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Abstract The manuscript presents a technique for efficiently solving the classical wave
equation, the shallow water equations, and, more generally, equations of the form
∂u/∂t = Lu, where L is a skew-Hermitian differential operator. The idea is to explic-
itly construct an approximation to the time-evolution operator exp(τL) for a relatively
large time-step τ . Recently developed techniques for approximating oscillatory scalar
functions by rational functions, and accelerated algorithms for computing functions of
discretized differential operators are exploited. Principal advantages of the proposed
method include: stability even for large time-steps, the possibility to parallelize in time
over many characteristic wavelengths, and large speed-ups over existing methods in
situations where simulation over long times are required

Numerical examples involving the 2D rotating shallow water equations and the 2D wave
equation in an inhomogenous medium are presented, and the method is compared to
the 4th order Runge-Kutta (RK4) method and to the use of Chebyshev polynomials.
The new method achieved high accuracy over long time intervals, and with speeds that
are orders of magnitude faster than both RK4 and the use of Chebyshev polynomials.

1. Introduction

1.1. Problem formulation. We present a technique for solving a class of linear hyperbolic
problems

(1)


∂u

∂t
(x, t) = Lu(x, t), x ∈ Ω, t > 0,

u(x, 0) = u0 (x) x ∈ Ω.

Here u is a possibly vector valued function and L is a skew-Hermitian differential operator
(see the end of this Section for the method’s scope). The technique is demonstrated on the
2D rotating shallow water equations, as well as the variable coefficient wave equation.

The basic approach is classical, and involves the construction of a rational approximation
to the time evolution operator exp(τL) in the form

exp(τL) ≈
M∑

m=−M
bm
(
τL − αm

)−1
,

where the time-step τ is fixed in advance and M scales linearly in τ . Once the time-step τ
has been fixed, an approximate solution at times τ, 2τ, 3τ, . . . can be obtained via repeated
application of the approximate time-stepping operator, since exp(nτL) =

(
exp(τL)

)n
. The

computational profile of the method is that it takes a moderate amount of work to construct
the initial approximation to exp(τL), but once it has been built, it can be applied very rapidly,
even for large τ .

The efficiency of the proposed scheme is enabled by (i) a novel method [5] for constructing
near optimal rational approximations to oscillatory functions such as eix over arbitrarily long
intervals, and by (ii) the development [17] of a high-order accurate and stable method for
pre-computing approximations to operators of the form (τL − αm)−1. The near optimality
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of the rational approximations ensures that the number 2M + 1 of terms needed for a given
accuracy is typically much smaller than standard methods that rely on polynomial or rational
approximations of L.

The proposed scheme has several advantages over typical methods, including the absence
of stability constraints on the time step τ in relation to the spatial discretization, the ability
to parallelize in time over many characteristic wavelengths (in addition to any spatial paral-
lelization), and great acceleration when integrating equation (1) for long times or for multiple
initial conditions (e.g. when employing an exponential integrator on a nonlinear evolution
equation, cf. Section 5). A drawback of the scheme is that it is more memory intensive than
standard techniques.

We restrict the scope of this paper to when the application (τL−αm)−1u0 can be reduced
to the solution of an elliptic-type PDE for one of the unknown variables. This situation arises
in geophysical fluid applications (among others), including the rotating primitive equations
that are that are used for climate simulations. In this context, the ability to efficiently solve
(1) can be used to construct efficient schemes for the fully nonlinear evolution equations in the
presence of time scale separation (see [13]). However, the direct solver presented in Section 2
is quite general, and in principle can be extended to first order linear systems of hyperbolic
PDEs with little modification (though such an extension is speculative and, in particular, has
not been tried).

1.2. Time discretization. In order to time-discretize (1), we fix a time-step τ (the choice of
which is discussed shortly), a requested precision δ > 0, and “band-width” Λ ∈ (0,∞) which
specifies the spatial resolution (in effect, the scheme will accurately capture eigenmodes of L
whose eigenvalues λ satisfy |λ| ≤ Λ). We then use an improved version of the scheme of [5]
to construct a rational function,

(2) RM (ix) =

M∑
m=−M

bm(
ix− αm

) ,
such that

(3)
∣∣eix −RM (ix)

∣∣ ≤ δ, x ∈ [−τΛ, τΛ],

and

(4) |RM (ix)| ≤ 1, x ∈ R.
It now follows from (3) and (4) that if we approximate exp(tL) by RM (τL), the approximation
error satisfies

(5)

∥∥∥∥∥eτLu0 −
M∑

m=−M
bm
(
τL − αm

)−1
u0

∥∥∥∥∥ ≤ δ ‖u0‖+ 2 ‖u0 − PΛu0‖ ,

where PΛ projects functions onto the subspace spanned by eigenvectors of L with modulus at
most Λ. Here the only property of L that we use is that L is skew-Hermitian, and hence has
a complete spectral decomposition with a purely imaginary spectrum.

The bound (4) ensures that the repeated application of RM (τL) is stable on the entire
imaginary axis. It also turns out that the number 2M + 1 of terms needed in the rational
approximation in (3) is close to optimally small (for the given accuracy δ).

The scheme described above allows a great deal of freedom in the choice of the time step
τ . While classical methods typically require the time step to be a small fraction of the
characteristic wavelength, we have freedom to let τ cover a large number of characteristic
wavelengths. Therefore, the scheme is well suited to parallelization in time, since all the inverse
operators in the approximation of the operator exponential can be applied independently. In
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fact, the only constraint on the size of τ is on the memory available to store the representations
of the inverse operators (as explained in Section 1.3, the memory required for each inverse
scales linearly in the number of spatial discretization parameters, up to a logarithmic factor).

1.3. Pre-computation of rational functions of L. The time discretization technique de-
scribed in Section 1.2 requires us to build explicit approximations to differential operators on
the domain Ω such as (τL − αm)−1. We do this using a variation of the technique described
in [17]. A variety of different domains can be handled, but for simplicity, suppose that Ω is a
rectangle. The idea is to tessellate Ω into a collection of smaller rectangles, and to put down
a tensor product grid of Chebyshev nodes on each rectangle, as shown in Figure 1. A function
is represented via tabulation on the nodes, and then L is discretized via standard spectral
collocation techniques on each patch. The patches are glued together by enforcing continuity
of both function values and normal derivatives. This discretization results in a block sparse
coefficient matrix, which can rapidly be inverted via a procedure very similar to the classical
nested dissection technique of George [9]. The resulting inverse is dense but “data-sparse,”
which is to say that it has internal structure that allows us to store and apply it efficiently.

