Fast numerical methods for solving linear PDEs

P.G. Martinsson, The University of Colorado at Boulder

Acknowledgements: Some of the work presented is joint work with Vladimir Rokhlin and Mark Tygert at Yale University.

In this talk, we will discuss numerical methods for solving the equation

$$
\left\{\begin{aligned}
-\Delta u(x) & =g(x), & & x \in \Omega, \\
u(x) & =f(x), & & x \in \Gamma
\end{aligned}\right.
$$

where Ω is a domain in \mathbb{R}^{2} or \mathbb{R}^{3} with boundary Γ.

More generally, we will consider stationary linear Boundary Value Problems
(BVP)

$$
\begin{cases}A u(x)=g(x), & x \in \Omega \\ B u(x)=f(x), & x \in \Gamma\end{cases}
$$

such as:

- The equations of linear elasticity.
- Stokes' equation.
- Helmholtz' equation (at least at low and intermediate frequencies).
- The Yukawa equation.

Why construct numerical methods for linear PDEs?

Well, ...

Seriously, isn't it known how to do this already?!?
Not in all environments, in particular when it comes to oscillatory problems (high frequency scattering problems, etc).

More importantly, this is one of the most commonly occurring computational tasks in scientific computing. Significant improvements in speed, accuracy, and robustness would have transformative effects on computational science.

For instance, as far as linear elliptic boundary value problems go (Laplace, elasticity, etc), the goal is instantaneous solves at ten digits of accuracy or more.

The challenge is similar to the task of constructing faster computers.

Outline of talk:

1: Linear PDE solvers - background, context.

2: $O(N)$ direct solvers.

3: Randomized sampling for constructing low-rank approximations to operators.

4: (Applications to coarse graining in analysis of heterogeneous media.)

Linear boundary value problem.

Direct discretization of the differential operator via Finite Elements, Finite Differences, ...
\downarrow
$N \times N$ discrete linear system. Very large, sparse, ill-conditioned.

Fast solvers:
iterative (multigrid), $O(N)$, direct (nested dissection), $O\left(N^{3 / 2}\right)$.

Conversion of the BVP to a Boundary Integral Operator (BIE).
Discretization of (BIE) using Nyström, collocation, BEM,
$N \times N$ discrete linear system. Moderate size, dense, (often) well-conditioned.

Iterative solver accelerated by fast matrix-vector multiplier, $O(N)$.

Linear boundary value problem.

Conversion of the BVP to a Boundary Integral Operator (BIE).

Direct discretization of the differential operator via Finite Elements, Finite Differences, ...
\downarrow
$N \times N$ discrete linear system. Very large, sparse, ill-conditioned.

Fast solvers:
iterative (multigrid), $O(N)$, direct (nested dissection), $O\left(N^{3 / 2}\right)$. $O(N)$ direct solvers.

Discretization of (BIE) using Nyström, collocation, BEM,
$N \times N$ discrete linear system. Moderate size, dense, (often) well-conditioned.

Iterative solver accelerated by fast matrix-vector multiplier, $O(N)$. $O(N)$ direct solvers.

Reformulating a BVP as a Boundary Integral Equation.

The idea is to convert a linear partial differential equation
(BVP)

$$
\begin{cases}A u(x)=g(x), & x \in \Omega, \\ B u(x)=f(x), & x \in \Gamma,\end{cases}
$$

to an "equivalent" integral equation
(BIE)

$$
v(x)+\int_{\Gamma} k(x, y) v(y) d s(y)=h(x), \quad x \in \Gamma
$$

- The kernel k is derived from the operator A.
- The data function h is derived from the data of (BVP).
- The conversion from (BVP) to (BIE) sometimes involves the evaluation of certain integrals over Γ and/or Ω.
- Sometimes the integral equation must be formulated on Ω
(e.g. for problems with low-order terms that have variable coeffiecients).
- . . .

Example:

Let us consider the equation
(BVP)

$$
\left\{\begin{aligned}
-\Delta u(x) & =0, & & x \in \Omega, \\
u(x) & =f(x), & & x \in \Gamma,
\end{aligned}\right.
$$

We make the following Ansatz:

$$
u(x)=\int_{\Gamma}\left(n(y) \cdot \nabla_{y} \log |x-y|\right) v(y) d s(y), \quad x \in \Omega
$$

where $n(y)$ is the outward pointing unit normal of Γ at y. Then the boundary charge distribution v satisfies the Boundary Integral Equation
(BIE) $\quad v(x)+2 \int_{\Gamma}\left(n(y) \cdot \nabla_{y} \log |x-y|\right) v(y) d s(y)=2 f(x), \quad x \in \Gamma$.

- (BIE) and (BVP) are in a strong sense equivalent.
- (BIE) is appealing mathematically ($2^{\text {nd }}$ kind Fredholm equation).

The BIE formulation has powerful arguments in its favor (reduced dimension, well-conditioned, etc) that we will return to, but it also has a major drawback:

> | Discretization of integral operators |
| :--- |
| typically results in dense matrices. |

In the 1950's when computers made numerical PDE solvers possible, researchers faced a grim choice:

PDE-based:	Ill-conditioned, N is too large, low accuracy.
Integral Equations:	Dense system.

The integral equations lost and were largely forgotten

- they were simply too expensive.
(Except in some scattering problems where there was no choice.)

The situation changed dramatically in the 1980's. It was discovered that while K_{N} (the discretized integral operator) is dense, it is possible to evaluate the matrix-vector product

$$
v \mapsto K_{N} v
$$

in $O(N)$ operations - to high accuracy and with a small constant.

A very succesful such algorithm is the Fast Multipole Method by Rokhlin and Greengard (circa 1985).

Combining such methods with iterative solvers (GMRES / conjugate gradient / ...) leads to very fast solvers for the integral equations, especially when second kind Fredholm formulations are used.

