APPM 2360 Spring 2009
Solutions for Homework 3

Sec 1.4:
2.Calculator Again Consider the IVP ¢ = ty, y(0) = 1.

(a) Use Euler’s method to approzimate the solution att = 1 with step sizes 1, 1/2, 1/4, 1/8.

(b) Solve the problem ezactly, and compare the reult at t = 1 with the approzimations calculated in part (a).

(a)
Euler’s Method with Different Step Sizes
h=1 h=1/2 h=1/4 h=1/8
t oy~ |t yr |t Yy~ t R
0 1 0 1 0 1 0 1
1 1 05 1 025 1 0.125 1
1 1.25 | 0.50 1.062 | 0.250 1.0156
0.75 1.195 | 0.375 1.0474
1 1419 | 0.50  1.0965
0.625 1.1650
0.750  1.2560
0.875 1.3737
1 1.5240

(b)Separating variables: gyﬂ = tdt, thus In|y| = t—;— +c¢=y=Cet/2 Notice y(0) =1 yeilds C =1= y(t) =
e’/2. Plug in t = 1, we have y(1) = ¢V/2 ~ 1.6487.

The estimate value of y(1) with different stepsize h is listed in boldface as shown above, thus:

h=1:, Error =1.6487 — 1 = 0.6487;
"h=1/2:, Error = 1.6487 — 1.25 = 0.3987;

h=1/4:, Error = 1.6487 — 1.419 = 0.2297;

h=1/8:, Error = 1.6487 — 1.524 = 0.1247;

7. Solve the problem below numerically using various step sizes. Compare with values of ezact solutions when
possible. y' =t —y, y(0) =2

Solutions:

With stepsize o = 0.05 and Euler’s method we obtain the following results:(other stepsizes and numerical
methods are also engouraged)

Euler’s Method ((h = 0.05))
t Yy R t Y~

0 2 0.6 1.2211

0.1 1.8075 | 0.7 1.1630

0.2 1.6435 | 0.8 1.1204

0.3 1.5053 | 0.9 1.0916

04 13903 |1  1.0755

0.5 1.2962

Since the DE is not separable, you don’t have to do any comparison.




10. Solve the problem below numerically using various step sizes. Compare with values of ezact solutions when
possible. y' = —ty, y(0) =1

Solutions:

Choeose h = 0.01, still use Euler’s method results is as follows:

Euler’s Method ((h = 0.01))
t Y~ t Y=

0 1 0.6 0.8375

0.1 09955 | 0.7 0.7850

0.2 009812 | 0.8 0.7284

0.3 09574 | 0.9 0.6692

0.4 09249 | 1 0.6086

0.5 0.8845

It’s easy to find the Analytical solution is y(t) = e=t’/2. So y(1) = e1/2 = 0.6065. So,
Error = |0.6065 — 0.6086| = 0.0021

12. Nasty Surprise Use Euler’s method with h = 0.25 to approximate the solution of ¥’ = y?, y(0) = 1, at
t = 0.50,t = 0.75, and ¢t = 1. Verify that the exact solution is y(¢) = 1/(1 — t); does this help explain what
happened to the Euler approximations?

Solutions:

Choose h = 0.25, then the value of y at each step is as follows:

Euler’s Method ((h = 0.25))
t  ym y =y

0 1 1

0.25 1.25 1.5625

0.50 1.6406  2.6917

0.75 2.3135  5.3525

1 3.6517

For analytical solution: z—;’ =dt = —y ! =t+c=. Pluginy(0) =1 = c=—1= y(t) = 1=5. And we can
see that at t = 1, y = oo, which sugests Euler method doesn’t work very well for this problem.

22. Solving v’ = —ty,y(0) = 1 using Runge-Kutta method.
Solutions:
Using the 4th-order Runge Kutta method and h = 0.01, we obtain the following table:

Runge-Kutta Method ((h = 0.01))
4 Y~ t Y =

0 1 0.6 0.8353

0.1 0.9950 | 0.7 0.7827

0.2 09802 | 0.8 0.7261

0.3 0.9560 | 0.9 0.6670

04 09231 |1 0.6065

0.5 0.8825

We have already known in problem (10) that, the exat solution at 1 is y(1) = 0.6065. So the Runge-Kutta
approximate the solution within given accuracy.