In order to describe the computational cost of the direct solver, let N denote the number of
nodes in the spatial discretization. For a problem in two dimensions, the “build stage” of the
proposed scheme constructs 2M + 1 data-sparse matrices {Am}Mm=−M of size N ×N , where

each Am approximates (τL − αm)−1. The build stage has asymptotic cost O(M N1.5), and
storing the matrices requires O(M N log(N)) memory. The cost of applying a matrix Am is
O(N log (N)). (We remark that the cost of building the matrices {Am}Mm=−M can often be

accelerated to optimal O(M N) complexity [10], but since the pre-factor in the O(M N1.5)
bound is quite small, such acceleration would have negligible benefit for the problem sizes
under consideration here.) Section 2 describes the inversion procedure in more detail.

We remark that the spatial discretization procedure we use does not explicitly enforce that
the discrete operator is exactly skew-Hermitian. However, the fact that the spatial discretiza-
tion is done to very high accuracy means that it is in practice very nearly so. Numerical
experiments indicate that the scheme as a whole is stable in every regime where it was tested.

1.4. Comparison to existing approaches. The approach of using proper rational approx-
imations for applying matrix exponentials has a long history. In the context of operators
with negative spectrum (e.g. for parabolic-type PDEs), many authors have discussed how to
compute efficient rational approximations to the decaying exponential e−x, including using
Cauchy’s integral formula coupled with Talbot quadrature (cf. [23]), and optimal rational
approximations via the Carathéodory-Fejer method (cf. [23]) or the Remez algorithm [3].
However, such methods are less effective (or not applicable) when applied to approximating
oscillatory functions such as eix over long intervals. For computing functions of parabolic-
type linear operators, the approach of combining rational approximations and compressed
representations of the solution operators using so-called H-matrices has been proposed in [8].

Common approaches for applying the exponential of skew-Hermitian operators include
high-order time-stepping methods, scaling-and-squaring coupled with Padé approximations
(cf. [14]) or Chebyshev polynomials (cf. [1]), and polynomial or rational Krylov methods (cf.
[15] and [11]). All these methods iteratively build up rational or polynomial approximations
to the operator exponential, and correspondingly approximate the spectrum eiωnτ of eτL with
polynomials or rationals. Therefore, the near optimality of (2) and the speed of applying
the inverse operators in (5) will generally translate into high efficiency relative to standard
methods. In contrast to these standard approaches, the method proposed in this paper can
also be trivially parallelized in time over many characteristic wavelengths.
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In addition to approaches that rely on polynomial or rational approximations, let us men-
tion two alternative approaches for time-stepping on wave propagation problems. The authors
in [2] combine separated representations of multi-dimensional operators, partitioned low rank
compressions of matrices, and (near) optimal quadrature nodes for band-limited functions,
in order to compute compressed representations of the operator exponential over 1− 2 char-
acteristic wavelengths. Along different lines, the authors in [6] use wave atoms to construct
compressed representations of the (short time) operator exponential, and in particular can
bypass the CFL constraint.

1.5. Outline of manuscript. The paper is organized as follows. In Section 2, we briefly
describe the direct solver in [17]. We then discuss in Section 3 a technique for constructing
efficient rational approximations of general functions, and specialize to the case of approxi-
mating the exponential eix and the phi-functions for exponential integrators [4]. In Section 4,
we present applications of the method for both the 2D rotating shallow water equations and
the 2D wave equation in inhomogenous medium. In particular, we compare the accuracy
and efficiency of this approach against 4th order Runge-Kutta and the Chebyshev polyno-
mial method (in our comparisons, we use the same spectral element discretization). Finally,
Appendix A contains error bounds for the rational approximations constructed here.

2. Spectral element discretization

This section describes how to efficiently compute a highly accurate approximation to the
inverse operator (L − α)−1, where L is a skew-Hermitian operator. As mentioned in the in-
troduction, we restrict our discussion to environments where application of the inverse can
be reformulated as a scalar elliptic problem. This reformulation procedure is illustrated for
the classical wave equation and for the shallow water equations in Section 2.1. Section 2.2
describes a high-order multidomain spectral discretization procedure for the elliptic equa-
tion. Section 2.3 describes a direct solver for the system of linear equations arising upon
discretization.

2.1. Reformulation as an elliptic problem. In many situations of practical interest, the
task of solving a hyperbolic equation (L − α)u = f , where L is a skew-Hermitian operator,
can be reformulated as an associated elliptic problem. In this section, we illustrate the idea
via two representative examples. Example 1 is of particular relevance to geophysical fluid
applications, which serve as a major motivation of this algorithm.

Example 1 — the shallow water equation: We consider the rotating shallow water equations,

vt = −fJv +∇η,(6)

ηt = ∇ · v,

where v (x) = (v1 (x) , v2 (x)) denotes the fluid velocity, η (x) denotes perturbed surface ele-
vation, f is the (possibly spatially varying) Coriolis frequency, and

J =

(
0 1
−1 0

)
.

On the sphere, f = 2Ω sinφ; on the plane, f is constant. We write system (6) in the form

ut = Lu,

where

(7) L
(

v
η

)
=

(
−fJv +∇η
∇ · v

)
.
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Although we only consider the case when the Coriolis frequency is constant, the method
generalizes to non-constant coefficient f (see also the example in the next section) and is of
particular relevance for a spectral element discretization on the cubed sphere.

In order to apply the method in this paper, we use the standard fact (cf. [22]) that if

(8) (L − α)

(
v
η

)
=

(
v0

η0

)
,

then η satisfies the elliptic equation

(9) ∇ · (Aα∇η)− αη = η0 +H∇ · Aαv0.

Here Aα is defined by

Aα =
1

α2 + f2

(
α f
−f α

)
.

Once η is computed, v can be obtained directly,

(10) v = −Aαv0 +Aα∇η.

When f is constant, equation (9) reduces to

(11)

(
∆− α2 + f2

c2

)
η =

α2 + f2

c2α
(η0 +H∇ · (Aαv0)) .