A PRESCRIPTION FOR RAPIDLY SOLVING BVPS:

(BVP)

$$
\left\{\begin{aligned}
-\Delta v(x) & =0, & & x \in \Omega, \\
v(x) & =f(x), & & x \in \Gamma .
\end{aligned}\right.
$$

Convert (BVP) to a second kind Fredholm equation:

$$
\begin{equation*}
u(x)+\int_{\Gamma}\left(n(y) \cdot \nabla_{y} \log |x-y|\right) u(y) d s(y)=f(x), \quad x \in \Gamma . \tag{BIE}
\end{equation*}
$$

Discretize (BIE) into the discrete equation
(DISC)

$$
\left(I+K_{N}\right) u_{N}=f_{N}
$$

where K_{N} is a (typically dense) $N \times N$ matrix.
Fast Multipole Method - Can multiply K_{N} by a vector in $O(N)$ time.
Iterative solver - Solves (DISC) using $\sqrt{\kappa}$ matrix-vector multiplies, where κ is the condition number of $\left(I+K_{N}\right)$.

Total complexity $-O(\sqrt{\kappa} N)$. (Recall that κ is small. Like 14.)

Example:

$$
\begin{aligned}
& \left.\sum_{n}^{m} \sum_{n}^{m} \sum_{n}^{m}\right\} \\
& \sum_{n}^{m} \sum_{n}^{m} \sum_{n}^{m} \sum_{n}^{m} \sum_{n}^{m} \sum_{n}^{m} \sum_{n}^{m} \\
& \left.\left.\sum_{n}^{m}\right\} m_{n}^{m} \sum_{n}^{m} \sum_{n}^{m}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.\sum_{n}^{m}\right\} \sum_{n}^{m}\right\} \\
& \left.\sum_{n}^{m} \sum_{n}^{m} \sum_{n}^{m} \sum_{n}^{m}\right\}
\end{aligned}
$$

External Laplace problem with Dirichlet boundary data.
The contour is discretized into 25600 points.
A single matrix-vector multiply takes 0.2 sec on a 2.8 Ghz desktop PC.
Fifteen iterations required for 10^{-10} accuracy \rightarrow total CPU time is 3 sec .

BIE FORMULATIONS EXIST FOR MANY CLASSICAL BVPS

Laplace

$$
-\Delta u=f
$$

Elasticity $\quad \frac{1}{2} E_{i j k l}\left(\frac{\partial^{2} u_{k}}{\partial x_{l} \partial x_{j}}+\frac{\partial^{2} u_{l}}{\partial x_{k} \partial x_{j}}\right)=f_{i}$,

Stokes

$$
\Delta \mathbf{u}=\nabla p, \quad \nabla \cdot \mathbf{u}=0
$$

Helmholtz $\quad\left(-\Delta-k^{2}\right) u=f$,

Schrödinger

$$
(-\Delta+V) \Psi=i \frac{\partial \Psi}{\partial t}
$$

Maxwell $\quad \begin{cases}\nabla \cdot \mathbf{E}=\rho & \nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t} \\ \nabla \cdot \mathbf{B}=0 & \nabla \times \mathbf{B}=\mathbf{J}+\frac{\partial \mathbf{E}}{\partial t}\end{cases}$

We have described two paradigms for numerically solving BVPs:
PDE formulation \Leftrightarrow Integral Equation formulation
Which one should you choose?

When it is applicable, compelling arguments favor the use of the IE formulation:

Dimensionality:
Frequently, an IE can be defined on the boundary of the domain.

Integral operators are benign objects:
It is (relatively) easy to implement high order discretizations of integral operators.
Relative accuracy of 10^{-10} or better is often achieved.

Conditioning:
When there exists an IE formulation that is a Fredholm equation of the second kind, the mathematical equation itself is well-conditioned.

However, integral equation based methods are quite often not a choice:

Fundamental limitations: They require the existence of a fundamental solution to the (dominant part of the) partial difference operator. In practise, this means that the (dominant part of the) operator must be linear and constant-coefficient.

Practical limitations: The infra-structure for BIE methods is underdeveloped. Engineering strength code does not exist for many problems that are very well suited for BIE formulations. The following major pieces are missing:

- Generic techniques for reformulating a PDE as an integral equation. We do know how to handle "standard environments", however.
- Machinery for representing surfaces. Quadrature formulas. The dearth of tools here has seriously impeded progress on 3D problems.
- Fast solvers need to be made more accessible and more robust.

Towards this end, we are currently developing direct solvers to replace existing iterative ones.

What is A direct solver?

Recall that many BVPs can be cast in the following form:

$$
\begin{equation*}
u(x)+\int_{\Gamma} g(x, y) u(y) d s(y)=f(x), \quad x \in \Gamma \tag{BIE}
\end{equation*}
$$

Upon discretization, equation (BIE) turns into a discrete equation

$$
\begin{equation*}
\left(I+K_{N}\right) u=f \tag{DISC}
\end{equation*}
$$

where K_{N} is a (typically dense) $N \times N$ matrix.
A direct method computes a compressed representation for $\left(I+K_{N}\right)^{-1}$.

- Cost for pre-computing the inverse.
- Cost for applying the inverse to a vector.

In many environments, both of these costs can be made $O(N)$.

Advantages of direct solvers over iterative solvers:

1. Applications that require a very large number of solves:

- Molecular dynamics.
- Scattering problems.
- Optimal design. (Local updates to the system matrix are cheap.)

2. Problems that are relatively ill-conditioned:

- Scattering problems at intermediate or high frequencies.
- Ill-conditioning due to geometry (elongated domains, percolation, etc).
- Ill-conditioning due to lazy handling of corners, cusps, etc.
- Finite element and finite difference discretizations. (Yes, yes, yes,...)

3. Direct solvers can be adapted to construct spectral decompositions:

- Analysis of vibrating structures. Acoustics.
- Buckling of mechanical structures.
- Wave guides, bandgap materials, etc.

Advantages of direct solvers over iterative solvers, continued:

Perhaps most important: Engineering considerations.

