
Applied Analysis (APPM 5440): Final Exam
7.30am – 10.00am, Dec. 20, 2006. Closed books.

Problem 1: The following problems are worth 2p each. No motivation required
for (a), (e), or (f). For the rest, please motivate your answer briefly (at most one or
two sentences).

(a) State the contraction mapping theorem.

(b) Let H be a Hilbert space, and let Ω be a subset of H. Under what conditions is
it necessarily the case that H = Ω⊕ Ω⊥?

(c) Given a separable Hilbert space H, and an orthonormal sequence (en)∞n=1, specify
two different conditions that guarantee that (en)∞n=1 is a basis for H.

(d) Let H be a Hilbert space, and let ϕ ∈ H∗. Set N = ker(ϕ). Suppose that
x, y ∈ N⊥. Is it necessarily the case that |(x, y)| = ||x|| ||y||?
(e) State the Arzelà-Ascoli theorem.

(f) Let (X, d) be a complete metric space and let Ω be a subset of X. Is it true that
Ω is pre-compact if and only if it is totally bounded?

(g) Let X be a set with a finite number of elements. Is it true that all metrics on
X induce the same topology?

(h) Is the function f(x) =
√

x sin 1
x uniformly continuous on the interval I = (0, 1]?

Solution:

(a,c,e,f) See textboook / lecture notes.

(b) When Ω is a linear subspace that is topologically closed.

(d) Yes. According to the Riesz theorem, there exists a unique z ∈ H such that
ϕ(x) = (z, x). Consequently N⊥ = span(z), and so x and y are necessarily parallel.

(g) Yes. In a metrizable topology on a finite set, every singleton set must be open
(since for every x ∈ X, we have {x} = Bε(x) where ε = 1

2 miny∈X d(x, y) > 0).
Therefore such a topology must be the discrete topology.

(h) Yes. To see this, consider the function

f̄(x) =
{ √

x sin(1/x) when x > 0,
0 when x = 0,

on the compact set Ī = [0, 1]. The function f̄ is uniformly continuous since it is a
continuous function on a compact set, and then f must also be uniformly continuous
since it is the restriction of the function f̄ to I.



Problem 2: Set I = [0, 1] and consider the Banach space X = Cb(I) (with the
usual norm, ||f ||u = supx∈I |u(x)|). Let Y = R with the standard norm.

(a) Let An ∈ B(X,Y ). Define what it means for the sequence (An)∞n=1 to converge
strongly in B(X, Y ). (1p)

(b) Let An ∈ B(X, Y ). Define what it means for the sequence (An)∞n=1 to converge
in norm in B(X, Y ). (1p)

(c) Let (An)∞n=1 be a sequence in B(X, Y ) such that for every ε > 0, there exists
an integer N such that ||An − Am|| < ε when m,n ≥ N . Is it necessarily the case
that there exists a unique A ∈ B(X,Y ) such that the sequence (An)∞n=1 converges
strongly to A? Motivate your answer. (3p)

(d) Define for n = 1, 2, 3, . . . , the operators Tn ∈ B(X, Y ) by Tn(f) = f(1/n).
Does the sequence (Tn) converge in norm? If so, to what? Does the sequence (Tn)
converge strongly? If so, to what? (3p)

Solution:

(a) An converges strongly to A if, for every f ∈ X, ||An f −Af || → 0 as n →∞.

(b) An converges in norm to A if ||An −A|| → 0 as n →∞.

(c) Yes. Since Y is complete, so is B(X, Y ). Therefore the Cauchy sequence (An) has
a limit point A in the norm topology. Since we know that limn→∞ ||An−A|| = 0, it
follows that for any f ∈ X, lim supn→∞ ||An f−A f || ≤ lim supn→∞ ||An−A|| ||f || =
0, and so (An) converges to A strongly.

(d) Let T ∈ B(X, Y ) denote the operator defined by Tf = f(0). Then Tn → T
strongly, since, for a given f ∈ X, we have

Tn f = f(1/n) → f(0) = T f

due to the continuity of f .

Next let us consider whether (Tn) converges in the norm topology. If it did, then
the limit point in the norm topology would have to be the same as the limit point
in the strong topology. However, we will prove that ||Tn − T || ≥ 1, which shows
that (Tn) does not converge to T in norm, and hence cannot converge to anything
in norm.

To prove that ||Tn − T || ≥ 1, consider the functions

fn(x) =
{

nx when x < 1/n,
1 when x ≥ 1/n.

We see that fn ∈ X, and that ||fn|| = 1. Thus

||Tn − T || = sup
||f ||=1

||Tn f − T f || ≥ ||Tn fn − T fn|| = |fn(1/n)− fn(0)| = |1− 0| = 1.



Problem 3: Let Ω denote an equicontinuous subset of Cb(R), and let Ωb denote a
bounded equicontinuous subset of Cb(R).

(a) Prove that the set Ω̃ = {f2 : f ∈ Ω} does not need to be equicontinuous.

(b) Is the set Ω̃b = {f2 : f ∈ Ωb} necessarily equicontinuous? Give a proof or a
counter-example.

Solution:

(a) We will provide an example of an equicontinuous set Ω for which Ω̃ is not
equicontinuous. Consider the functions

fn(x) =





n when x ∈ (−∞, 0),
n + x when x ∈ [0, 1],
n + 1 when x ∈ (1,∞),

and set Ω = {fn : n = 1, 2, 3, . . . }. Since all fn are Lipschitz continuous with
Lipschitz constant 1, Ω is equicontinuous. However, Ω̃ consists of the functions

gn(x) =





n2 when x ∈ (−∞, 0),
n2 + 2 nx + x2 when x ∈ [0, 1],
(n + 1)2 when x ∈ (1,∞),

and these functions are not equicontinuous at x = 0. To see this, not that given any
δ ∈ (0, 1), we have

sup
y∈Bδ(0)

|gn(y)− gn(0)| = 2 n δ + δ2.