Example 2 — the wave equation: Consider the wave propagation problem

(12) utt = κ∆u, x ∈ [0, 1]× [0, 1] ,

where κ (x) > 0 is a smooth function, the initial conditions u (x, 0) and ut (x, 0) are prescribed,
and periodic boundary conditions are used.

In order to apply the method in this paper, we reformulate (32) as a first order system in
both time and space by defining v = ut, w = ux, and z = uy. Then we have that

(13)

 wt
zt
vt

 =

 0 0 ∂x
0 0 ∂y
κ∂x κ∂y 0

 w
z
v

 ,

with initial conditions

v (x, 0) = u0 (x) , w (x, 0) =
∂u0

∂x
(x) , z (x, 0) =

∂u0

∂y
(x) .

Here the scalar function u to the original system (32) can be recovered after the final time
step by solving the elliptic equation ∆u = wx + zy.

To apply the method in this paper, we compute the solution to

(14) (L − α)

 w
z
v

 =

 vx − αw
vy − αz

κ (wx + zy)− αv

 =

 w0

z0

v0


as follows. First, solving for w and z in terms of v,

(15) w =
1

α
(vx − w0) , z =

1

α
(vy − z0) ,

it is straightfoward to show that

(16)
(
∆− α2κ−1

)
v = ακ−1v0 +

∂w0

∂x
+
∂z0

∂y
.

Once v is known, w and z can then be computed directly via (15).
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2.2. Discretization. In this section, we describe a high-order accurate discretization scheme
for elliptic boundary value problems such as (11) and (16) which arise in the solution of
hyperbolic evolution equations. Specifically, we describe the solver for a boundary value
problem (BVP) of the form

(17) Bu (x) = f (x) , x ∈ Ω,

where B is an elliptic differential operator. To keep things simple, we consider only square
domains Ω = [0, 1]2, but the solver can easily be generalized to other domains. The solver
we use is described in detail in [18], our aim here is merely to give a high-level conceptual
description.

The PDE (17) is discretized using a multidomain spectral collocation method. Specifically,
we split the square Ω into a large number of smaller squares (or rectangles), and then put
down a tensor product grid of p × p Chebyshev nodes on each small square, see Figure 1.
The parameter p is chosen so that dense computations involving matrices of size p2 × p2

are cheap (p = 20 is often a good choice). Let {xj}Nj=1 denote the total set of nodes. Our

approximation to the solution u of (17) is then represented by a vector u ∈ CN , where the
j’th entry is simply an approximation to the function value at node xj , so that u(j) ≈ u(xj).
The discrete approximation to (17) then takes the form

(18) Bu = f ,

where B is an N×N matrix. The j’th row of (18) is associated with a collocation condition for
node xj . For all j for which xj is a node in the interior of a small square (filled circles in Figure
1), we directly enforce (17) by replacing all differentiation operators by spectral differentiation
operators on the local p × p tensor product grid. For all j for which xj lies on a boundary
between two squares (hollow squares in Figure 1), we enforce that normal fluxes across the
boundary are continuous, where the fluxes from each side of the boundary are evaluated via
spectral differentiation on the two patches (corner nodes need special treatment, see [18]).

2.3. Direct solver. The discrete linear system (18) arising from discretization of (17) is
block-sparse. Since it has the typical sparsity pattern of a matrix discretizing a 2D differential
operator, it is possible to compute its LU factorization in O(N1.5) operations using a nested
dissection ordering of the nodes [7, 9] that minimizes fill-in. Once the LU-factors have been
computed, the cost of a linear solve is O(N logN). In the numerical computations presented
in Section 4, we use a slight variation of the nested-dissection algorithm that was introduced
in [17] for the case of homogeneous equations. The extension to the situation involving body
loads is straight-forward, see [18].

We note that by exploiting internal structure in the dense sub-matrices that appear in the
factors of B as the factorization proceeds, the complexity of both the factorization and the
solve stages can often be reduced to optimal O(N) complexity [10]. However, for the problem
sizes considered in this manuscript, there would be little practical gain to implementing this
more complex algorithm.

3. constructing rational approximations

We now discuss how to construct efficient rational approximations to general smooth func-
tions f (x). For concreteness, we consider approximating the phi functions

ϕ0 (x) = eix, ϕ1 (x) =
eix − 1

ix
, ϕ2 (x) =

eix − ix− 1

ix2
,

that arise for high-order exponential integrators (cf. [23]). By considering the real and
imaginary components separately, we assume that f (x) is real-valued (it turns out that the
poles in the approximation will be the same for the real and imaginary components).
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Figure 1. Illustration of the grid of points {xj}Nj=1 introduced to discretize

(17) in Section 2.2. The figure shows a simplified case involving 4× 4 squares,
each holding a 6× 6 local tensor product grid of Chebyshev nodes. The PDE
(17) is enforced via collocation using spectral differentiation on each small
square at all solid (“internal”) nodes. At the hollow (“boundary”) nodes,
continuity of normal fluxes is enforced.

The construction proceeds in two steps; the second step is actually a pre-computation and
need only be done once, but is presented last for clarity. First, we construct an approximation

to f (x) by sums of shifted Gaussians ψh (x) = (4π)−1/2 e−x
2/(4h2) (see Section 3.1 for details),

(19)

∣∣∣∣∣f (x)−
M∑
−M

bmψh (x+ nh)

∣∣∣∣∣ ≤ δ1, −Λ ≤ x ≤ Λ.

Here h is inversely proportional to the bandlimit of f (x), and M controls the interval Λ over
which the approximation is valid (roughly |x| . Mh). When f (x) = eix, the coefficients are

explicitly given by cm =
(
ψ̂h (1) /h

)
e−2πinh, and the approximation is remarkably accurate

(see 23 for error bounds). Second, using the approach in [5], a rational approximation to

ψ1 (x) = (4π)−1/2 e−x
2/4 is constructed over the real line (see Section 3.2 for details),

(20)

∣∣∣∣∣∣ψ1 (x)− 2Re

 L∑
j=−L

aj
ix− (µ+ ij)

∣∣∣∣∣∣ ≤ δ2, x ∈ R.
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Notice that the imaginary parts of the poles in the above approximation are integer multiples
j = 0,±1, . . . ,±L. For L = 11, we construct µ and coefficients aj such that the L∞ approxi-
mation error δ2 satisfies δ2 < 10−12 (see Table 1). Finally, combining (19) and (20), we obtain
a rational approximation to f (x),∣∣∣∣∣f (x)− 2Re

(
M+L∑

n=−M−L

cn
ix− h (µ+ in)

)∣∣∣∣∣ ≤ δ1 + 2 (M + L) δ2.

