APPM 2360: Final exam - Solutions

7:30am-10:00am, May 6, 2009.

Problem 1: (30 points) Consider the matrix

$$
A=\left[\begin{array}{rr}
-4 & 3 \\
2 & 1
\end{array}\right] .
$$

(a) (20 points) Find the eigenvalues and eigenvectors of A.
(b) (10 points) Find the general solution to the system $\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]=A\left[\begin{array}{l}x \\ y\end{array}\right]$.

Solution:

(a) The characteristic equation is $0=(-4-\lambda)(1-\lambda)-6=\lambda^{2}+3 \lambda-10$.

The roots are $\lambda_{1,2}=-3 / 2 \pm \sqrt{9 / 4+40 / 4}=-3 / 2 \pm 7 / 2$.
$\underline{\text { Analyze } \lambda_{1}=-5}$: We solve $(A+5 I) \mathbf{v}=\mathbf{0}$ to find \mathbf{v}_{1} :

$$
\left[\begin{array}{ll|l}
1 & 3 & 0 \\
2 & 6 & 0
\end{array}\right] \sim\left[\begin{array}{ll|l}
1 & 3 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

so we pick, for instance, $\mathbf{v}_{1}=\left[\begin{array}{r}-3 \\ 1\end{array}\right]$.
Analyze $\lambda_{2}=2$: We solve $(A-2 I) \mathbf{v}=\mathbf{0}$ to find \mathbf{v}_{2} :

$$
\left[\begin{array}{rr|r}
-6 & 3 & 0 \\
2 & -1 & 0
\end{array}\right] \sim\left[\begin{array}{rr|r}
-2 & 1 & 0 \\
2 & -1 & 0
\end{array}\right] \sim\left[\begin{array}{rr|r}
-2 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

so we pick, for instance, $\mathbf{v}_{2}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$.
To summarize:

$$
\lambda_{1}=-5, \quad \mathbf{v}_{1}=\left[\begin{array}{r}
-3 \\
1
\end{array}\right], \quad \lambda_{2}=2, \quad \mathbf{v}_{2}=\left[\begin{array}{l}
1 \\
2
\end{array}\right] .
$$

(b) The general solution is $\mathbf{x}=c_{1} e^{-5 t}\left[\begin{array}{r}-3 \\ 1\end{array}\right]+c_{2} e^{2 t}\left[\begin{array}{l}1 \\ 2\end{array}\right]$.

Alternatively,

$$
\begin{aligned}
& x(t)=-3 c_{1} e^{-5 t}+c_{2} e^{2 t}, \\
& y(t)=c_{1} e^{-5 t}+2 c_{2} e^{2 t}
\end{aligned}
$$

Problem 2: (30 points)
(a) (12 points) Determine the general solution to

$$
y^{\prime}=t^{2} y^{2}
$$

(b) (12 points) Determine the general solution to

$$
\begin{equation*}
\left(t^{2}+1\right) y^{\prime}+2 t y=0 \tag{1}
\end{equation*}
$$

(c) (6 points) Find the solution of (1) that satisfies $y(1)=1$.

Solution:

(a) The equation is separable. Assuming $y \neq 0$ we find

$$
\frac{d y}{y^{2}}=t^{2} d t \quad \Rightarrow \quad-\frac{1}{y}=\frac{1}{3} t^{3}-C .
$$

Then

$$
y=\frac{1}{C-\frac{1}{3} t^{3}}
$$

Finally observe that

$$
y=0
$$

is also a solution.
(b) This equation can also be solved via separation of variables. Alternatively, we can simply observe that it is already written in "integrating factor form":

$$
\frac{d}{d t}\left[\left(1+t^{2}\right) y\right]=0 \quad \Rightarrow \quad\left(1+t^{2}\right) y=C \quad \Rightarrow \quad y=\frac{C}{1+t^{2}}
$$

(c) Simply insert the condition $y(1)=1$

$$
1=\frac{C}{1+1^{2}} \quad \Rightarrow \quad C=2 \quad \Rightarrow \quad y=\frac{2}{1+t^{2}}
$$

Problem 3: (30 points)
(a) (15 points) Find the general solution to

$$
y^{\prime \prime}-4 y^{\prime}+13 y=0 .
$$

(b) (15 points) Find the general solution to

$$
y^{\prime \prime}-4 y^{\prime}+13 y=t e^{t} .
$$

Solution:

(a) The roots of $r^{2}-4 r+13=0$ are $r_{1}=2+3 i$ and $r_{2}=2-3 i$.