It follows that no matter how small δ is, this quantity can be made arbitrarily large
by picking a large n.

(b) Yes. To prove this, suppose that Ωb is a bounded equicontinuous set. Fix
an x ∈ R, and an ε > 0. We need to prove that there exists a δ > 0 such that
|f(x)2 − f(y)2| < ε when |x− y| < δ.

Set M = supf∈Ωb
||f ||. By assumption, M is finite. Since Ωb is equicontinuous at

x, there exists a δ > 0 such that |f(x)− f(y)| < ε/(2M) when |x− y| < δ. It then
follows that when |x− y| < δ

|f(x)2 − f(y)2| = |(f(x)− f(y)) (f(x) + f(y))|
≤ |f(x)− f(y)| (|f(x)|+ |f(y)|) <

ε

2M
(M + M) = ε.



Problem 4: Let X denote the set of all continuous functions on the interval I =
[−π, π]. Equip X with the norm

||f || =
∫ π

−π
|f(y)| dy.

Consider the operator T ∈ B(X) that is defined by

[Tf ](x) =
∫ π

−π
sin(x) ey f(y) dy.

Calculate the norm of T in B(X).

Solution:

Set g(x) = sin(x). For a given f ∈ X, we then have

||T f || = ||g
∫ π

−π
ey f(y) dy|| = ||g||

∣∣∣∣
∫ π

−π
ey f(y) dy

∣∣∣∣ = 4
∣∣∣∣
∫ π

−π
ey f(y) dy

∣∣∣∣ ,

since ||g|| = ∫ π
−π | sin(x)| dx = 4.

Now

||T f || = 4
∣∣∣∣
∫ π

−π
ey f(y) dy

∣∣∣∣ ≤ 4

(
sup

y∈[−π,π]
|ey|

)∫ π

−π
|f(y)| dy = 4 eπ ||f ||,

so ||T || ≤ 4 eπ.

To conversely prove that ||T || ≥ 4 eπ, let us use the functions

fn(x) =
{

0 when x ∈ [−π, π − 1/n],
2n2 (x− π + 1/n) when x ∈ (π − 1/n, π].

Since fn ∈ X, and ||fn|| = 1, we find that

||T || = sup
||f ||=1

||T f || ≥ sup
n
||T fn|| = sup

n

[
4

∫ π

π−1/n
ey fn(y) dy

]

≥ sup
n

[
4

(
inf

x∈[π−1/n,π]
ey

)∫ π

π−1/n
fn(y) dy

]
= sup

n

[
4 eπ−1/n

]
= 4 eπ.



Problem 5: Recall that a topological space (X, T ) is said to be “Hausdorff” if
given any two distinct points x, y ∈ X, there exists disjoint sets Gx, Gy ∈ T such
that x ∈ Gx and y ∈ Gy. Prove that in a Hausdorff space, a compact set must
necessarily be closed. You may not assume that X is metrizable.

Solution:

Let K be a compact set in a Hausdorff space X. We will prove that K is closed by
proving that Kc is open. In turn, to prove that Kc is open, we will pick an arbitrary
point x ∈ Kc and construct an open set G such that x ∈ G ⊆ Kc.

Fix a point x ∈ Kc. For each y ∈ K, let Hy and Gx denote disjoint open sets
containing y and x, respectively. Then {Hy}y∈K is an open cover of K, and since
K is compact, there exists a finite subcover {Hyj}n

j=1. Set

G =
n⋂

j=1

Gyj .

That x ∈ G is obvious since x ∈ Gyj for each j. That G ⊆ Kc is also clear since

(1) K ⊆
n⋃

j=1

Hyj ⊆
n⋃

j=1

(
Gyj

)c =




n⋂

j=1

Gyj




c

= Gc.



Problem 6: Consider the Hilbert space H = l2(Z). Recall that if x, y ∈ H, with
x = (. . . , x−1, x0, x1, x2, . . . ) and y = (. . . , y−1, y0, y1, y2, . . . ), then the inner
product in H is defined by

(x, y) =
∞∑

n=−∞
x̄n yn.

Let A denote the set of all even sequences, in other words

A = {x ∈ H : xn = x−n}.
Consider the vector x ∈ H for which

xn =
{

2−n when n ≥ 0,
0 when n < 0.

Compute the number
d = inf

y∈A
||x− y||.

Solution:

A is a closed linear subspace, so H = A ⊕ A⊥. It follows that if x = y + z where
y ∈ A, and z ∈ A⊥, then

d = inf
v∈A

||x− v|| = ||x− y|| = ||z||,
so we just need to construct z.

Define y, z ∈ H by

yn = 1
2(xn + x−n), zn = 1

2(xn − x−n).

It is obvious that x = y + z, and that y ∈ A. That z ∈ A⊥ follows from a simple
calculation (if v ∈ A, then (v, z) = 1

2

∑
v̄nxn − 1

2

∑
v̄nx−n = 1

2(v, x)− 1
2(v, x) = 0).

We find that

zn =




−1

22−n when n < 0,
0 when n = 0,
1
22−n when n > 0,

and so

||z||2 = 2
∞∑

n=1

∣∣∣∣
1
2
2−n

∣∣∣∣
2

=
1
2

∞∑

n=1

1
4n

=
1
8

∞∑

n=0

1
4n

=
1
8

1
1− 1/4

=
1
6
.

It follows that
d = ||z|| = 1√

6
.