Direct methods tend to be more robust than iterative ones.

This makes them more suitable for "black-box" implementations.

Commercial software developers appear to avoid implementing iterative solvers whenever possible. (Sometimes for good reasons.)

The effort to develop direct solvers should be viewed as a step towards getting a LAPACK-type environment for solving the basic linear boundary value problems of mathematical physics.

Sampling of related work:
1991 Sparse matrix algebra / wavelets, Beylkin, Coifman, Rokhlin, 1996 scattering problems, E. Michielssen, A. Boag and W.C. Chew,

1998 factorization of non-standard forms, G. Beylkin, J. Dunn, D. Gines,
$1998 \mathcal{H}$-matrix methods, W. Hackbusch, et al,
$2002 O\left(N^{3 / 2}\right)$ inversion of Lippmann-Schwinger equations, Y. Chen,
2002 inversion of "Hierarchically semi-separable" matrices, M. Gu,
S. Chandrasekharan, et al.

2007 factorization of discrete Laplace operators, S. Chandrasekharan, M. Gu, X.S. Li, J. Xia.

How does the inversion scheme work?

It exploits rank deficiencies in the off-diagonal blocks.

Note: This fundamentally makes problems with highly oscillatory kernels (such as high-frequency Helmholtz) off-limits.
(However, it works great at low and intermediate frequencies.)

How does the inversion scheme work? Continued ...
Consider the linear system

$$
\left[\begin{array}{cccc}
A_{11} & A_{12} & A_{13} & A_{14} \\
A_{21} & A_{22} & A_{23} & A_{24} \\
A_{31} & A_{32} & A_{33} & A_{34} \\
A_{41} & A_{42} & A_{43} & A_{44}
\end{array}\right]\left[\begin{array}{l}
q_{1} \\
q_{2} \\
q_{3} \\
q_{4}
\end{array}\right]=\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]
$$

We suppose that for $i \neq j$, the blocks $A_{i j}$ allow the factorization

$$
\underbrace{A_{i j}}_{n_{i} \times n_{j}}=\underbrace{U_{i}}_{n_{i} \times k_{i}} \underbrace{\tilde{A}_{i j}}_{k_{i} \times k_{j}} \underbrace{U_{j}^{\mathrm{t}}}_{k_{j} \times n_{j}}
$$

where the ranks k_{i} are significantly smaller than the block sizes n_{i}.
We then let

$$
\underbrace{\tilde{q}_{j}}_{k_{j} \times 1}=U_{j}^{\mathrm{t}} \underbrace{q_{j}}_{n_{j} \times 1},
$$

be the variables of the "reduced" system.

Recall: $\quad \bullet A_{i j}=U_{i} \tilde{A}_{i j} U_{j}^{\mathrm{t}}$

- q_{j} is the variable in the original model - fine scale
- $\tilde{q}_{j}=U_{j}^{\mathrm{t}} q_{j}-$ coarse scale

The system $\sum_{j} A_{i j} q_{j}=v_{i}$ then takes the form

$$
\left[\begin{array}{cccc|cccc}
A_{11} & 0 & 0 & 0 & 0 & U_{1} \tilde{A}_{12} & U_{1} \tilde{A}_{13} & U_{1} \tilde{A}_{14} \\
0 & A_{22} & 0 & 0 & U_{2} \tilde{A}_{21} & 0 & U_{2} \tilde{A}_{23} & U_{2} \tilde{A}_{24} \\
0 & 0 & A_{33} & 0 & U_{3} \tilde{A}_{31} & U_{3} \tilde{A}_{32} & 0 & U_{3} \tilde{A}_{34} \\
0 & 0 & 0 & A_{44} & U_{4} \tilde{A}_{41} & U_{4} \tilde{A}_{42} & U_{4} \tilde{A}_{43} & 0 \\
\hline-U_{1}^{\mathrm{t}} & 0 & 0 & 0 & I & 0 & 0 & 0 \\
0 & -U_{2}^{\mathrm{t}} & 0 & 0 & 0 & I & 0 & 0 \\
0 & 0 & -U_{3}^{\mathrm{t}} & 0 & 0 & 0 & I & 0 \\
0 & 0 & 0 & -U_{4}^{\mathrm{t}} & 0 & 0 & 0 & I
\end{array}\right]\left[\begin{array}{c}
q_{1} \\
q_{2} \\
q_{3} \\
q_{4} \\
\tilde{q}_{1} \\
\tilde{q}_{2} \\
\tilde{q}_{3} \\
\tilde{q}_{4}
\end{array}\right]=\left[\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4} \\
0 \\
0 \\
0 \\
0
\end{array}\right] .
$$

Now form the Schur complement to eliminate the q_{j} 's.

After eliminating the "fine-scale" variables q_{i}, we obtain

$$
\left[\begin{array}{cccc}
I & U_{1}^{\mathrm{t}} \tilde{A}_{11}^{-1} U_{1} \tilde{A}_{12} & U_{1}^{\mathrm{t}} \tilde{A}_{11}^{-1} U_{1} \tilde{A}_{13} & U_{1}^{\mathrm{t}} \tilde{A}_{11}^{-1} U_{1} \tilde{A}_{14} \\
U_{2}^{\mathrm{t}} \tilde{A}_{22}^{-1} U_{2} \tilde{A}_{21} & I & U_{2}^{\mathrm{t}} \tilde{A}_{22}^{-1} U_{2} \tilde{A}_{23} & U_{2}^{\mathrm{t}} \tilde{A}_{22}^{-1} U_{2} \tilde{A}_{24} \\
U_{3}^{\mathrm{t}} \tilde{A}_{33}^{-1} U_{3} \tilde{A}_{31} & U_{3}^{\mathrm{t}} \tilde{A}_{33}^{-1} U_{3} \tilde{A}_{32} & I & U_{3}^{\mathrm{t}} \tilde{A}_{33}^{-1} U_{3} \tilde{A}_{34} \\
U_{4}^{\mathrm{t}} \tilde{A}_{44}^{-1} U_{4} \tilde{A}_{41} & U_{4}^{\mathrm{t}} \tilde{A}_{44}^{-1} U_{4} \tilde{A}_{42} & U_{4}^{\mathrm{t}} \tilde{A}_{44}^{-1} U_{4} \tilde{A}_{43} & I
\end{array}\right]\left[\begin{array}{c}
\tilde{q}_{1} \\
\tilde{q}_{2} \\
\tilde{q}_{3} \\
\tilde{q}_{4}
\end{array}\right]=\left[\begin{array}{c}
U_{1}^{\mathrm{t}} A_{11}^{-1} v_{1} \\
U_{2}^{\mathrm{t}} A_{22}^{-1} v_{2} \\
U_{3}^{\mathrm{t}} A_{33}^{-1} v_{3} \\
U_{4}^{\mathrm{t}} A_{44}^{-1} v_{4} .
\end{array}\right]
$$

