = F,,.,(~) . LJa 

with ix : [0,2n] -+ C I defined by (3.30). 

LEMMA 3.6. Under the conditions of Lemma 3.3, jbr any 9 E [0, 27r], 

G,,.,V’) = G,,.,W .~rn(@ 

with p,,= : [0, 2n]+ C’ defined by (3.31). 

LEMMA 3.7. Under the conditions of Lemma 3.4, for an-v E > 0 there exists N > 0 
such that for an)’ n > N, 

IW) - fL(x)l <E (3.41) 

for uny x E D, where 4,: R’ + CL is a radiation Jield analytical inside D, with the 
asymptotic representation defined by the formula 

G q/,3c3 = Wj ~,~c,(~)~ (3.42) 

and the function v,, : [0, 2x] -+ C’ is defined by (3.25). 
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The following two lemmas are a direct consequence of t 
Lemmas 3.5, 3.6 and the Remark 3.3. They provide explicit expressions for the 
asymptotic representations of the fields generated by a charge and a dipole located 
at an arbitrary point and for the values and the derivatives of a field given by its 
asymptotic representation. 

LEMMA 3.8. Suppose that under the conditions of the Lemma 3.2, the field $- 0 
defined by the~formula $ = q5:., i.e., it is the fieid of a mitt charge located at the poiuzc 
x. Then the as!wtptotic representation of rhe fie!d 41/ with the center cl is giuet? b.1.z the 
formu/a 

Fti,c,(@ = e 
-ikp,cos~o-o~, (3.42 I 

If the field II/ is giuerl by the formula 3 = d”;.,, i.e.. it is the .field of a mitts dipole 
located at the point x and oriented in the direction h, then the asymptotic represermia- 
tion qf (3.12) with the center at cl is given bj, the forrnuia 

F,,,,(Q) = ik cos(e - @J p~mikP~‘oslO-O~J, 

ithere 8, is the angle between the uector h and the x axis. 

LEMMA 3.9. Suppose that under the conditiorls of rhe Lemma 3.3, the field (3.13 ) 
has the asymptotic representation Gc.,,: [O, 3x1 + C I. The;1 for any x E Ill i h E R’ 
sucii rhar lliz(l = 2, 

3.5. Numerical Evaluation of Translation Operators 

For the rest of this paper, we will view the asymptotic representations (3.331, 
(3.38) (as opposed to the expansions of the forms (3.!), (3.2)) as our principal tool 
for representing radiation fields. Lemma 3.8 permits one to calculate asymptotic 
representations of fields of distributions of charges and dipoles without eva~~at~~g 
the coefficients of their H-expansions, and Lemma 3.9 provides a tool for calcu- 
lating the fields and derivatives of the fields with given asymptotic representarisss 
without having to evaluate the coefficients of J-expansions of these fieids. 

For a radiation field tj : R2 + C ’ analytical outside Sr, and satisfying the 
radiation condition 12.101, and an integer n >/ 2, we wili denote by F>.<, the 5nite 
sequence a, i a2 1 ..~, a, defined by the formulae 

a,=Fti..,(wjj, (3.4: A 

wi = 27r (i- l) 
n ’ 

i=l ? ) -) ‘.., n 
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Similarly, for a radiation field 4 analytical inside D, and possessing and asymptotic 
representation G,., we will denote by G;,=, the sequence b,, b2, . . . . 6, defined by the 
formula 

bi= Gm,,,(w;). (3.49) 

Obviously, F;,., , G;,,, are tabulations at y1 equispaced nodes on the interval 
[0, 27~1 of the functions Fti,c,, G,,,, respectively, and we will view F;,c,, Gs,c, 
as finite-dimensional projections of the asymptotic representations of the $, 4 
radiation fields. 