Here the coefficients cn are given by

cn = h

L2∑
k=L1

akbn−k,

where

L1 (n) = max (−L, n−M) , L2 (n) = max (−L, n−M) .

Importantly, constructing the rational approximation (20) to ψ (x) need only be done once.
In particular, once µ and the coefficients aj are pre-computed, rational approximations to
general functions f (x) over arbitrarily long spatial intervals can be obtained with minimal
effort, as discussed in Section 3.1. We present µ, and the coefficients aj , j = −11, . . . , 11, in
Table 1, which are sufficient to yield an L∞ error δ1 ≈ 7× 10−13 in (20) .

Using the reduction algorithm in [12], we find that the rational approximation constructed
for eix is close to optimal in the L∞ norm, for a given accuracy δ and spatial cutoff A. In fact,
the construction in this paper uses only 1.2 times more poles than the near optimal rational
approximation obtained from [12] (when δ = 10−10 and A = 56π, which we use in our numeri-
cal experiments). We note that the residues corresponding to this near optimal approximation
can be very large and, for this reason, we prefer to use the sub-optimal approximation instead.

As clarified in Sections 3.1 and 3.2, the same poles can be used to approximate multiple
functions with the same bandlimit. For example, we can use the same poles to approximate
all functions e2πitx, for 0 ≤ t ≤ 1, since all these functions have bandlimit less than or
equal to e2πix; the dependence on t is only through the coefficients, which are given explicitly

by cm =
(
ψ̂h (t) /h

)
e−2πinth. In particular, the poles αm = h (µ+ im) are independent of

t and yield uniformly accurate approximations to eitx on the same interval [−Λ,Λ]. This
observation enables the efficient computation of multiple operator exponentials eskLu0, for
sk = tk/L, using the same computed solutions (tL − αm)−1 u0, m = 1, . . . ,M . A similar
comment applies to the phi-functions from exponential integrators.

Generally, any rational approximation to eix (or more general functions) must share the
same number of zeros within the interval of interest; in particular, since the rational approx-
imation can be expressed as a quotient of polynomials, it is therefore subject to the Nyquist
constraint. However, one advantage of this approximation method is that it allows efficient
rational approximations of functions that are spatially localized. In fact, since the approxi-
mation (19) involves highly localized Gaussians, the subsequent rational approximations are
able to represent spatially localized functions as well as highly oscillatory functions using
(perhaps a subset) of the same collection of poles. This allows the ability to take advantage
of spectral gaps (e.g. from scale separation between fast and slow waves) and possibly bypass
the Nyquist constraint under certain circumstances.

3.1. Gaussian approximations to a general function. We discuss how to construct the
approximation (19). To do so, we choose h small enough that the function f̂ (ξ) is zero (or

approximately so) outside the interval [−1/ (2h) , 1/ (2h)]. Then we can expand f̂ (ξ) /ψ̂h (ξ)
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Figure 2. The absolute error in the Gaussian approximations of ϕj (x) for
j = 1, 2 (plots (a) and (b)) , using h = 1 and M = 200.
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in a Fourier series,

(21)
f̂ (ξ)

ψ̂h (ξ)
=

∞∑
−∞

cme
2πimhξ,

where

cm = h

∫ 1/(2h)

−1/(2h)
e−2πimhξ f̂ (ξ)

ψ̂h (ξ)
dξ.

Transforming (21) back to the spatial domain, we have that

f (x) =

∞∑
−∞

cmψh (x+mh) .

Notice that the functions ψh (x+mh) are tighly localized in space, and truncating the above
series from −M to M yields accurate approximations for − (M − b)hx < x < (M − b)hx,
where b > 0 is a small number that is related to the decay of ψh (x). We remark that the
authors in [19] discuss a related method of constructing quasi-interpolating representations
via sums of Gaussians (see [20] for a comprehensive survey).

Specializing to the case when f (x) = e2πix, we have that f̂ (ξ) = δ (ξ − 1), and so the
coefficients cm are given by

(22) cm =
h

ψ̂h (1)
e−2πimh.

Similarly, for functions ϕ1 (x) and ϕ2 (x), the coefficients cm can be obtained numerically
using the fact that

φ̂1 (ξ) =

{
2π, − 1

2π ≤ ξ ≤ 0,

0, otherwise.

and

φ̂2 (ξ) =

{
(2π)2 (ξ + 1

2π

)
, − 1

2π ≤ ξ ≤ 0,

0, otherwise.

For example, the coefficients cm for e.g. φ1 (x) can be computed via discretization of the
integral,

cm = h

∫ 0

−1/(2π)
e−2πimhξ e

−2πimhξ

ψ̂h (ξ)
dξ.
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In Figure 2, we plot the error,∣∣∣∣∣ϕj (x)−
∞∑
−∞

cm,jψ (x+mh)

∣∣∣∣∣ ,
for the phi functions ϕ1 (x) and ϕ1 (x), where we choose h = 1 and M = 200; notice that the
choice of h corresponds to the bandlimit of ϕj (x). As shown in Figure 2, the error is smaller
than ≈ 3 × 10−13 for all −191 ≤ x ≤ 191, and is shown to begin to rise at the ends of the
intervals, which are close to Mh. This behavior can be understood by noting that∣∣∣∣∣ϕj (x)−

M∑
−M

cm,jψ1 (x+m)

∣∣∣∣∣ ≤ ∑
|m|>M

|cm,j |ψ1 (x+m) ,

where we used that the support of ϕ̂j is contained in [−1/2, 1.2]. Since the functions ψ1 (x+m)
for m > M decay rapidly away from x = −m, the error from truncation is negligible when
|x| ≤ (M −m0) and m0 = O (1).