Sec 1.5:

2.ty +y=2, y(0)=1

Solutions:

From the DE, we have y' = Q_Ty, so f(t,y) = 2—}2, and the continous region for f is:

R={(t,y)|t € (—o0,0) U (0,00),y € R}

while the initial value (to,y0) = (0,1) ¢ R. Therefore, the answer to (a} is "no”~Picard’s Thm doesn’t apply
to the IVP. And for (c¢), the answer is "yes”, such as (1,5). The set of such points are R as given above.

7.y =lnly—1], y(0)=2

Solutions:

Since f(t,y) =Inly — 1, and f, = ﬁ(Seperate the cases when y > 1 and y < 1, break the absolute value
and youw’ll get it.) So the continuous region for f and fy are the same, i.e.

R ={(t,y)|R x (—00,1) U(1,00)}

and this is the largest region for Picard’s Thm to hold. Obviously, the initial value (¢o,y0) = (0,2) € R, so
there exists a unique solution passing through (0, 2).

19. ' =¢%, y(0)=1

Solutions:

(a).Since f(t,y) = y? and f, = 2y, the two functions are continuous everywhere in the ¢ — y plane, that is
Picard’s condition holds everywhere, thus the largest region is just R x R.

(b). (c). By the results from Sec 1.4 Problem 12, we have y(t) = ﬁ As when t = 1, y = oo and
also according to the graph, the largest interval the the solution is defined is: (—o0,1).

(d). Seperate the variables and integrate we have: —y~! = ¢ + ¢, plug in y(ts) = yo we obtain: —1/yg =
t0+c=>c=—t0—yi0 SO

_ 1
t0+i'—t

Yo

y(t)

So y = co when t = tg -+ . By observing the graph, this means: the largest interval that the solution exists
. Yo g 8

e 1 .
gV T (oo, te + =), if yo > 0;

1
(tg + —,00), if yg<0.

20. Nonuniqueness Show that IVP 3/ = y/3, 4(0) = 0 exhibits nonunique solutions and sketch graphs of
several possibilities. What does Picard’s Thm tell you for the problem?



Solutions:
Because f = yl/ 3 is continuous everywhere, so by Picard’s Thim, a solution exists for any initial value. However,

fy=1/ 3y~2/3 is not continuous for y = 0. So Picard’s Thm doesn’t guarantee the uniqueness for points where
y = 0. Seperate variables, we get y~/3dy = dt thus,

3
§y2/3=t—|—c.

Plug in y(0) = 0 = ¢ = 0. So we can get one solution:

y(t) = + (—3—)/ /2

Notice that y = 0 is also a solution. So, combine both of them we have an infinite number of solutions as
follows:

) = 0 t <l 8
VW21 2@ @+0¥2 t>)d >0 T /C= :
Sec 2.1: | S (=2
4. Solutions:Second-order, linear, nonhomogeneous, variable coefficients. : / /
8. Solutions:Second-order, nonlinear. J ~ 7
%‘Nﬁ‘h\"«.ﬁ [ ‘}:\“\ " ?
13.L(y) =o' + ¢ ; RN
Solutions: : S
Nonlinear, since L(ky) = ky' + k2y # kL(y) = ky' + ky?, vialates (3). ! (=¢ ™ N R
i Y
29.Solutions:Easy to verify y; and y» are solutions. For y = ¢;e® 4 cpe?*, E \_\ N

y// . 5,y/ _ 6y — 01462" 4 629631 . 5(C1262t + 6’236&) + 6(0162t‘+ (;263") =0

44. Solutions:

(1),just verify y, is the solution;

(2), Since L(y) = y' + 2y is linear (verify it), for the nonhomogeneous problem:y’ + 2y = 0, seperate variavles,
we get: y(t) = ce™?, so the solution for the original problem is y(t) = yn + yp = ce™ % +4sint — 2 cost.