Either $y=b_{1} e^{(2+3 i) t}+b_{2} e^{(2-3 i) t}$ or $y=c_{1} e^{2 t} \cos (3 t)+c_{2} e^{2 t} \sin (3 t)$
(b) We make the "guess" $y_{\mathrm{p}}=(A+B t) e^{t}$. Inserting this into the equation we get

$$
\begin{aligned}
y_{\mathrm{p}}^{\prime \prime}-4 y_{\mathrm{p}}^{\prime}+13 y_{\mathrm{p}}=(A+2 B+B t) e^{t}-4(A+B+B t) e^{t}+ & 13(A+B t) e^{t} \\
& =(10 A-2 B) e^{t}+10 B t e^{t}
\end{aligned}
$$

We must have $10 B=1$ which gives $B=1 / 10$. Then $10 A-2 B=0$ gives $A=B / 5=1 / 50$.
Adding the homogeneous solution we get $y=c_{1} e^{2 t} \cos (3 t)+c_{2} e^{2 t} \sin (3 t)+\left(\frac{1}{50}+\frac{t}{10}\right) e^{t}$.

Problem 4: (30 points) Consider the matrix and the vector

$$
A=\left[\begin{array}{rrrr}
1 & 0 & -3 & 1 \\
0 & 1 & 2 & -1 \\
1 & 1 & -1 & 1
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{l}
1 \\
1 \\
3
\end{array}\right] .
$$

(a) (20 points) Find the general solution to the equation $A \mathbf{x}=\mathbf{b}$.
(b) (10 points) Find the general solution to the equation $A \mathbf{x}=\mathbf{0}$.

Solution: We first derive the RREF of $[A \mid \mathbf{b}]$:

$$
\left.\begin{array}{c}
{\left[\begin{array}{rrrr|r}
1 & 0 & -3 & 1 & 1 \\
0 & 1 & 2 & -1 & 1 \\
1 & 1 & -1 & 1 & 3
\end{array}\right] \sim\left[\begin{array}{rrrr|r}
1 & 0 & -3 & 1 & 1 \\
0 & 1 & 2 & -1 & 1 \\
0 & 1 & 2 & 0 & 2
\end{array}\right]} \\
\end{array}\left[\begin{array}{rrrr|r}
1 & 0 & -3 & 1 & 1 \\
0 & 1 & 2 & -1 & 1 \\
0 & 0 & 0 & 1 & 1
\end{array}\right] \sim\left[\begin{array}{rrrr|r}
1 & 0 & -3 & 0 & 0 \\
0 & 1 & 2 & 0 & 2 \\
0 & 0 & 0 & 1 & 1
\end{array}\right]\right) ~ 中
$$

There is one free variable, x_{3}. We set $x_{3}=t$. The general solution is then

$$
\begin{aligned}
& x_{1}=3 x_{3}=3 t \\
& x_{2}=2-2 x_{3}=2-2 t \\
& x_{3}=t \\
& x_{4}=1
\end{aligned}
$$

which could also be written

$$
\mathbf{x}=\left[\begin{array}{l}
0 \\
2 \\
0 \\
1
\end{array}\right]+\left[\begin{array}{r}
3 \\
-2 \\
1 \\
0
\end{array}\right] t
$$

(b) From the solution in (a), we immediately get

$$
\mathbf{x}=\left[\begin{array}{r}
3 \\
-2 \\
1 \\
0
\end{array}\right] t
$$

Problem 5: (30 points) Consider the nonlinear system

$$
\left\{\begin{array}{l}
x^{\prime}=2 y \tag{2}\\
y^{\prime}=y+x-x^{3}
\end{array}\right.
$$

(a) (10 points) Identify all equilibrium points of the system (2).
(b) (15 points) Compute the Jacobian matrix at each equilibrium. Determine the geometry type (for example: saddle, spiral, center, star, etc) and stability of each equilibrium.
(c) (5 points) Which graph is the direction field of the system (2).

Solution:

(a) The condition $x^{\prime}=0$ immediately yields that $y=0$. Then $y^{\prime}=0$ yields $0=x-x^{3}$ which is true if $x=0$ or $x= \pm 1$. Thus, we have three equilibrium points:

$$
\mathbf{x}_{1}=(0,0), \quad \mathbf{x}_{2}=(1,0), \quad \mathbf{x}_{3}=(-1,0) .
$$

(b) The general Jacobian is $J=\left[\begin{array}{rr}0 & 2 \\ 1-3 x^{2} & 1\end{array}\right]$.

Point 1: $J=\left[\begin{array}{ll}0 & 2 \\ 1 & 1\end{array}\right]$. The eigenvalues are $\lambda_{1}=2$ and $\lambda_{2}=-1$.
Saddle point. Unstable.
Point 2: $J=\left[\begin{array}{rr}0 & 2 \\ -2 & 1\end{array}\right]$. The eigenvalues are $\lambda_{1,2}=1 / 2 \pm i \sqrt{15} / 2$.
Unstable spiral point.
Point 3: $J=\left[\begin{array}{rr}0 & 2 \\ -2 & 1\end{array}\right]$. The eigenvalues are $\lambda_{1,2}=1 / 2 \pm i \sqrt{15} / 2$.
Unstable spiral point.
(c) The correct graph is B.