We remark that, for the function eix, it can be shown (see the Appendix) that the approx-
imation for eix satisfies

(23)

∣∣∣∣∣eix −
M∑

m=−M
cmψh (x+mh)

∣∣∣∣∣ ≤ 1

ψ̂h (1)

∑
k 6=0

ψ̂h

(
k

h

)
+
∑
|m|>M

ψh (x+mh)

 ,

where cm is defined in (22). We see that the first sum is negligible for e.g. h . 1, owing
to the tight frequency localization of ψh. Similarly, the second sum is negligible when |x| ≤
(M −m0)h and m0 = O (1), owing to the tight spatial localization of ψ.

3.2. Rational approximation to a Gaussian. We now discuss how to construct the ap-
proximation (20).

To do so, we first use AAK theory (see [5] for details) to construct a near optimal rational
approximation, ∣∣∣∣∣∣ 1√

4π
e−x

2/4 − Re

 N∑
j=1

bj
ix+ αj

∣∣∣∣∣∣ ≤ δ.
For an accuracy of δ ≈ 10−13, 13 poles γj are required.

Setting µ = minj Re (αj) , we next look for a rational approximation to (4π)−1/2 e−x
2/4 of

the form

(24) R (x) = Re

 L∑
j=−L

aj
ix+ µ+ ij

 ,

where we take L = 11. We find the coefficients aj by minimizing the L∞ error∥∥∥∥∥∥ 1√
4π
e−x

2/4 − Re

 L∑
j=−L

aj
ixn + µ+ ij

∥∥∥∥∥∥
∞

,

where the points xn ∈ [−30, 30] are chosen to be more sparsely distributed outside the numer-

ical support of e−x
2/4; the interval [−30, 30] is found experimentally to yield high accuracy

for the approximation over the entire real line. Finding the coefficients aj , j = −L, . . . , L,
that minimize the L∞ error can be cast as a convex optimization problem, and a standard
algorithm can be used (we use Mathematica). The resulting approximation error is shown in
Figure 3; the error remains less than ≈ 7× 10−13 for all x ∈ R.
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Figure 3. Error in the rational approximation (20) to e−x
2/4

-200 -100 100 200
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5.´10-13

6.´10-13

7.´10-13

Table 1. Coefficients aj , j = −11, . . . , 11, and number µ, in the rational
approximation (24).

µ = −4.315321510875024,
a−11 =

(
−1.0845749544592896× 10−7, 2.77075431662228× 10−8

)
,

a−10 =
(
1.858753344202957× 10−8,−9.105375434750162× 10−7

)
,

a−9 =
(
3.6743713227243024× 10−6, 7.073284346322969× 10−7

)
,

a−8 =
(
−2.7990058083347696× 10−6, 0.0000112564827639346

)
,

a−7 = (0.000014918577548849352,−0.0000316278486761932),
a−6 = (−0.0010751767283285608,−0.00047282220513073084),

a−5 = (0.003816465653840016, 0.017839810396560574),
a−4 = (0.12124105653274578,−0.12327042473830248),
a−3 = (−0.9774980792734348,−0.1877130220537587),
a−2 = (1.3432866123333178, 3.2034715228495942),
a−1 = (4.072408546157305,−6.123755543580666),

a0 = −9.442699917778205,
a1 = (4.072408620272648, 6.123755841848161),

a2 = (1.3432860877712938,−3.2034712658530275),
a3 = (−0.9774985292598916, 0.18771238018072134),
a4 = (0.1212417070363373, 0.12326987628935386),

a5 = (0.0038169724770333343,−0.017839242222443888),
a6 = (−0.0010756025812659208, 0.0004731874917343858),
a7 = (0.000014713754789095218, 0.000031358475831136815),

a8 =
(
−2.659323898804944× 10−6,−0.000011341571201752273

)
,

a9 =
(
3.6970377676364553× 10−6,−6.517457477594937× 10−7

)
,

a10 =
(
3.883933649142257× 10−9, 9.128496023863376× 10−7

)
,

a11 =
(
−1.0816457995911385× 10−7,−2.954309729192276× 10−8

)
We display the real number µ, and the coefficients aj , j = 1, . . . , 11. In particular, these

numbers are the only parameters that are needed in order to construct rational approximations
to general functions on spatial intervals of any size.

In Figure 4, we show the resulting rational approximations of cos (2πx) and sin (2πx), which
use the same 172 complex-conjugate pairs of poles; the L∞ error is seen to be ≈ 10−10 over
the interval −28 ≤ x ≤ 28.
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Figure 4. Error in the rational approximations of sin (2πx) and cos (2πx)
(plots (a) and (b)), for −28 ≤ x ≤ 28. These approximations use the same 172
pairs of complex-conjugate poles.
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Figure 5. (a) Plot of the rational filter function S (ix), for −60 ≤ x ≤ 60. (b)
Plot of the difference |S (ix)− 1| for −28 ≤ x ≤ 28.

(a) (b)

-0.2

0

0.2

0.4

0.6

0.8

1

-60 -40 -20 0 20 40 60 4e-11

5e-11

6e-11

7e-11

8e-11

9e-11

1e-10

1.1e-10

-30 -20 -10 0 10 20 30

3.3. Constructing rational approximation of modulus bounded by unity. For our
applications, it is important that the approximation to eix is bounded by unity on the real
line. In particular, the Gaussian approximation for eix constructed in Section 3.1 has absolute
value larger than one when |x| ≈Mh, and this can lead to instability in repeated applications
of etL.

The basic idea is to construct a rational function S (ix) that satisfies S (ix) ≈ 1 for |x| .
M0h and S (ix) ≈ 0 for |x| & M0h. As long as M0 is slightly less than M , the function
S (ix)RM (ix) accurately approximates eix for |x| . M0h, and decays rapidly to zero for
|x| & M0h. Therefore, |S (ix)RM (ix)| ≤ 1 for all x ∈ R, and repeated application of
S (tL)RM (tL)u0 is stable for all t > 0. In Figure 5, we plot rational filter that uses 33
complex-conjugate poles; we see that |S (ix)− 1| ≈ 10−10 for −28 ≤ x ≤ 28.

Although the above approach results in a stable method, we have found it more efficient to
use a slightly modified version. This is motivated by the following simple observation: since
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u0 (x) is real-valued,

(25) (tL − α)−1 u0 = (tL − α)−1 u0.