For a finite sequence G;.cl = {b,, b2, . . . . b,,}, we will consider a radiation field 
-11 G $,Cl : R2 + C r defined by the formula 

(3.50) 

Clearly, (3.50) is a trapezoidal approximation to the integral (3.45), and we will 
look upon (3.50) as an approximation to the field 4. Differentiating (3.50) with 
respect to X, we obtain the formula 

(3.51) 

for any h E R’, and we will view (3.51) as an approximation to (3.46). 
Finally, we will define mappings Pz,, QT;,, St;,: C” -+ C” by the formulae 

P;;,(z,, z2, . . . . z,J = (Iz,,(t+~, j .z,, lm(~j2) .z2, . . . . A,(w,) z,), (3.52) 

QZ3z 1, z2, -.., z,) = (/4?Aw) ‘ZI, LO1’2) ‘Z2, . . . . ,4??(1~~,,) .z,A, (3.53) 

q’f,(zl, z2, . . . . z,, ) = (Vm(Wl) ‘Zl) v,(wJ . z2, . ..) vm(w,,) . z,), (3.54) 

with the functions A,,,, p,,,, v, defined by (3.20) (3.21), (3.22). It is easy to see 
from the formulae (3.22)-(3.23) (3.52))(3.54) and the Theorem 3.1 that under the 
conditions of the Lemmas 3.2-3.4, 

with U = $z,, , v= eyC2? w= 4qc, and we will look upon the operators Plr:lf,, Qz:,, 
S;;, as discretizations of diagonal forms of the operators UE,, V$, Wz:,. 

In order to estimate the number of nodes in the discretizations (3.47), (3.49) 
required to obtain a given accuracy E in the evaluation of the fields 4, $ we will 
need the following well known fact (see, for example, [7]). 
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Remark 3.5. By combining the above lemma with emark 3.1, it is easy see that 
:he number jr of nodes in the discretization G;,C, of the function GB.[,: CO. tn] -+ CT’ 
has to be approximately equal to 2 jkl R,, and is almost independent of rhe 
accuracy E with which the field CJ~ is being calculated. 

Lemmas 3.5-3.7 provide a tool for shifting the origins of asymptotic expansions 
of radiation fieids, and for converting asymptotic representations of the form (3.32: 
into asymptotic representations of the form (3.38) for a cost proportional :o 17, 
where TZ is the number of nodes in the discretization (3.48) of the interval CO, 2~1. 
In the followmg two sections, this apparatus is used to construct an algorithm for 
rapid evaluation of integral operators of Section 2. 

4. RAPID EVALUATION OF INTEGRAL QPERATORS OF S~cTiora 2 

In this section, we describe an algorithm for rapid evaluation of the field and the 
normal derivative of the field created on a curve r by charge and dipole 
Cons on that same curve. For definitiveness, we will be discussing the evaluation of 
the field created by a charge distribution. The algorithms evaluating the normai 
derivative of the field created by a charge distribution, and the field and the normal 
derivative of the field created by a dipole distribution are quite similar. 

We will consider the situation depicted in Fig. 2. The curve y is discretized imc 
equispaced nodes u 1 ) x 2, . . . . -y,,, and we will denote the spacing between the 
adjacent nodes by 17. Suppose that for each i= I. 2, .:., n, a charge ai of strength zi 

FIG. 2. Detinition of :he sets ,ji, Z’,. ii’, 
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is located at the point xi. In this section, we describe an algorithm for rapid calcula- 
tion of approximations gj= 1, 2, . . . . n to the sums 

G,(.x, j = i O,&pi j (4.1) 
j-1 
i#i 

for i= 1, 2,..., n. Clearly, this is an order n2 process (evaluating n fields at n points). 
However, if we are interested in evaluating (4.1) with a finite accuracy (which is 
always the case in practical calculations), Theorem 3.1 and Lemmas 3.7, 3.8, 3.9 can 
be used to speed up the process. 