Problem 6: (20 points) Consider the matrices $A=\left[\begin{array}{rrr}1 & -1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]$ and $B=\left[\begin{array}{rrr}0 & -1 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$. Given that $A^{-1}=\left[\begin{array}{rrr}1 & 1 & -3 \\ 0 & 1 & -1 \\ 0 & 0 & 1\end{array}\right]$, determine which of the following equations are solvable, and solve the ones that are.
(a) (5 points) $A \mathbf{x}=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$ with the 3×1 vector \mathbf{x} as unknown.
(b) (5 points) $B \mathbf{y}=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$ with the 3×1 vector \mathbf{y} as unknown.
(c) $\left({ }^{*} 5\right.$ points) $Z A=\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & -2 & 0\end{array}\right]$ with the 2×3 matrix Z as unknown.
(d) (*5 points) $W A+B W A=\left[\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$ with the 3×3 matrix W as unknown.

Solution:

(a) Left multiplying the equation by A^{-1} we get $\mathbf{x}=A^{-1}\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]=\left[\begin{array}{r}-2 \\ 0 \\ 1\end{array}\right]$.
(b) The last entry of the vector $B \mathbf{y}$ must be zero for any vector \mathbf{y}. Therefore, the equation cannot have a solution.
(c) Multiply from the right by A^{-1}. Then $Z=\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & -2 & 0\end{array}\right] A^{-1}=\left[\begin{array}{rrr}1 & 1 & -3 \\ 0 & -2 & 2\end{array}\right]$.
(d) Setting $C=\left[\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$ the given equation can be written $(I+B) W A=C$. Now $I+B=A$ so the equation is $A W A=C$. Then $W=A^{-1} C A^{-1}=\left[\begin{array}{ccc}1 & 1 & -3 \\ 1 & 1 & -3 \\ 0 & 0 & 0\end{array}\right]$.

Problem 7: (30 points) Give a brief answer to each question. Box your answer. No work given for this question will be graded.
(a) (5 points) Give the determinant of the matrix $A=\left[\begin{array}{ll}1 & 3 \\ 1 & 1\end{array}\right]$.
(b) (5 points) Determine a function y such that $y^{\prime}=2 y$ and $y(0)=3$.
(c) (5 points) Which of the following equations have stable equilibrium points at the origin:
(1) $y^{\prime}=-y$
(2) $y^{\prime}=-y^{2}$
(3) $y^{\prime}=-y^{4}$
(d) (5 points) Consider the system $\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]=\left[\begin{array}{rr}-1 & 7 \\ 0 & a\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$. For which values of a is it the case that all solutions satisfy $\lim _{t \rightarrow \infty} x(t)=\lim _{t \rightarrow \infty} y(t)=0$?
(e) (5 points) A sample of a single radioactive material weighs 1 ounce on Jan. 1 of 1990. On Jan. 1 of 2000, the sample weighs 0.1 ounce. How much does it weigh on Jan. 1 of 2010 ?
(f) (${ }^{*} 5$ points) Let a be a real number and consider the following equations for $y=y(t)$:

$$
y^{\prime \prime}+2 y^{\prime}+3 y=0, \quad y(0)=1, \quad y^{\prime}(0)=2, \quad y^{\prime \prime}(0)=a .
$$

For which values of a does there exist a function y that satisfies all conditions?

Solution:

(a) -2
(b) $y=3 e^{2 t}$
(c) Only (1).
(d) $a<0$
(e) 0.01 ounces.
(f) $a=-7$

Comments:

(c) Note that for the equations (2) and (3), any solution that starts slightly negative will move away from the equilibrium point at $y=0$ and tend to $-\infty$.
(d) The eigenvalues of the system matrix are $\lambda_{1}=-1$ and $\lambda_{2}=a$. All solutions tend to zero if and only if both eigenvalues are negative.
(e) Simply note that the sample loses 90% of its weight every 10 years. (The formula for the amount left is $y(t)=1 \mathrm{oz} \cdot 10^{-(t-1990) / 10}=1 \mathrm{oz} \cdot e^{-(t-1990) \log (10) / 10}$ where t is the year. This is making things unnecessarily complicated, though.)
(f) Note that at $t=0$ we must have $y^{\prime \prime}(0)+2 y^{\prime}(0)+3 y(0)=0$. It then follows that

$$
a=y^{\prime \prime}(0)=-2 y^{\prime}(0)-3 y(0)=-2 \cdot 2-3 \cdot 1=-7 .
$$