Recalling that the poles from Section 3.2 come in complex-conjugate pairs, only half the
matrix inverses need to be pre-computed and applied if (25) is used. However, directly using
(25) results in numerical instabilities, where small errors in the high frequencies are amplified
after successive applications of RM (tL)u0. The fix is to eliminate the errors in the high
frequency components by instead computing S (k0∆)RM (tL)u0, where k0 is determined by
the frequency content of u0 (x) and the operator S (k0∆) only affects the highest wavenumbers.
Since the transition region between S (ix) ≈ 1 and S (ix) ≈ 0 can be made arbitrarily small
(see Figure 5), the operator S (k0∆) behaves like a spectral projector.

We now discuss how to construct S (ix). To do so, we use that (see [21])∣∣∣∣∣ 1

ψ̂h (1)

∞∑
−∞

ψh (x+ hm)− 1

∣∣∣∣∣ ≤ 1

hψ̂h (1)

∑
k 6=0

ψ̂h

(
k

h

)
,

which follows from the Poisson summation formula. For h . 1, the right hand side is negligible,

owing to the tight frequency localization of ψ̂h (ξ). Truncating the above sum and using the
tight spatial localiztion of ψh (x), we see that the function

(26) χ (x) =

M0∑
−M0

ψh (x+mh) ,

is approximately unity for |x| .M0h, and decays to zero rapidly when |x| &M0h. It also holds
out that |χ (x)| ≤ 1 for all x ∈ R. Therefore, using the techniques from Sections 3.1 and 3.2,
we construct a rational approximation Q (ix) to the function χ (x) in (26),

(27)

∣∣∣∣∣∣Q (ix)−
M0∑
−M0

ψh (x+mh)

∣∣∣∣∣∣ ≤ δ, x ∈ R,

The number of poles required to represent the sub-optimal approximation for Q (x) can be
drastically reduced with the reduction algorithm [12], which produces another proper rational
function S (x) such that

|Q (ix)− S (ix)| ≤ δ0, x ∈ R,
and with a near optimally small number of poles for the prescribed L∞ error δ0. Since the
poles of S (ix) and R (ix) are distinct, the function S (ix)R (ix) can be expressed as a proper
rational function. The final function S (ix) is what is shown in Figure 5.

4. Examples

4.1. The 2D (rotating) shallow water equations. We apply the technique proposed to
the linear shallow water equations

vt = −fJv +∇η,
ηt = ∇ · v,

where all quantities are as in Section 2.1, cf. equation (6).
We apply the algorithm in the spatial domain [0, 1] × [0, 1], using periodic boundary con-

ditions and a constant Coriolis force f = 1 . In this case, an exact solution can be computed
analytically since the matrix exponential is diagonalized in the Fourier domain, and can be
rapidly applied via the Fast Fourier Transform (FFT). In particular,

L
(
rlke

ik·x
)

= iωlkr
l
ke
ik·x,
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Figure 6. (a) Plots of the L∞ error,
∥∥un − enτLu0

∥∥
∞, versus the big time

step nτ , where τ = 3 and 1 ≤ n ≤ 10. Here the approximation un is computed
via RK4, the Chebyshev polynomial method, and the rational approximation
method. (b) Plots of the computation time (min.) versus the big time step
nτ , for the RK4, the Chebyshev polynomial method, and the rational approx-
imation method.
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where rlk are eigenvectors of the matrix 0 −f igk1

−f 0 igk2

iHk1 iHk2 0

 ,

and can be found in [16].
We first compare the accuracy and efficiency of applying enτLu0, for τ = 3 and n =

1, . . . , 10, against 4th order Runge-Kutta (RK4) and against using Chebyshev polynomials.
In particular, the Chebyshev method uses the approximation

(28) e∆tLu0 ≈ J0 (i)u0 + 2
K∑
k=0

(i)k Jk (−i)Tk (∆tL)u0,
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Figure 7. Plot of the L∞ error,
∥∥un − enτLu0

∥∥
∞, versus the big time step

nτ , where τ = 1 and 1 ≤ n ≤ 300. Here un denotes the numerical approxima-
tion to enτLu0, as computed by the rational approximation (5) and the direct
solver from Section 2.

Table 2. Comparison of the accuracy and efficiency of applying, eτLu0 and
τ = 1.5, for system (6) and u0 in (29). The comparison uses RK4, Chebyshev
polynomials, and the rational approximation (5); in the spatial discretization
of all three comparisons, 12×12 = 144 elements and 16×16 = 254 Chebyshev
quadrature nodes per element are used.

eτL, τ = 1.5 L∞ error time (min.) pre-comp. (min.)
Rational approx., 2.1× 10−10 4.39 103.1
M = 376 terms

RK4 7.0× 10−10 131.9 NA

Cheby. poly., 1.1× 10−10 150.5 NA
degree 12

coupled with the standard recursion for applying Tk (∆tL); we choose a polynomial degree of
12, which we find experimentally is a good compromise between the time step size ∆t needed
for a given accuracy, and the number of applications of L. In all the time-stepping schemes,
we use the same spectral element discretization and parameter values as described above. All
the algorithms are implemented in Octave, including the direct solver described in Section 2.

4.1.1. First test case for the shallow water equations. We first consider the initial conditions

η (x) = sin (6πx) cos (4πy)− 1

5
cos (4πx) sin (2πy) ,

v1 (x) = cos (6πx) cos (4πy)− 4 sin (6πx) sin (4πy) ,

v2 (x) = cos (6πx) cos (6πy) .(29)

For these initial conditions, we use 6 × 6 = 36 elements of equal area, and 16 × 16 = 256
Chebyshev quadrature nodes for each element. To assess the accuracy of the method, the
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exponential enτLu0 is applied in the Fourier domain. When applying the operator exponential
using the rational approximation (5), we use M = 376 inverses and τ = 3 ; this results in
an L∞ error of 3.4 × 10−10 for a single (large) time step. For this choice of parameters in
the spectral element discretization, the cost of applying the solution operator of (8)—i.e.,
forming the right hand side of (11), solving (11), and evaluating (10)—is about 4.5 times
more expensive than the cost of applying the forward operator (7) directly.

