Applied Analysis (APPM 5440): Final Exam

$1.30 \mathrm{pm}-5.00 \mathrm{pm}$, Dec 11, 2005. Closed books.
In proofs, please state clearly what you assume, and what you will prove.
Problem 1: No motivation is required for the following questions: (2p each)
(a) Define what it means for a subset of a metric space to be totally bounded.
(b) Set $I=[0,1)$. Specify which (if any) of the following inclusions are equalities: $C_{\mathrm{c}}(I) \subseteq C_{0}(I) \subseteq C_{\mathrm{b}}(I) \subseteq C(I)$.
(c) Let X be a Hilbert space, and define for $y \in X$ the functional φ_{y} by setting $\varphi_{y}(x)=(y, x)$. What do you know about the map $T: X \rightarrow X^{*}: y \mapsto \varphi_{y}$?
(d) Let \mathcal{P} denote the set of all functions that can be written in the form $f(x)=\sum_{n=0}^{N}\left(a_{n} \cos (n x)+b_{n} \sin (n x)\right)$, for some finite integer N, and some complex numbers a_{n} and b_{n}. Is \mathcal{P} dense in $C(\mathbb{T})$?
(e) Let \mathcal{P} be as in (d). Is \mathcal{P} dense in $L^{2}(\mathbb{T})$?
(f) Suppose that $f \in H^{k}(\mathbb{T})$. Specify for which k, if any, it is necessarily the case that f is continuous.
(g) Consider the metric space X consisting of all rational numbers, equipped with the metric $d(x, y)=|x-y|$. Which of the following sets are open: $A=$ $\left\{q \in X: 0<q^{2} \leq 4\right\}, B=\left\{q \in X: 0<q^{2} \leq 2\right\}, C=\{q \in X: 0<q<\infty\}$.
(h) Let X be a normed linear space, and let X^{*} define the (topological) dual of X. Define what it means for a sequence $\left(y_{n}\right)_{n=1}^{\infty} \subseteq X^{*}$ to converge in the weak-* topology.

Problem 2: Let X be a finite-dimensional linear space, and let $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$ be two norms on X.
(a) Prove that there exist numbers c and C such that $0<c \leq C<\infty$, and

$$
\begin{equation*}
c\|x\|_{2} \leq\|x\|_{1} \leq C\|x\|_{2}, \quad \forall x \in X \tag{1}
\end{equation*}
$$

(b) Let G be a subset of X. Define what it means for G to be open in the topology generated by the norm $\|\cdot\|_{1}$. (2p)
(c) Prove that if G is open in the topology generated by the norm $\|\cdot\|_{1}$, then G open in the topology generated by the norm $\|\cdot\|_{2}$. (You may use the inequality (1) regardless of whether you answered part (a).) (2p)

Problem 3: Set $I=[-1,1]$, and consider the functions $f, g_{1}, g_{2} \in C(I)$, given by $f(x)=x^{2}, g_{1}(x)=1$, and $g_{2}(x)=x$. Set $A=\operatorname{span}\left(g_{1}, g_{2}\right)$. Determine $\alpha=\operatorname{dist}(A, f)=\inf _{g \in A}\|g-f\|$. Is the minimizer unique? (4p)

Problem 4: Set $I=[0,1]$, let k be a continuous function on I^{2}, and consider the integral operator $T: C(I) \rightarrow C(I)$, given by

$$
[T f](x)=\int_{0}^{1} k(x, y) f(y) d y
$$

Prove that T is compact. (4p)
Problem 5: Let $X=l^{1}(\mathbb{N})$, and let $\left(\alpha_{n}\right)_{n=1}^{\infty}$ be numbers such that $\left|\alpha_{n}\right| \leq$ 2^{-n}. Define the linear operator $T: X \rightarrow X$ by setting, for $x=\left(x_{1}, x_{2}, \ldots\right)$, $(T x)_{j}=\alpha_{j} x_{1}+x_{j}$.
(a) Determine $\sup \left\{\frac{\|T x\|}{\|x\|}: x \neq 0\right\}$. (3p)
(b) What is the range of T ? (1p)
(c) Determine $\sup \left\{\frac{\|x\|}{\|T x\|}: x \neq 0\right\}$. (2p)

Problem 6: Let f be a bounded continuous function on \mathbb{R}^{2} for which there exists a finite number C such that

$$
|f(t, a)-f(t, b)| \leq C|a-b|, \quad \forall t, a, b \in \mathbb{R}
$$

Consider the ODE
(ODE)

$$
\left\{\begin{aligned}
\dot{u}(t) & =f(t, u(t)) \\
u(0) & =1
\end{aligned}\right.
$$

State the contraction mapping theorem, and use it to prove that for some $\varepsilon>0$, the equation (ODE) has a unique solution in $C^{1}([-\varepsilon, \varepsilon])$. (You do not need to give an optimal ε.) (5 p)

Problem 7: Let X be a separable infinite-dimensional Hilbert space. Prove that there exists a family of closed linear subspaces $\left\{\Omega_{t}: t \in[0,1]\right\}$ such that Ω_{s} is a strict subset of Ω_{t} whenever $s<t$. (4p)

