Finding particular solutions to linear differential equations with constants coefficients

Let $a_{n-1}, a_{n-2}, \ldots, a_1, a_0$ be real numbers and consider the equation

(1)
$$y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_1y' + a_0y = f.$$

Let r_1, r_2, \ldots, r_n be the roots of the characteristic equation

(2)
$$r^{n} + a_{n-1} r^{n-1} + \dots + a_{1} r + a_{0} = 0.$$

If all the r_j 's are distinct, then the general solution to (1) is

$$y(t) = \underbrace{c_1 e^{r_1 t} + c_2 e^{r_2 t} + \dots + c_n e^{r_n t}}_{=y_h(r)} + y_p(t).$$

Note that if any r_j is a complex number, then you can rewrite the formula for $y_h(t)$ using sines and cosines; if any r_j is a double root, then use the basis functions $e^{r_j t}$ and $t e^{r_j t}$, etc.

Now, how do you find a particular solution y_p ? The easiest way is to simply look it up in a table:

If:		then try:
$f(t) = b_0 + b_1 t + \cdots + b_p t^p$		$y_{\rm p}(t) = d_0 + d_1 t + \dots + d_p t^p$
$f(t) = e^{rt}$	(r is not a root of (2))	$y_{\mathbf{p}}(t) = d e^{r t}$
$f(t) = e^{rt}$	(r is a single root of (2))	$y_{\mathbf{p}}(t) = d t e^{r t}$
$f(t) = e^{r t}$	(r is a double root of (2))	$y_{\mathbf{p}}(t) = d t^2 e^{r t}$
$f(t) = (b_0 + b_1 t + \dots + b_p t^p) e^{rt}$	(r is not a root of (2))	$y_p(t) = (d_0 + d_1 t + \dots + d_p r^p) e^{rt}$
$f(t) = (b_0 + b_1 t + \dots + b_p t^p) e^{rt}$	(r is a single root of (2))	$y_p(t) = (d_0 + d_1 t + \dots + d_p r^p) t e^{rt}$
$f(t) = (b_0 + b_1 t + \dots + b_p t^p) e^{rt}$	(r is a double root of (2))	$y_p(t) = (d_0 + d_1 t + \dots + d_p r^p) t^2 e^{rt}$
$f(t) = \cos(r t)$	(ir) is not a root of (2)	$y_{p}(t) = d_1 \cos(r t) + d_2 \sin(r t)$
$f(t) = \sin(r t)$	(ir) is not a root of (2)	$y_{p}(t) = d_1 \cos(r t) + d_2 \sin(r t)$
$f(t) = b_1 \sin(rt) + b_2 \cos(rt)$	(ir) is not a root of (2)	$y_{p}(t) = d_1 \cos(r t) + d_2 \sin(r t)$
$f(t) = b_1 \sin(r t) + b_2 \cos(r t)$	(ir) is a single root of (2)	$y_{p}(t) = d_{1} t \cos(r t) + d_{2} t \sin(r t)$

In each case, you have to determine the coefficients in y_p by plugging the "guess" into equation (1) and matching the terms.