For the three time-stepping methods, the L∞ errors in the approximation of enτLu0, n =
1, . . . , 10, are plotted in Figure 6, (a). Similarly, the total computation times (in minutes)
of approximating enτLu0, n = 1, . . . , 10, are plotted in Figure 6, (b) (this includes the pre-
computation time for representing the inverses). From Figure 6, (a), we see that the L∞

errors from all three methods remain less than 10−8 for n = 1, . . . , 10. From Figure 6, (b),
we see that the first time step for the rational approximation method is about half the cost
of both RK4 and the Chebyshev polynomial method. However, subsequent time steps for
the new method is about 40 times cheaper than both RK4 and the Chebyshev polynomial
method (for about the same accuracy).

4.1.2. Second test case: doubling the spatial resolution. Next, we compute eτLu0, τ = 1.5,
with the initial conditions

η (x) = sin (12πx) cos (8πy)− 1

5
cos (8πx) sin (4πy) ,

v1 (x) = cos (12πx) cos (8πy)− 4 sin (12πx) sin (8πy) ,

v2 (x) = cos (12πx) cos (12πy) .(30)

In particular, we double the bandlimit in each direction. In each of the time-stepping schemes,
we use 12× 12 = 144 elements of equal area, and 16× 16 = 256 Chebyshev quadrature nodes
for each element. We again use M = 376 inverses in (5).

We only examine the error and computation time for one big time step. For the rational
approximation method, we present both the pre-computation time for obtaining data-sparse
representations of the 376 inverses in (5), and the computation time for applying the approx-
imation in (5) (once the data-sparse representations are known). The results are summarized
in Table 4.1. Since we only consider a single time step, the pre-computation time and ap-
plication time are included separately. The main conclusion to draw from these results is
that doubling the spatial resolution does not appreciably change the relative efficiency of
the three time-stepping methods (once representations for the inverse operators in (5) are
pre-computed).

4.1.3. Third test case: applying the operator exponential over a long time interval. Finally,
we access the accuracy of the new method when repeatedly applying eτL, τ = 1, in order to
evolve the solution over longer time intervals. In this example, we use the initial conditions

η (x) = exp
(
−100

(
(x− 1/2)2 + (y − 1/2)2

))
,

v1 (x) = cos (6πx) cos (4πy)− 4 sin (6πx) sin (4πy) ,

v2 (x) = cos (6πx) cos (6πy) .(31)

Notice that these initial conditions cannot be expressed as a finite sum of eigenfunctions of
L. We use the same spatial discretization parameters as in Section 4.1.2.

In Figure 7, we show the L∞ error of the computed approximation un (x) to u (x, nτ),
n = 1, . . . , 300. As expected, the error increases linearly in the number of applications of
the exponential. Notice that, due to the large step size of τ = 1, the error accumulates
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Table 3. Comparison of the accuracy and efficiency for the operator expo-
nential, etLu0 and t = 1.5, for system (13) and u0 in (33). The comparison
uses RK4, Chebyshev polynomials, and the rational approximation (5); in the
spatial discretization of all three comparisons, 12 × 12 = 144 elements and
16× 16 = 254 Chebyshev quadrature nodes per element are used.

etL, t = 1.5 L∞ error time (min.) pre-comp. (min.)
Rational approx., 1.6× 10−9 3.76 113.4
M = 376 terms

RK4 3.5× 10−10 63.9 NA

Cheby. poly., 3.5× 10−8 57.5 NA
degree 12

slowly in time and the solution can be propagated with high accuracy over a large number of
characteristic wavelengths.

4.2. Example 2. In our second example, we consider the wave propagation problem

(32) utt = κ∆u, x ∈ [0, 1]× [0, 1] ,

where κ (x) > 0 is a smooth function, the initial conditions u (x, 0) and ut (x, 0) are prescribed,
and periodic boundary conditions are used.

Since the procedure and results are similar to those in Section 4.1, we simply test the
efficiency and accuracy of this method over a single time step τ = 1.5. In particular, we
compare the accuracy and efficiency for one application eτLu0, τ = 1.5, against 4th order
Runge-Kutta (RK4) and against using Chebyshev polynomials. In our numerical experiments,
we use the initial condition

(33) u (x, y, 0) = sin (2πx) sin (2πy) + sin (4πx) sin (4πy) ,

and ut (x, y, 0) = 0. We also use

κ (x, y) =

(
3 + sin (4πx)

4

)1/2(3 + sin (4πy)

4

)1/2

.

Finally, in the spatial discretization, we use 12 × 12 = 144 elements with 16 × 16 = 256
points per element (for all three time-stepping methods), and M = 376 poles in (5). For these
parameters, the time to apply the inverse of (14)—which involves forming the right hand side
in (16), solving for v, and computing (15)—is about 5.2 times more expensive than directly
applying the forward operator (13).

Unlike Section 4.1, the operator exponential is not diagonalized in the Fourier domain.
To assess the accuracy, we use the Chebyshev polynomial method with a small enough step
size to yield an estimated error of less than 10−10. In particular, we verify that the L∞

residual, ‖u (x, t; ∆t)− u (x, t; ∆t/2)‖∞, using numerical approximations to u (x, t) computed
with step sizes ∆t and ∆t/2 and the Chebyshev polynomial method, is less than 10−10. We
then use u (x, t; ∆t/2) as a reference solution.

The results are summarized in Table 3. From this table, we see that the pre-computation
time needed to represent the M = 376 solution operators in (5) is 93 minutes, and the
computation time needed to apply the exponential is 3.7 minutes; the final accuracy in the
L∞ norm is given by 1.6 × 10−9. For the Chebyshev polynomial method, 575 time steps of
size ∆t ≈ .0026 are taken, for an overall time of 57 minutes; the final accuracy is given by
3.5×10−8. Finally, for RK4, 7, 500 time steps of size ∆t = 1/5×10−3 are taken, for an overall
time of 63.9 minutes; the final accuracy is 3.5× 10−10.
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5. Generalizations

The manuscript presents an efficient technique for explicitly computing a highly accurate
approximation to the operator ϕ(τL) for the case where L is a skew-Hermitian operator
and where ϕ(t) = et, so that ϕ(τL) is the time-evolution operator of the hyperbolic PDE
∂u/∂t = Lu. The technique can be extended to more general functions ϕ. In particular,
in using exponential integrators (cf. [4]), it is desirable to apply functions ϕj (τL), where
ϕj (·) are the so-called phi-functions. In Section 3, we presented (near) optimal rational
approximations of the first few phi functions. An important property of these representations
is that the same poles can be used to simultaneously apply all the phi-functions, and with
a uniformly small error. In particular, linear combinations of the same 2M + 1 solutions
(τL − αm)−1 u0, m = −M, . . . ,M , can be used to apply ϕj (τL) for j = 1, 2, . . .. In a similar
way, linear combinations of the same 2M+1 solutions can be used to apply esL for 0 ≤ s ≤ τ .