We set

$$
\tilde{A}_{i i}=\left(U_{i}^{\mathrm{t}} A_{i i}^{-1} U_{i}\right)^{-1}
$$

and multiply line i by $\tilde{A}_{i i}$ to obtain the reduced system

$$
\left[\begin{array}{cccc}
\tilde{A}_{11} & \tilde{A}_{12} & \tilde{A}_{13} & \tilde{A}_{14} \\
\tilde{A}_{21} & \tilde{A}_{22} & \tilde{A}_{23} & \tilde{A}_{24} \\
\tilde{A}_{31} & \tilde{A}_{32} & \tilde{A}_{33} & \tilde{A}_{34} \\
\tilde{A}_{41} & \tilde{A}_{42} & \tilde{A}_{43} & \tilde{A}_{44}
\end{array}\right]\left[\begin{array}{l}
\tilde{q}_{1} \\
\tilde{q}_{2} \\
\tilde{q}_{3} \\
\tilde{q}_{4}
\end{array}\right]=\left[\begin{array}{c}
\tilde{v}_{1} \\
\tilde{v}_{2} \\
\tilde{v}_{3} \\
\tilde{v}_{4}
\end{array}\right] .
$$

where

$$
\tilde{v}_{i}=\tilde{A}_{i i} U_{i}^{\mathrm{t}} A_{i i}^{-1} v_{i} .
$$

(This derivation was pointed out by Leslie Greengard.)

A globally $O(N)$ algorithm is obtained by hierarchically repeating the process:

\downarrow Compress

Cluster

\downarrow Compress

Cluster

\downarrow Compress

The critical step is to find matrices U_{j} such that

$$
A_{i j}=U_{i} \tilde{A}_{i j} U_{j}^{\mathrm{t}}
$$

for some matrix $\tilde{A}_{i j}$ that is smaller than $A_{i j}$.
To attain an $O(N)$ scheme, one cannot afford to even look at every off-diagonal block. Instead, one can use:

- Interpolation of the kernel function [Hackbusch, BCR, etc].
- Requires estimates of smoothness of the kernel away from the diagonal.
- Inefficient, does not work for all geometries.
- Green's identities that the kernel must satisfy [Martinsson, Rokhlin].
- Very robust.
- Leads to representations that are very close to optimal.
- Randomized sampling. New!

To further improve the operation counts, we represent potentials via "proxy charges".

The concept of "proxy charges":

Sources $\left\{q_{n}\right\}_{n=1}^{N}$

The key observation is that $k=\operatorname{rank}\left(A_{12}\right)<\min (M, N)$.

Skeletonization

We can pick k points in Ω_{S} with the property that any potential in Ω_{T} can be replicated by placing charges on these k points.

- The choice of points does not depend on $\left\{q_{n}\right\}_{n=1}^{N}$.
- $A_{12}^{\text {skel }}$ is a submatrix of A_{12}.

We can "skeletonize" both Ω_{1} and Ω_{2}.

Rank $=19$ at $\varepsilon=10^{-10 .}$

Skeletonization can be performed for Ω_{S} and Ω_{T} of various shapes.

Rank $=29$ at $\varepsilon=10^{-10 .}$

Rank $=48$ at $\varepsilon=10^{-10}$.

Adjacent boxes can be skeletonized.

Rank $=46$ at $\varepsilon=10^{-10}$.

Benefits:

- The rank is optimal.
- The projection and interpolation are cheap.
U_{1} and U_{2} contain $k \times k$ identity matrices.
- The projection and interpolation are well-conditioned.
- Finding the k points is cheap.
- The matrix \tilde{A}_{12} is a submatrix of the original matrix A_{12}. (We loosely say that "the physics of the problem is preserved".)
- Interaction between adjacent boxes can be compressed (no buffering is required).

Similar schemes have been proposed by many researchers:

1993 - C.R. Anderson

1995 - C.L. Berman

1996 - E. Michielssen, A. Boag

1999 - J. Makino

2004 - L. Ying, G. Biros, D. Zorin

A mathematical foundation:

1996 - M. Gu, S. Eisenstat

Let us return to the direct solver environment. Recall:
We convert the system

$$
\left[\begin{array}{cccc}
A_{11} & A_{12} & A_{13} & A_{14} \\
A_{21} & A_{22} & A_{23} & A_{24} \\
A_{31} & A_{32} & A_{33} & A_{34} \\
A_{41} & A_{42} & A_{43} & A_{44}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
f_{1} \\
f_{2} \\
f_{3} \\
f_{4}
\end{array}\right] . \quad \begin{aligned}
& \text { Fine resolution. } \\
& \text { Large blocks. }
\end{aligned}
$$

to the reduced system

$$
\left[\begin{array}{cccc}
\tilde{A}_{11} & A_{12}^{\text {skel }} & A_{13}^{\text {skel }} & A_{14}^{\text {skel }} \\
A_{21}^{\text {skel }} & \tilde{A}_{22} & A_{23}^{\text {skel }} & A_{24}^{\text {skel }} \\
A_{31}^{\text {skel }} & A_{32}^{\text {skel }} & \tilde{A}_{33} & A_{34}^{\text {skel }} \\
A_{41}^{\text {skel }} & A_{42}^{\text {skel }} & A_{43}^{\text {skel }} & \tilde{A}_{44}
\end{array}\right]\left[\begin{array}{c}
\tilde{x}_{1} \\
\tilde{x}_{2} \\
\tilde{x}_{3} \\
\tilde{x}_{4}
\end{array}\right]=\left[\begin{array}{c}
\tilde{f}_{1} \\
\tilde{f}_{2} \\
\tilde{f}_{3} \\
\tilde{f}_{4}
\end{array}\right] . \quad \begin{aligned}
& \text { Coarse resolution. } \\
& \text { Small blocks. }
\end{aligned}
$$

We know that $A_{i j}^{\text {skel }}$ is a submatrix of $A_{i j}$ when $i \neq j$.
What is $\tilde{A}_{i i}$?

We recall that the new diagonal blocks are defined by

$$
\underbrace{\tilde{A}_{i i}}_{k \times k}=(\underbrace{U_{i}^{\mathrm{t}}}_{k \times n} \underbrace{A_{i i}^{-1}}_{n \times n} \underbrace{U_{i}}_{n \times k})^{-1} .
$$

We call these blocks "proxy matrices". What are they?

Let Γ_{1} denote the block marked in red.
Let Γ_{2} denote the rest of the domain.
Charges on $\Gamma_{2} \xrightarrow{A_{12}}$ Pot. on $\Gamma_{1} \xrightarrow{A_{11}^{-1}}$ Charges on $\Gamma_{1} \xrightarrow{A_{21}}$ Pot. on Γ_{2}

\tilde{A}_{11} contains all the information the outside world needs to know about Γ_{1}.

We recall that the new diagonal blocks are defined by

$$
\underbrace{\tilde{A}_{i i}}_{k \times k}=(\underbrace{U_{i}^{\mathrm{t}}}_{k \times n} \underbrace{A_{i i}^{-1}}_{n \times n} \underbrace{U_{i}}_{n \times k})^{-1}
$$

We call these blocks "proxy matrices". What are they?

Let Γ_{1} denote the block marked in red.
Let Γ_{2} denote the rest of the domain.
Charges on $\Gamma_{2} \xrightarrow{A_{12}}$ Pot. on $\Gamma_{1} \xrightarrow{A_{11}^{-1}}$ Charges on $\Gamma_{1} \xrightarrow{A_{21}}$ Pot. on Γ_{2}

\tilde{A}_{11} contains all the information the outside world needs to know about Γ_{1}.

We recall that the new diagonal blocks are defined by

$$
\underbrace{\tilde{A}_{i i}}_{k \times k}=(\underbrace{U_{i}^{\mathrm{t}}}_{k \times n} \underbrace{A_{i i}^{-1}}_{n \times n} \underbrace{U_{i}}_{n \times k})^{-1}
$$

We call these blocks "proxy matrices".
What are they?
Let Ω_{1} denote the block marked in red.
Let Ω_{2} denote the rest of the domain.

Charges on $\Omega_{2} \xrightarrow{A_{12}}$ Pot. on $\Omega_{1} \xrightarrow{A_{11}^{-1}}$ Charges on $\Omega_{1} \xrightarrow{A_{21}}$ Pot. on Ω_{2}

\tilde{A}_{11} contains all the information the outside world needs to know about Ω_{1}.

We recall that the new diagonal blocks are defined by

$$
\underbrace{\tilde{A}_{i i}}_{k \times k}=(\underbrace{U_{i}^{\mathrm{t}}}_{k \times n} \underbrace{A_{i i}^{-1}}_{n \times n} \underbrace{U_{i}}_{n \times k})^{-1}
$$

We call these blocks "proxy matrices".
What are they?
Let Ω_{1} denote the block marked in red.
Let Ω_{2} denote the rest of the domain.

Charges on $\Omega_{2} \xrightarrow{A_{12}}$ Pot. on $\Omega_{1} \xrightarrow{A_{11}^{-1}}$ Charges on $\Omega_{1} \xrightarrow{A_{21}}$ Pot. on Ω_{2}

\tilde{A}_{11} contains all the information the outside world needs to know about Ω_{1}.

To obtain a globally $O(N)$ scheme, we hierarchically merge proxy matrices.

Numerical examples

In developing direct solvers, the "proof is in the pudding" - recall that from a theoretical point of view, the problem is already solved (by Hackbusch and others).

All computations were performed on standard laptops and desktop computers in the $2.0 \mathrm{GHz}-2.8 \mathrm{Ghz}$ speed range, and with 512 Mb of RAM.

An exterior Helmholtz Dirichlet problem

A smooth contour. Its length is roughly 15 and its horizontal width is 2 .

k	$N_{\text {start }}$	$N_{\text {final }}$	$t_{\text {tot }}$	$t_{\text {solve }}$	$E_{\text {res }}$	$E_{\text {pot }}$	$\sigma_{\text {min }}$	M
21	800	435	$1.5 \mathrm{e}+01$	$3.3 \mathrm{e}-02$	$9.7 \mathrm{e}-08$	$7.1 \mathrm{e}-07$	$6.5 \mathrm{e}-01$	12758
40	1600	550	$3.0 \mathrm{e}+01$	$6.7 \mathrm{e}-02$	$6.2 \mathrm{e}-08$	$4.0 \mathrm{e}-08$	$8.0 \mathrm{e}-01$	25372
79	3200	683	$5.3 \mathrm{e}+01$	$1.2 \mathrm{e}-01$	$5.3 \mathrm{e}-08$	$3.8 \mathrm{e}-08$	$3.4 \mathrm{e}-01$	44993
158	6400	870	$9.2 \mathrm{e}+01$	$2.0 \mathrm{e}-01$	$3.9 \mathrm{e}-08$	$2.9 \mathrm{e}-08$	$3.4 \mathrm{e}-01$	81679
316	12800	1179	$1.8 \mathrm{e}+02$	$3.9 \mathrm{e}-01$	$2.3 \mathrm{e}-08$	$2.0 \mathrm{e}-08$	$3.4 \mathrm{e}-01$	160493
632	25600	1753	$4.3 \mathrm{e}+02$	$8.0 \mathrm{e}-01$	$1.7 \mathrm{e}-08$	$1.4 \mathrm{e}-08$	$3.3 \mathrm{e}-01$	350984