For an integer m 3 2, we will define the points t,, t2, . . . . t,, r on the interval 
[0, L] by the formula ti = (i- l)L/nz, subdividing the interval [0, L] into m 
segments of equal length and denote the center of the ith segment by zi, so that 
zi = ti+ L/(2m). For each natural j= 1, 2, . . . . 171, we will denote by Aj the set of all 
charges ai such that xi~y([tj, tj+[]), and Dj, the circle of radius r= L/(2m) with 
the center at II( We will denote by W, the union of all Ai such that II”,- zill > 3r, 
and Fj the union of all Ai such that Ilzj- zill < 3r. Obviously. Ajc Dj for any 
j= 1, 2, . . . . tn. Also, it follows from the triangle inequality that 

min 11,~ - J~II > r 
.Y[EA( j,EA, 

for any i, j such that Ai c GV,. Finally, we will denote by dj the field of all charges 
a, such that -xi c Aj and observe that if .yP E Aj then 

G&J= 1 c&(x-,)+ C &,(x-J. (4.2) 
A, c IV, I, E E’, 

4.2. Detailed Descr@tion of an Order 12~“’ Algorithm 

In this subsection, M, N will denote “sufficiently large” integer numbers. The 
actual choice of the numbers M, N is discussed in the following subsection. We will 
evaluate the fields (4.1) in five steps. 

Step 1. Using Lemma 3.8, obtain discretized asymptotic representations F&,=,, 
of the fields dj for all j= 1, 2, . . . . m. 

Step 2. For every pair of natural numbers i, Jo [ 1, m] such that Aic Wj, 
calculate the representation 

(4.3) 

of the field tiii = $;yzi,,,!z,, and view it as a finite-dimensional approximation to the 
asymptotic representation of the field bi on Dj. 

Step 3. For each naturaljE [l, m], calculate the sum 

(4.4) 
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and view the field $;= x:, tiii as an approximation to the field x.d,c m1, tii, and 
Gtl,,Y.,_I, as a finite-dimensional approximation to the asymptotic representation of 
Eji on llj. 

Sreg 4, For each naturaljE [l, nz], evaluate 

J+, j = G,b,.i.tzjj hi i (4.5) 

for all i such that +yi E y( [rj, ti+ r]) and look upon (4.5) as an approximation to 
$;jx,) . t. 

Step 5. For each j= 1, 2, . . . . TX, evaluate the sum 

for all i such that li E y( [ ti, t, -t 1 1) and view (4.4) as an approximation to G,i .ri >. 

4.3. Choice ?f Parameters and CPU Time Estimate 

In the estimates below, a, b, c, d, e are coefficients determined by the computer 
system, language, particular implementation of the algorithm, etc. 

Step 1. Obviously, this step will require order lr. N operations (tabulating 
Fi;,i.;i,, at N nodes on the interval [O, 2n] for each of the nodes :I~, x2, . . . . r;,j. 
According to the Remark 3.5, N - IkI . L/m, and the CPU time estimate for this step 
becomes a n . jkJ L/m. 

Step 2. For each of the pairs i,j such that Aic E’,, evaluating (4.3) will require 
order !v’ operations (see (3.54)), and the total number of such pairs is less than ST’, 
which results in the CPU time estimate of b . tn2 . n - b mz. jk/ L/nz = b . m /!:I .L 
for this step. 

Srep 3. Obviously, evaluating the sums (4.4) for all j= 1, 2, . . . . m is an order 
c 37 N-c.f?z.N~c m.lkl .L/m=c.Ikl .L. procedure. 

Step 4. Evaluating (4.5) for each i= 1, 2, . . . . tr is an order N procedure, resuiring 
m the total CPU time estimate for this step of d.rz. N- d.n \k/k. LI%z. 

Slep 5. Evaluating the sum (4.4) for each i= 2, 2, . . . . M is an order ::;M? 
procedure, with the resulting CPU time estimate of e . n’/m for &is step. 

Summing up the time estimates for the Steps t-5, we obtain the following time 
estimate for the whole process, 

T=A.n.Ikl.Llm+b.m.Ikl.L+c.Ikl~Ltei2_, 
nr 

(La,’ ‘F 

with A = a + d, and we would like to choose m in such a manner that (4.7) would 
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be minimized. Differentiating 
derivative to zero, we obtain 

(4.7) with respect to rn, and setting the resulting 

[A .lZ. Ikl .L+e.d I” 0, 
mmin = 

d b.lkl .L 
(4.61 

and the corresponding minimum of (4.7) is equal to 

T,i,=2JA.n.(kl.L+e.n2.Jb.Ikl.L+c.(kl.L. (4.9 1 

If the calculations are performed with a fixed number of nodes per wavelength 
(which is often a reasonable assumption), II is proportional to (kl L, and (4.9) 
assumes the form 

or 

T,,,-(lkl -L)3” (4.10) 

Trnin N n3’2 

which for large n is considerably smaller than n2. 

