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We consider the integral equation

(1) u(x) +
∫

Γ
K(x, y)u(y) ds(y) = f(x), x ∈ Γ.

Upon discretization, equation (1) turns into a discrete equation

(2) (I + A)u = f

where A is a (typically dense) N ×N matrix.

Equation (2) can be solved rapidly using an iterative method:

Cost = niter × Cost for a matrix-vector multiply ∼ niter ×N.

A direct method computes a compressed representation for (I + A)−1.

• Cost for pre-computing the inverse.

• Cost for applying the inverse to a vector.

In many environments, both of these costs can be made O(N).

Direct methods are good for (1) ill-conditioned problems, (2) problems with
multiple right-hand sides, (3) spectral decompositions, (4) updating, . . .



Practical aspects:

Direct methods tend to be more robust than iterative ones.

This makes them more suitable for “black-box” implementations.

It is our empirical experience that commercial software developers seem
to avoid implementing iterative solvers whenever possible (for good
reasons or not).

The effort to develop direct solvers should be viewed as a step towards
getting an LAPACK-type environment for solving the basic linear
boundary value problems of mathematical physics.
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1998 H-matrix methods, W. Hackbusch, et al,

2002 inversion of Lippmann-Schwinger equations, Y. Chen.



Current state of the research

The fast direct solvers we are developing exploit the fact that off-diagonal
blocks of the matrix to be inverted have low rank.

This restricts the range of application to non-oscillatory, or moderately
oscillatory problems. In other words, we can do:

• Laplace’s equation, equations of elasticity, Yukawa’s equation,. . .

• Helmholtz’ and Maxwell’s equations for low- and intermediate freqs.

(In special cases, high frequency problem can also be solved.)

Boundary integral equations in 2D are completely understood.

Lippmann-Schwinger eqns in 2D are well understood, implementation is
under way.

In 3D, we “know” how to solve the problem, but much work remains.



Technical aspects:

Once you have a compressed inverse, applying it is very similar to
applying the original operator using an FMM:

• Hierarchical (adaptive) subdivision of the computational domain.

• Outgoing fields are aggregated through an upwards pass.

• Incoming fields are aggregated through a downwards pass.

Pre-computation of the inverse operator is slightly different:

• There is only an upwards pass.

• For each subdomain, we compute operators, rather than fields.
(Inverses, and “Schur complements”).

An important difference between the current methods and classical FMM:

The outgoing and incoming fields are represented by tabulation,
rather than via expansions in function series.



Γ1 Γ2

100 charges on Γ1 induce a potential v on Γ2.

The same potential v can be reproduced by placing only 30 charges on the
bold points in the figure below. (To within precision 10−10.)

Γskel
1

(fat points)
Γ2

One can pick the 30 charge locations so that they work for any

distribution of charges.

(In the classical FMM, a multipole expansion was used to reproduce v.)



An analogous representation exists for incoming potentials.

Let w be a potential on Γ1 caused by a charge distribution on Γ2.

It is possible to pick 30 points on Γ1 in such a way that if w is known on
these 30 points, then through a local interpolation, w can be determined
at the remaining points.

Γ1 Γ2

(In the classical FMM, the incoming potentials are recorded by keeping
track of expansions in harmonic polynomials, or, better, exponentials.)



Numerical examples

The algorithm was implemented in Matlab and FORTRAN 77.

The experiments were run on a Pentium IV with a 2.8Ghz processor and
512 Mb of RAM.



Example 1: Electro-statics in a bi-phase dielectric medium

Ω1, ε1

Ω2, ε2

Γ

z1, q1
z2, q2

z3, q3

The domain Ω2 has a different dielectric constant than the background.

There are electric charges at the points zi ∈ Ω1.

Task: Evaluate all electro-static forces on the point-charges.

The “induced” charge distribution σ on Γ satisfies, for x ∈ Γ,

ε1 + ε2

2(ε1 − ε2)
σ(x)− 1

2π

∫

Γ

n(y) · (x− y)
|x− y|2 σ(y) ds(y) = −ε1

∂v

∂n
(x),



Computational accuracy = 10−10.

Nr. of points in the discretization of the contour = 25 600.

Nr. of particles = 10 000.

Time to invert the boundary integral equation = 2.9sec.