Computational results for an exterior Helmholtz Dirichlet problem discretized with $10^{\text {th }}$ order accurate quadrature. The Helmholtz parameter was chosen to keep the number of discretization points per wavelength constant at roughly 45 points per wavelength (resulting in a quadrature error about 10^{-12}).

Eventually ... the complexity is $O\left(n+k^{3}\right)$.

Example 2-An interior Helmholtz Dirichlet problem

The diameter of the contour is about 2.5. An interior Helmholtz problem with Dirichlet boundary data was solved using $N=6400$ discretization points, with a prescribed accuracy of 10^{-10}.

For $k=100.011027569 \cdots$, the smallest singular value of the boundary integral operator was $\sigma_{\min }=0.00001366 \cdots$.

Time for constructing the inverse: 0.7 seconds.
Error in the inverse: 10^{-5}.

Plot of $\sigma_{\min }$ versus k for an interior Helmholtz problem on the smooth pentagram. The values shown were computed using a matrix of size $N=6400$. Each point in the graph required about $60 s$ of CPU time.

Example 3:

An electrostatics problem in a dielectrically heterogeneous medium

$\varepsilon=10^{-5} \quad N_{\text {contour }}=25600 \quad N_{\text {particles }}=100000$
Time to invert the boundary integral equation $=46 \mathrm{sec}$.
Time to compute the induced charges $=0.42 \mathrm{sec} .(2.5 \mathrm{sec}$ for the FMM)
Total time for the electro-statics problem $=3.8 \mathrm{sec}$.

A close-up of the particle distribution.

Example 4: Inversion of a "Finite Element Matrix"

A grid conduction problem (the "five-point stencil").
The conductivity of each bar is a random number drawn from a uniform distribution on $[1,2]$.

If all conductivities were one, then we would get the standard five-point stencil:

$$
A=\left[\begin{array}{ccccc}
C & -I & 0 & 0 & \cdots \\
-I & C & -I & 0 & \cdots \\
0 & -I & C & -I & \cdots \\
\vdots & \vdots & \vdots & \vdots &
\end{array}\right] \quad C=\left[\begin{array}{ccccc}
4 & -1 & 0 & 0 & \cdots \\
-1 & 4 & -1 & 0 & \cdots \\
0 & -1 & 4 & -1 & \cdots \\
\vdots & \vdots & \vdots & \vdots &
\end{array}\right]
$$

N	$T_{\text {invert }}$ $($ seconds $)$	$T_{\text {apply }}$ (seconds)	M (kB)	e_{1}	e_{2}	e_{3}	e_{4}
10000	$5.93 \mathrm{e}-1$	$2.82 \mathrm{e}-3$	$3.82 \mathrm{e}+2$	$1.29 \mathrm{e}-8$	$1.37 \mathrm{e}-7$	$2.61 \mathrm{e}-8$	$3.31 \mathrm{e}-8$
40000	$4.69 \mathrm{e}+0$	$6.25 \mathrm{e}-3$	$9.19 \mathrm{e}+2$	$9.35 \mathrm{e}-9$	$8.74 \mathrm{e}-8$	$4.71 \mathrm{e}-8$	$6.47 \mathrm{e}-8$
90000	$1.28 \mathrm{e}+1$	$1.27 \mathrm{e}-2$	$1.51 \mathrm{e}+3$	-	-	$7.98 \mathrm{e}-8$	$1.25 \mathrm{e}-7$
160000	$2.87 \mathrm{e}+1$	$1.38 \mathrm{e}-2$	$2.15 \mathrm{e}+3$	-	-	$9.02 \mathrm{e}-8$	$1.84 \mathrm{e}-7$
250000	$4.67 \mathrm{e}+1$	$1.52 \mathrm{e}-2$	$2.80 \mathrm{e}+3$	-	-	$1.02 \mathrm{e}-7$	$1.14 \mathrm{e}-7$
360000	$7.50 \mathrm{e}+1$	$2.62 \mathrm{e}-2$	$3.55 \mathrm{e}+3$	-	-	$1.37 \mathrm{e}-7$	$1.57 \mathrm{e}-7$
490000	$1.13 \mathrm{e}+2$	$2.78 \mathrm{e}-2$	$4.22 \mathrm{e}+3$	-	-	-	-
640000	$1.54 \mathrm{e}+2$	$2.92 \mathrm{e}-2$	$5.45 \mathrm{e}+3$	-	-	-	-
810000	$1.98 \mathrm{e}+2$	$3.09 \mathrm{e}-2$	$5.86 \mathrm{e}+3$	-	-	-	-
1000000	$2.45 \mathrm{e}+2$	$3.25 \mathrm{e}-2$	$6.66 \mathrm{e}+3$	-	-	-	-

$e_{1} \quad$ The largest error in any entry of \tilde{A}_{n}^{-1}
$e_{2} \quad$ The error in l^{2}-operator norm of \tilde{A}_{n}^{-1}
$e_{3} \quad$ The l^{2}-error in the vector $\tilde{A}_{n n}^{-1} r$ where r is a unit vector of random direction.
$e_{4} \quad$ The l^{2}-error in the first column of $\tilde{A}_{n n}^{-1}$.