(4.11) 

4.4. Further Reduction of the CPU Time Estimate of the Process 

The approach of the above subsection can be used recursively by subdividing 
each of the sets Ai into subsets {B,}, j= 1, 2, . . . . 6 with appropriately chosen ti and 
representing the fields di as sums di= xi Qij, where #ij is the field created by all 
charges ap such that up E B,. A calculation similar to the one in the preceding 
section shows that such an algorithm will have an asymptotic CPU time estimate 
of n413. 

In [20], such a subdivision process is used recursively to obtain an order n 
algorithm for numerical evaluation of integral operators of classical potential 
theory (Laplace’s equation). By reproducing the construction of Section VII of 
[20] almost literally, one can obtain an order n log(n) algorithm for evaluating 
(4.1). However, our estimates indicate that for problems of practicable size 
(n < 20,000), the improvement in actual computation times obtained by replacing 
an order n4,‘3 algorithm with an order n log n algorithm would not be very 
significant. 

5. IMPLEMENTATION AND NUMERICAL RESULTS 

5.1. Implementation 

In implementing the algorithm of the present paper, we closely followed [IS], as 
far as the formulation of the system of integral equations (2.13), (2.14) and their 
discretization are concerned. Equations (2.13), (2.14) were discretized by means 
of the Nystrom algorithm, which calls for replacing the integrals with finite 
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quadrature formulae and the integral equations wit systems of iinear algebraic 
equations respectively (see [ 3, IS]). Since the ker Es of the equations 12.13); 
(2.14) are logarithmically singular, quadrature formu suitable for functions with 
‘logarithmic singularities have to be employed, a we used a fourth-order 
convergent formula of the type discussed in 1211). scretization of Eqs. (2.13 ), 
(2,141 by means of the Nystrijm algorithm leads to large scale, asymptotically well- 
conditioned systems of linear algebraic equations (see [3]), to which we apply a 
version of the generalized conjugate residual algorithm (see [i i ] ). Solution of a 
hnear system by means of a generalized conjugate residual-type aigorithm invo?aes 
application. of the matrix of the system to a sequence of recursively generated 
vectors, which is accomplished by means of the algorithm of the preceding sectton 
(we implemented an order n4;3 version of the process). As is well known, In order 
to converge to a relative accuracy a, a generalized conjugate residual-type a!gorithm 
requires order -K. log(&) iterations, where K is the condition number of the matrix 
of the system being solved. This results in the total CPU time estimate of the or&: 
-I1143 : log(a) for the solution of the Eqs. (2.13), (2,14), since the application of the 
Nystrijm algorithm to these equations leads to well-conditioned l&rear systems (see 
[3]). After the system of Eqs. (2.13), (2.14) is solved, eva.lua’&g the scattered 5eId 
at anji poknt x $ P involves two numerical integrations ver F (evaluating the Seld 
of the charge distribution and that of the dipole distri tionb, which is an or&;; pi 
procedure. This brings us to the estimate 

T SOLVE = --(I . log(&) .?I1 ? + 5 ~ IZ i71 

for obtaining the solution of the problem (2.6 t-(2.1 G), where .r~; is the number sr’ 
points in R’ where the solution has to be calculated. 

5.2. Ntorre!ieal Results 

We have appli the algorithm of the present paper to several acoustic sca.ttering 
problems in two ensions. In the three examples presented below, all ca!c&tions 
were performed in single precision on a VAX-8600 computer. and alI timings are 
reported in seconds of CPU time on that machine. 