Time to compute the induced charges = 0.034sec. (2.0sec for the FMM)

Total time for the electro-statics problem = 0.65sec.



ε = 10−5 Ncontour = 25 600 Nparticles = 100 000

Time to invert the boundary integral equation = 46sec.

Time to compute the induced charges = 0.42sec.(2.5sec for the FMM)

Total time for the electro-statics problem = 3.8sec.



A close-up of the particle distribution.



Example 2 - An interior Helmholtz Dirichlet problem

The diameter of the contour is about 2.5. An interior Helmholtz problem
with Dirichlet boundary data was solved using N = 6400 discretization
points, with a prescribed accuracy of 10−10.

For k = 100.011027569 · · · , the smallest singular value of the boundary
integral operator was σmin = 0.00001366 · · · .

Time for constructing the inverse: 0.7 seconds.

Error in the inverse: 10−5.
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Plot of σmin versus k for an interior Helmholtz problem
on the smooth pentagram. The values shown were
computed using a matrix of size N = 6400. Each
point in the graph required about 60s of CPU time.



Example 3 - An exterior Helmholtz Dirichlet problem

A smooth contour. Its length is roughly 15 and its horizontal width is 2.



k Nstart Nfinal ttot tsolve Eres Epot σmin M

21 800 435 1.5e+01 3.3e-02 9.7e-08 7.1e-07 6.5e-01 12758

40 1600 550 3.0e+01 6.7e-02 6.2e-08 4.0e-08 8.0e-01 25372

79 3200 683 5.3e+01 1.2e-01 5.3e-08 3.8e-08 3.4e-01 44993

158 6400 870 9.2e+01 2.0e-01 3.9e-08 2.9e-08 3.4e-01 81679

316 12800 1179 1.8e+02 3.9e-01 2.3e-08 2.0e-08 3.4e-01 160493

632 25600 1753 4.3e+02 7.5e+00 1.7e-08 1.4e-08 3.3e-01 350984

Computational results for an exterior Helmholtz Dirichlet
problem discretized with 10th order accurate quadrature.
The Helmholtz parameter was chosen to keep the num-
ber of discretization points per wavelength constant at
roughly 45 points per wavelength (resulting in a quadra-
ture error about 10−12).

Note: For this problem, the complexity is O(n + (Lk)3).



The nodes left at an intermediate level.
Notice the inherent adaptivity of the procedure.
(The figure actually shows the results of a Laplace problem.)



Example 4: High-frequency forwards scattering from an
elongated scatterer

We solve a scalar scattering problem (Helmholtz’ equation) on the wave
pattern above.

The wave-length of the physical waves is roughly the same as that for the
radiating waves.

The contour is discretized into 70 points per wave-length.



ntot nwave tcomp tapply Eres M

800 11 1.07e0 2.20e-3 9.2e-7 2.6e0

1600 23 2.32e0 4.70e-3 1.8e-7 5.5e0

3200 46 4.86e0 9.60e-3 7.7e-7 1.1e1

6400 91 1.12e1 1.94e-2 6.2e-7 2.3e1

12800 183 2.30e1 3.90e-2 8.8e-7 4.7e1

25600 366 4.58e1 7.92e-2 4.7e-6 9.4e1

51200 731 1.01e2 1.59e-1 4.9e-6 1.9e2

102400 1463 2.02e2 3.19e-1 6.3e-6 3.8e2

204800 2926 4.06e2 6.36e-1 1.7e-5 7.6e2

nwave is the size of the scatterer in wavelengths.

tcomp is the time (in seconds) required to invert the matrix.

tapply is the time (in seconds) required to apply the inverse.

Eres is the (relative) error in the residual.

M is the amount of memory required (in Mb).
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The reflection profile from a surface with 600 waves.



But what about iterative solvers?

Well, there is good news; the tabulation technique developed for the
direct solvers can also be used to accelerate matrix-vector multipliers.

For 1D problems (including contour integral equations), we have achieved
major speed-ups over the fastest existing FMMs.
Break-even point with direct computation at double precision accuracy is
less than 100.
This has implications for numerical linear algebra.

For 2D problems (including surface integral equations in space), there is
some speed-up, and significant simplifications in the implementation. As
an example, anisotropic elasticity will become manageable.

(For volume integral equation in 3D, FMM based on exponential
expansions will still be faster.)