In addition, where there is a priori knowledge of large spectral gaps—for example, when
there is scale separation between fast and slow waves—the techniques in this paper, coupled
with those in [12]), can be used to construct efficient rational approximations of eix which
are (approximately) nonzero only where the spectrum of L is nonzero. Since suitably con-
structed rational approximations can capture functions with sharp transitions using a small
number of poles (see [12]), this approach requires a potentially much smaller number of inverse
applications.

Appendix A. Error bounds

We now derive the error bound (23). To do so, we use the Poisson summation formula,

∞∑
m=−∞

Ψh (x+mh) =
1

h

∞∑
k=−∞

e2πi(k/h)xΨ̂h

(
k

h

)
.

Applying this to Ψh (x) = e−2πixψh (x), we have that

∞∑
m=−∞

Ψh (x+mh) = e−2πix
∞∑

m=−∞
e−2πimhψh (x+mh)

=
1

h

∞∑
k=−∞

e2πi(k/h)xΨ̂h

(
k

h

)

=
1

h

∞∑
k=−∞

e2πi(k/h)xψ̂h

(
k

h
+ 1

)
,

where the last inequality uses the fact that

Ψ̂h

(
k

h

)
= ψ̂h

(
k

h
+ 1

)
.

Therefore, ∣∣∣∣∣
∞∑

m=−∞
e−2πimhψh (x+mh)− ψ̂h (1)

h
e2πix

∣∣∣∣∣ ≤ 1

h

∑
k 6=0

ψ̂h

(
k

h

)
.

Finally, truncating the sum we obtain the bound (23).

References

[1] Luca Bergamaschi and Marco Vianello. Efficient computation of the exponential operator for large, sparse,
symmetric matrices. Numer. Linear Algebra Appl., 7(1):27–45, 2000.



HIGH-ORDER APPROXIMATION OF EVOLUTION OPERATORS 19

[2] G. Beylkin and K. Sandberg. Wave propagation using bases for bandlimited functions. Wave Motion,
41(3):263–291, 2005.

[3] W. J. Cody, G. Meinardus, and R. S. Varga. Chebyshev rational approximations to e−x in [0, +∞) and
applications to heat-conduction problems. J. Approximation Theory, 2:50–65, 1969.

[4] S.M. Cox and P.C. Matthews. Exponential time differencing for stiff systems. Journal of Computational
Physics, 176(2):430 – 455, 2002.

[5] Anil Damle, Gregory Beylkin, Terry Haut, and Lucas Monzon. Near optimal rational approximations of
large data sets. Applied and Computational Harmonic Analysis, 35(2):251 – 263, 2013.

[6] Laurent Demanet and Lexing Ying. Wave atoms and time upscaling of wave equations. Numer. Math.,
113(1):1–71, 2009.

[7] I.S. Duff, A.M. Erisman, and J.K. Reid. Direct Methods for Sparse Matrices. Clarendon Press, Oxford,
1986.

[8] I. P. Gavrilyuk, W. Hackbusch, and B. N. Khoromskij. Hierarchical tensor-product approximation to the
inverse and related operators for high-dimensional elliptic problems. Computing, 74(2):131–157, 2005.

[9] A. George. Nested dissection of a regular finite element mesh. SIAM J. on Numerical Analysis, 10:345–363,
1973.

[10] A. Gillman and P.G. Martinsson. A direct solver with o(n) complexity for variable coefficient elliptic pdes
discretized via a high-order composite spectral collocation method, 2013. arXiv.org report #1307.2665.

[11] Stefan Guttel. Rational krylov approximation of matrix functions: Numerical methods and optimal pole
selection. GAMM-Mitteilungen, 36(1):8–31, 2013.

[12] T. Haut and G. Beylkin. Fast and accurate con-eigenvalue algorithm for optimal rational approximations.
SIAM Journal on Matrix Analysis and Applications, 33(4):1101–1125, 2012.

[13] T. S. Haut and B. A. Wingate. An asymptotic parallel-in-time method for highly oscillatory PDEs. SIAM
J. of Sci. Comput., to appear. See also arXiv:1012.3196 [math.NA], 2013.

[14] N. Higham. The scaling and squaring method for the matrix exponential revisited. SIAM Journal on
Matrix Analysis and Applications, 26(4):1179–1193, 2005.

[15] M. Hochbruck and C. Lubich. On Krylov subspace approximations to the matrix exponential operator.
SIAM J. Numer. Anal., 34(5):1911–1925, 1997.

[16] Andrew J. Majda. Introduction to PDEs and waves for the atmosphere and ocean. Courant lecture notes
in mathematics. Courant Institute of Mathematical Sciences Providence (R.I.), New York, 2003.

[17] P.G. Martinsson. A direct solver for variable coefficient elliptic {PDEs} discretized via a composite spectral
collocation method. Journal of Computational Physics, 242(0):460 – 479, 2013.

[18] P.G. Martinsson. A direct solver for variable coefficient elliptic pdes discretized via a high-order composite
spectral collocation method, a tutorial, 2013. arXiv.org report.

[19] Vladimir Maz’ya and Gunther Schmidt. On approximate approximations using gaussian kernels. IMA
Journal of Numerical Analysis, 16:13–29, 1996.

[20] Vladimir Maz’ya and Gunther Schmidt. Approximate approximations, volume 141 of Mathematical Surveys
and Monographs. American Mathematical Society, Providence, RI, 2007.

[21] Frank Müller and Werner Varnhorn. Error estimates for approximate approximations with Gaussian ker-
nels on compact intervals. J. Approx. Theory, 145(2):171–181, 2007.

[22] Nathan Paldor and Andrey Sigalov. An invariant theory of the linearized shallow water equations with
rotation and its application to a sphere and a plane. Dynamics of Atmospheres and Oceans, 51(1-2):26 –
44, 2011.

[23] Thomas Schmelzer and Lloyd N. Trefethen. Evaluating matrix functions for exponential integrators
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