EXAMPL‘F: a. Scattering from a circular inclusion. In this case. :he problem 
possesses an anaiytical solution, providing a convenient way to verify the accuracy 
of he aigorithm. In our example, the radius of the scatterer was 100 ft, and irs 
center was at the origin. The densities inside and outside the scatterer were 1.2 and 
1.0, respectively. and the speeds of sound were 20 and IS, respectively. The ambient 
field was generated by a cylindrically symmetric source located at the porn: 
; IGG, IGO), and the scattered field obtained by the algorithm of the present naprr 
was compared to the analytical result at 40 equispaced points located on the cixie 
of radius 1 IO with the center at the origin (see Fig. 3). The caiculation ws 
performed with the angular frequency of the source varying from 10 to 320, and in 
a?1 cases the boundary of the scatterer was discretized at 113 nodes per wavelen&, 
which usually results in three to four digit accuracy. In Table I, t~i Ps the angular 
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-,50~““““““““““‘~‘~““” 
-150 -100 -50 0 50 100 150 

FIG. 3. Acoustic scattering from a circular inclusion 

frequency, n is the number of nodes on the boundary of the scatterer (at 10 nodes 
per wavelength), E is the resulting mean square error at 40 receivers, and nz is the 
number of iterations the generalized conjugate residual algorithm (GCRA) took to 
converge to 4-digit accuracy. Following observations can be made from Table I. 

1. The accuracy of the solution obtained with a given number of nodes per 
wavelength is virtually independent of the frequency. 

2. The number of iterations required by the GCRA to obtain a given 
accuracy is almost independent of the frequency. 

TABLE I 

CPU Times and Accuracies for the Example a 

0 n = m T(s) 

10 128 0.766E-3 5 36 
20 257 0.594E-3 6 83 
40 514 0.629E-3 6 179 
80 1028 0.620E-3 6 612 

160 2056 0.708E-3 6 1696 
320 4112 0.727E-3 6 4328 
640 8224 0.693E-3 6 10.5017 
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3. The actual CPU times required by the algorithm grow somewhat eratically 
as a function of the number of nodes on the boundary. but seem to be in agreement 
with the theoretical CPU time estimate of the algorithm. 

SAMPLE b. Scattering from a lense-shaped object. In the situation depicted in 
Fig. 4, the speed of sound in the containing space is 30 ft/s, and the speed of sound 
inside the scatterer is 20 ft/s. Both upper and Bower surfaces of the scatterer are 
circular with the radius of curvature 1 ft, so that the focal distance of the resultir;g 
lence is 2 ft. Three cylindrically symmetric sources are located at the points I, 11, 
and III respectively have the frequency F= 7162 Hz, resulting in the wavejengts 
0.0041888 ft outside the scatterer, and 0.0027925 ft inside the scatterer. The 
amplitude of the field generated by this configuration on the screen is depicted ic 
Fig. 5. Clearly, the laws of geometrical optics should be applicable to this situatioa~ 
with a reasonable degree of accuracy, since the lense is about 240 exterior icr 3% 
interior) wavelengths in diameter, and a careful examination of the Fig. 5 shops 
this to be the case. In order to produce Fig. 5, the surface of the lense in Fig. 4 was 
discretized into 6134 nodes (with 10 nodes per wavelength jT resulting in a system 
of linear aigebraic equations of dimension 12268. The solution of this problem with 
a two-digit accuracy took 3358 s of CPU time on a ~~~-$~O@. 

EXAMPLE c. Radiation from a worm-shaped object. In this numerical expe-i- 
ment, a source of angular frequency o = 640 was “located inside an inclusion oE a 

FIG. 4. Acoustic scattering from a lense-shaped mciusion. 
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FIG. 5, Amplitude of the field measured along the screen in Fig. 4. 

complicated shape in a fluid two-dimensional space (see Fig. 6). The densities inside 
and outside the inclusion were 1.25 and 1.0, respectively, and the speeds of sound 
were 20 and 25, respectively. The boundary of the inclusion was discretized at 10 
nodes per wavelength, resulting in the total number of 5078 nodes on the boundary 
of the inclusion. The calculation took 3867 seconds of CPU time to obtain the 
solution with two-digit accuracy, and the amplitude of the field as measured by 
receivers in Fig. 6 is displayed in Fig. 7. 

t ZG c 

0; 

FIG. 6. Acoustic radiation from a worm-shaped inclusion. 
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FG. 7. Amplitude or* the kid measured by receivers ir Fig. 6. 