Summary

Direct solvers are currently being developed for integral equations
involving non-oscillatory, or moderately oscillatory, kernels.

Advantages of direct solvers over iterative solvers:

• Less sensitive to the conditioning of a problem.

• Robustness.

• Computing spectral decompositions.

• Advantage in speed for problems with multiple right hand sides.

2D: • Well-understood.

• Fairly efficient implementations exist.

• Direct solvers as fast as or faster than iterative solvers.

3D: • Under development.

• Quite complex machinery.

• Will probably be expensive.



Other applications – direct solvers:

• Inversion of general Toeplitz matrices in O(N) time.

• Compute conformal mappings in O(N) time
(by solving the Kerzman-Stein integral equations).

• Multi-scale model reduction – numerical homogenization.

• Wave-propagation in solids – nearly resonant problems.



Γ1 Γ2

Consider the integral equation

(3)
1
2
u(x) +

∫

Γ
K(x, y)u(y) ds(y) = f(x), x ∈ Γ,

where Γ = Γ1 + Γ2 and K is the Laplace double layer kernel. Discretizing
(3) using a Nyström method we obtain the system of linear equations


 A11 A12

A21 A22





 u1

u2


 =


 f1

f2


 ,

where, for i, j = 1, 2, the matrix Aij discretizes the operator

δij
1
2
u(x) +

∫

Γj

K(x, y) u(y) ds(y), x ∈ Γi.

In other words, A12 maps a charge distribution on Γ2 to a potential on Γ1.



We recall a formula for the inverse of a 2× 2 block-matrix:


 A11 A12

A21 A22



−1

=


 (A11 −A12A

−1
22 A21)−1 •

• (A22 −A21A
−1
11 A12)−1


 .



Γ1 Γ2

−→
A21

←−A12

The physical meaning of the term A21A
−1
11 A12 in the formula for A−1:

Charges on Γ2
A12 // Pot. on Γ1

A−1
11 // Charges on Γ1

A21 // Pot. on Γ2

The maps A12 and A21 are typically rank-deficient (to finite precision).

Example: Laplace double layer kernel: to accuracy 10−10, the rank is 30.



Γskel
1

(fat points)
Γ2

←−Askel
12

Let k denote the rank of A12 (to precision ε).

There exists a set Γskel
1 ⊂ Γ1 with k points and a map Eval such that the

following diagram commutes (to precision ε).

Charges on Γ2
A12 //

Askel
12 ''OOOOOOOOOOOOOOOO Pot. on Γ1

Pot. on Γskel
1

Eval

OO



Γskel
1

(in bold)
Γ2

−→
Askel

21

Analogously, we can compress A21:

There exists a set Γskel
1 ⊂ Γ1 with k points and a map Proj such that the

following diagram commutes (to precision ε).

Charges on Γ1
A21 //

Proj
²²

Pot. on Γ2

Charges on Γskel
1

Askel
21

77oooooooooooooooo



Γskel
1

(in bold)
Γ2

−→
Askel

21

←−Askel
12

Now we can compress the entire interaction. . .

Charges on Γ2
A12 //

Askel
12 ''OOOOOOOOOOOOOOOO Pot. on Γ1

A−1
11 // Charges on Γ1

A21 //

Proj
²²

Pot. on Γ2

Pot. on Γskel
1

Eval

OO

Charges on Γskel
1

Askel
12

77oooooooooooooooo



Γskel
1 Γ2

−→
Askel

21

←−Askel
12

. . . and completely forget about the original points!

Charges on Γ2
A12 //

Askel
12 ''OOOOOOOOOOOOOOOO Pot. on Γ1

A−1
11 // Charges on Γ1

A21 //

Proj
²²

Pot. on Γ2

Pot. on Γskel
1

Eval

OO

Ã−1
11 // Charges on Γskel

1

Askel
12

77oooooooooooooooo



Notes:

• Askel
12 consists of k of the rows of A12.

• Askel
21 consists of k of the columns of A21.

• The process consists of pure linear algebra.

• Proven to be accurate and well-conditioned.

– Gu and Eisenstat (SIAM J. Sci. Comp. 1996)

– Cheng, Gimbutas, Martinsson, Rokhlin (SIAM J. Sci. Comp. 2005)

– Martinsson and Rokhlin (J. Comp. Phys. 2005)