$\frac{T_{\text {invert }}}{N}$ versus N

$$
\frac{T_{\text {apply }}}{\sqrt{N}} \text { versus } N
$$

Recall that the inversion scheme relies crucially on the fact that off-diagonal blocks of the system matrix can be approximated by matrices of low rank.

We will next describe techniques based on randomized sampling for constructing such low rank approximations.

Note that while the techniques themselves are randomized, the underlying problem is deterministic.

What do the spectra of these off-diagonal blocks look like?

Example: Let A be the matrix resulting from the discretization of the double layer potential (for Laplace's equation) on the following contour:

We partition A into four blocks based on the red/blue partition above:

$$
\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right] .
$$

The 10-logarithm of the singular values of A_{12}.

The 10-logarithm of the singular values of A_{12}. Now for the case of a Helmholtz problem with $k=40$.

Example:

Let L be the standard five-point stencil (discrete Laplacian) on a 50×50 grid:

$$
L=\left[\begin{array}{ccccc}
C & -I & 0 & 0 & \cdots \\
-I & C & -I & 0 & \cdots \\
0 & -I & C & -I & \cdots \\
\vdots & \vdots & \vdots & \vdots &
\end{array}\right] \quad C=\left[\begin{array}{ccccc}
4 & -1 & 0 & 0 & \cdots \\
-1 & 4 & -1 & 0 & \cdots \\
0 & -1 & 4 & -1 & \cdots \\
\vdots & \vdots & \vdots & \vdots &
\end{array}\right]
$$

Let A be the inverse of L, and partition it:

$$
A=L^{-1}=\left[\begin{array}{cccc}
A_{11} & A_{12} & A_{13} & A_{14} \\
A_{21} & A_{22} & A_{23} & A_{24} \\
A_{31} & A_{32} & A_{33} & A_{34} \\
A_{41} & A_{42} & A_{43} & A_{44}
\end{array}\right]
$$

We consider the 625×625 submatrix A_{14} of the 2500×2500 matrix A.
In this case: "fast matrix-vector multiplication" = "fast linear solve"

The 10-logarithm of the singular values of A_{14}.

The 10-logarithm of the singular values of A_{14}.
Now for the case of random coefficients.

Algorithm 1:

Rapid computation of a low-rank appoximation.

- Let ε denote the computational accuracy desired.
- Let A be an $m \times n$ matrix of ε-rank k.
- We seek a rank- k approximation of A.
- We can perform matrix-vector multiplies fast.

Let x_{1}, x_{2}, \ldots be a sequence of vectors in \mathbb{R}^{n} whose entries are i.i.d. random variables drawn from a standardized Gaussian distribution.

Form the length- m vectors

$$
y_{1}=A x_{1}, \quad y_{2}=A x_{2}, \quad y_{3}=A x_{3}, \quad \ldots
$$

Each y_{j} is a "random linear combination" of columns of A.
If l is an integer such that $l \geq k$, then there is a chance that the vectors

$$
\left\{y_{1}, y_{2}, \ldots, y_{l}\right\}
$$

span the column space of A "to within precision ε ". Clearly, the probability that this happens gets larger, the larger the gap between l and k.

Algorithm 1:

Rapid computation of a low-rank appoximation.

- Let ε denote the computational accuracy desired.
- Let A be an $m \times n$ matrix of ε-rank k.
- We seek a rank- k approximation of A.
- We can perform matrix-vector multiplies fast.

Let x_{1}, x_{2}, \ldots be a sequence of vectors in \mathbb{R}^{n} whose entries are i.i.d. random variables drawn from a standardized Gaussian distribution.

Form the length- m vectors

$$
y_{1}=A x_{1}, \quad y_{2}=A x_{2}, \quad y_{3}=A x_{3}, \quad \ldots
$$

Each y_{j} is a "random linear combination" of columns of A.
If l is an integer such that $l \geq k$, then there is a chance that the vectors

$$
\left\{y_{1}, y_{2}, \ldots, y_{l}\right\}
$$

span the column space of A "to within precision ε ". Clearly, the probability that this happens gets larger, the larger the gap between l and k.

What is remarkable is how fast this probability approaches one.

We illustrate with a numerical example, the same as before:

We partition A into four blocks based on the red/blue partition above:

$$
\left[\begin{array}{ll}
X & B \\
A & Y
\end{array}\right]
$$

We seek a low-rank approximation of A.

Generate a sequence x_{1}, x_{2}, \ldots of Gaussian random vectors in \mathbb{R}^{n}.

Compute $Y_{l}=\left[y_{1}, y_{2}, \ldots, y_{l}\right]=\left[A x_{1}, A x_{2}, \ldots, A x_{l}\right]$.
Compute the (column pivoted) QR-factorization $Y_{l}=Q_{l} R_{l} P_{l}$.
The "error" after l steps is (using the l^{2}-operator norm)

$$
e_{l}=\left\|\left(I-Q_{l} Q_{l}^{\mathrm{t}}\right) A\right\| .
$$

In reality, computing e_{l} is not affordable. Instead, we compute something like

$$
f_{l}=\max _{1 \leq j \leq 10}\left\|\left(I-Q_{l} Q_{l}^{\mathrm{t}}\right) y_{l+j}\right\|
$$

The computation stops when we come to an l such that $f_{l}<\varepsilon$.
(Notice that plenty of operations here can be optimized. A lot.)

Was this just a lucky realization?
We collected statistics from 1000000 realizations:
(Recall that the exact ε-rank is 34.)

Number of matrix-vector multiplies required:	Frequency:
$34(+10)$	15063
$35(+10)$	376163
$36(+10)$	485124
$37(+10)$	113928
$38(+10)$	9420
$39(+10)$	299
$40(+10)$	3

Note: The post-processing correctly determined the rank to be 34 every time, and the error in the factorization was always less than 10^{-10}.
... compare to Monte Carlo ...