Remsrrk 5.1. An alternative approach to the solution of problems of types b-c 
wouId be to impose a finite difference grid on the region containing the scat~~ex, 
impose some form of absorbing boundary conditions (see, for example, [I? ] ) at he 
boundary of the discretized region, and attempt to solve the resulting system of 

linear algebraic equations iteratively. At 10 nodes per wavelength, the grid in 
Examples b. c, would be at least of the size 4000 x 4000 nodes, and the condition 
number of the resulting system would be of the order (4000)” -+ IO’. Naturally, BE 10 
nodes per wavelenth, the sharp boundary of the scatterer would be resolved q&e 
poorly, yielding an accuracy of the solution of perhaps one digit. Even ignortng the 
difficulties associated with the quality of existing non-reflecting boundary conditions 
the problem is, clearly, unmanageable. 

6. GENERALIZATIONS AND ~W.KXUSKX-4~ 

‘in the present paper, we have been solving the problem (2.6) 12.SG;i 
corresponding to the scattering of sound from a ffui inclusion in a fluid spa-:e. 
Bbviously, the two classical acoustical scattering problems (Dirichlet and 
Neumann problems for the Helmholtz equation, corresponding to scattering from 
a cavity and from a rigid inclusion respectively) can be solved in a similar manner. 
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Generally, whenever a scattering problem is reduced to a set of second kind integral 
equations on the boundary of the scatterer by means of some form of Stoke’s 
theorem, the algorithm of Section 4 provides a tool for solving these equations in 
order n4j3 operations. 

6.2. Multiple Scatterers 

The case of multiple scatterers does not differ substantially from the case of a 
single scatterer. The scattered field inside each scatterer is represented in a manner 
precisely similar to the one used to solve a single scatterer problem. The scattered 
field outside the scatterers is represented by the sum of the fields of single and 
double layer potentials on the surfaces of all scatterers. The whole procedure is 
completely straightforward. 

6.3. Three-Dimensional Version of the Theory 

Three-dimensional equivalents of the expansions (3.1), (3.2) are well known (see, 
for example, [ 16]), and those of the mappings U&,, VF,c2, W:,, are fairly easy to 
define. However, in two dimensions, the translation operators Uz2c,, V:flcl, W:,,, are 
convolutions, and the diagonal form of the latter is well known from the standard 
theory of the Fourier integral (see Theorem 3.1). In three dimensions, no such 
ready-made analytical apparatus is available, and the proof of an equivalent of the 
Theorem 3.1 is considerably more involved. Furtunately, diagonal forms of the 
three-dimensional analogues of the operators U:,,,, Vz,,?, W:,,, can be obtained by 
a generalization of the technique used in [22] to derive Graf’s addition theorem, 
permitting fast solvers for scattering problems in three dimensions to be 
constructed. Details of this generalization will be reported at a later date. 

6.4. Conclusions 

One of principal difficulties arising in the solution of large-scale scattering 
problems of integral equations is the fact that the Green’s function for the 
Helmholtz equation decays slowly. As a result, the kernels of the obtained integral 
equations are not sparse, and their discretization leads to dense large-scale systems 
of linear algebraic equations. Solution of such systems is an extremely expensive 
process (see [9, Ill), which limits the usefulness of the whole approach. 

In Section 4 of the present paper, we construct an algorithm for rapid application 
of the matrices resulting from discretization of integral equations of scattering 
theory to arbitrary vectors. The asymptotic CPU time estimate of the algorithm is 
n4j3 and can be reduced to n log(iz), where n is the number of nodes in the 
discretization of the boundary of the scatterer. By combining the approach of the 
Section 4 with a generalized conjugate residual type process, we obtain an order 
-n4”310g(&) algorithm for the solution of the integral equations (2.13), (2.14) of 
acoustic scattering theory. This results in acceptable computation times even for 
large-scale scattering problems (see preceding section), as long as the solution has 
to be evaluated at a limited number of points. 
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