
Applied Analysis (APPM 5440): Final Exam
1.30pm – 5.00pm, Dec 11, 2005. Closed books.

In proofs, please state clearly what you assume, and what you will prove.

Problem 1: No motivation is required for the following questions: (2p each)

(a) Define what it means for a subset of a metric space to be totally bounded.

(b) Set I = [0, 1). Specify which (if any) of the following inclusions are
equalities: Cc(I) ⊆ C0(I) ⊆ Cb(I) ⊆ C(I).

(c) Let X be a Hilbert space, and define for y ∈ X the functional ϕy by setting
ϕy(x) = (y, x). What do you know about the map T : X → X∗ : y 7→ ϕy?

(d) Let P denote the set of all functions that can be written in the form
f(x) =

∑N
n=0

(
an cos(nx) + bn sin(nx)

)
, for some finite integer N , and some

complex numbers an and bn. Is P dense in C(T)?

(e) Let P be as in (d). Is P dense in L2(T)?

(f) Suppose that f ∈ Hk(T). Specify for which k, if any, it is necessarily the
case that f is continuous.

(g) Consider the metric space X consisting of all rational numbers, equipped
with the metric d(x, y) = |x− y|. Which of the following sets are open: A=
{q ∈ X : 0 < q2 ≤ 4}, B= {q ∈ X : 0 < q2 ≤ 2}, C = {q ∈ X : 0 < q < ∞}.
(h) Let X be a normed linear space, and let X∗ define the (topological) dual
of X. Define what it means for a sequence (yn)∞n=1 ⊆ X∗ to converge in the
weak-∗ topology.

Problem 2: Let X be a finite-dimensional linear space, and let || · ||1 and
|| · ||2 be two norms on X.

(a) Prove that there exist numbers c and C such that 0 < c ≤ C < ∞, and

(1) c||x||2 ≤ ||x||1 ≤ C||x||2, ∀x ∈ X.

(3p)

(b) Let G be a subset of X. Define what it means for G to be open in the
topology generated by the norm || · ||1. (2p)

(c) Prove that if G is open in the topology generated by the norm || · ||1,
then G open in the topology generated by the norm || · ||2. (You may use the
inequality (1) regardless of whether you answered part (a).) (2p)



Problem 3: Set I = [−1, 1], and consider the functions f, g1, g2 ∈ C(I),
given by f(x) = x2, g1(x) = 1, and g2(x) = x. Set A = span(g1, g2).
Determine α = dist(A, f) = infg∈A ||g − f ||. Is the minimizer unique? (4p)

Problem 4: Set I = [0, 1], let k be a continuous function on I2, and consider
the integral operator T : C(I) → C(I), given by

[Tf ](x) =
∫ 1

0
k(x, y) f(y) dy.

Prove that T is compact. (4p)

Problem 5: Let X = l1(N), and let (αn)∞n=1 be numbers such that |αn| ≤
2−n. Define the linear operator T : X → X by setting, for x = (x1, x2, . . . ),
(Tx)j = αjx1 + xj .

(a) Determine sup
{ ||Tx||
||x|| : x 6= 0

}
. (3p)

(b) What is the range of T? (1p)

(c) Determine sup
{ ||x||
||Tx|| : x 6= 0

}
. (2p)

Problem 6: Let f be a bounded continuous function on R2 for which there
exists a finite number C such that

|f(t, a)− f(t, b)| ≤ C|a− b|, ∀ t, a, b ∈ R.

Consider the ODE

(ODE)

{
u̇(t) = f(t, u(t)),

u(0) = 1.

State the contraction mapping theorem, and use it to prove that for some
ε > 0, the equation (ODE) has a unique solution in C1([−ε, ε]). (You do not
need to give an optimal ε.) (5p)

Problem 7: Let X be a separable infinite-dimensional Hilbert space. Prove
that there exists a family of closed linear subspaces {Ωt : t ∈ [0, 1]} such that
Ωs is a strict subset of Ωt whenever s < t. (4p)