Results from a high-frequency Helmholtz problem (complex arithmetic):

$\varepsilon=10^{-10}, \quad$ exact ε-rank $=101, \quad \mathrm{nr}$. of matrix-vector multiplies required $=106$.

Note:

Once you have a basis for the column space, you can cheaply get any factorization you want.

To see this, suppose that Q is an orthonormal basis for the column space of A;

$$
A=Q Q^{\mathrm{t}} A
$$

Then compute $Q^{\mathrm{t}} A$ and then compute the SVD of this $k \times n$ matrix:

$$
Q^{\mathrm{t}} A=\tilde{U} D V^{\mathrm{t}}
$$

Then

$$
A=Q\left(Q^{\mathrm{t}} A\right)=\underbrace{Q \tilde{U}}_{=: U} D V^{\mathrm{t}}=U D V^{\mathrm{t}}
$$

In many environments, it is not even necessary to compute $Q^{\mathrm{t}} A \ldots$

Theorem: Let A be an $m \times n$ matrix and let k be an integer.
Let l be an integer such that $l \geq k$.
Let G be an $n \times l$ matrix with i.i.d. Gaussian elements.

Let Q be an $m \times l$ matrix whose columns form an ON-basis for the columns of $A G$.
Let σ_{k+1} denote the $(k+1)$ 'th singular value of A.
Then

$$
\left\|A-Q Q^{\mathrm{t}} A\right\|_{2} \leq 10 \sqrt{l m} \sigma_{k+1}
$$

with probability at least

$$
1-\varphi(l-k),
$$

where φ is a decreasing function satisfying

$$
\begin{aligned}
\varphi(8) & <10^{-5} \\
\varphi(20) & <10^{-17}
\end{aligned}
$$

Recall the error bound:

$$
\left\|A-Q Q^{\mathrm{t}} A\right\|_{2} \leq 10 \sqrt{l m} \sigma_{k+1}
$$

The high-lighted factor is somewhat undesirable for a couple of reasons:

- The algorithm cannot determine the ε-rank if ε is too close to the computational precision.
- There could be problems in cases where the singular values decay slowly.

Important: In the applications that we have in mind, the singular values decay exponentially. In such cases, the only effect of the $\sqrt{l m}$ factor is that a couple too many random vectors may be generated. The computed decomposition is still accurate to precision ε.

How does Algorithm I perform when we do not have a fast method for applying A to a vector?

When $k \ll \min (m, n)$, Algorithm 1 might be slightly faster than Gram-Schmidt:

Multiplications required for Algorithm 1: $\quad m n(k+10)+O\left(k^{2}(m+n)\right)$.
Multiplications required for Gram-Schmidt: mn2k $+O\left(k^{2}(m+n)\right)$.
Other potential benefits:

- Data-movement.
- Parallelization.

However, many environments remain in which there is little or no gain.

Algorithm 2: An $O(m n \log (k))$ algorithm for general matrices:

Work by Franco Woolfe, Edo Liberty, Vladimir Rokhlin, and Mark Tygert. (The speaker was - much to his regret - not involved with this development.)

Recall that Algorithm 1 determines a basis for the column space from the matrix

$$
\begin{array}{cccc}
Y & = & A & G . \\
m \times l & & m \times n & n \times l
\end{array}
$$

Key points:

- The product $x \mapsto A x$ can be evaluated rapidly.
- The entries of G are i.i.d. random numbers.

What if we do not have a fast algorithm for computing $x \mapsto A x$?

New idea: Construct G with "some randomness" and "some structure".
Then for each $1 \times n$ row a of A, the matrix-vector product

$$
a \mapsto a G
$$

can be evaluated using $n \log (l)$ operations.

What is this "random but structured" matrix G ?

$$
\begin{array}{ccccc}
G & = & D & F & S \\
n \times l & & n \times n & n \times n & n \times l
\end{array}
$$

where,

- D is a diagonal matrix whose entries are i.i.d. random variables drawn from a uniform distribution on the unit circle in \mathbb{C}.
- F is the discrete Fourier transform, $F_{j k}=e^{-2 \pi i(j-1)(k-1) / n}$.
- S is a matrix whose entries are all zeros except for a single, randomly placed 1 in each column. (In other words, the action of S is to draw l columns at random from $D F$.)

Note: Other successful choices of the matrix G have been tested, for instance, the Fourier transform may be replaced by the Walsh-Hadamard transform.

This idea was described by Nir Ailon and Bernard Chazelle (2006).
There is also related recent work by Sarlós (on randomized regression).

What is the probability of failure?

The proofs obtained so far do not assure quite as high likelihood of success as the proofs for Algorithm 1 did. (Say $1-10^{-7}$ instead of $1-10^{-17}$.)

The proofs may not be sharp however. An indication that this may be the case is that the algorithm has never failed during testing.

Should it prove to be the case that Algorithm 2 occasionally fails, a cheap verification can be put in place. (Simply note that the difference between A and the computed approximation to A can rapidly be applied to a vector.)

Speed gain on square matrices of various sizes

The time required to verify the approximation is included in the fast, but not in the classical timings.

This slide comes from a talk by Mark Tygert.

Empirical accuracy on 2,048-LONG Convolution

The estimates of the accuracy of the approximation are accurate to at least two digits of relative precision.

This slide comes from a talk by Mark Tygert.

It is time to definitively deal with linear boundary value problems:

- We need to develop machinery for dealing with surfaces.
- We need faster and more robust solvers.

Fast direct solvers:

- 2D boundary integral equations. Finished. Very fast.

Has proven capable of solving previously intractable problems.

- 2D volume problems (finite element matrices and Lippmann-Schwinger). Theory finished. Some code exists. Work in progress.
- 3D surface integral equations. Theory mostly finished. (Or is it?)

Randomized sampling:

- More stable in the Lanczos environment. Probably faster too.
- For general matrices, it is $O(m n \log (k))$.
- Very interesting tool for coarse graining in physical sciences.
- Applications to network analysis, data mining, etc.

