Homework set 1 — APPM5440, Fall 2006
From the textbook: 1.3, 1.4, 1.5.

Problem 1: Consider the set R" equipped with the norm
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(a) Prove that || - ||, is a norm for p = 1.
(b) Prove that || - ||, is a norm for p = 2.
(c) Prove that limp_.o ||z||, = maxi<j<n |z;].
Problem 2: Set I = [0, 1] and consider the set X consisting of all continuous

functions on I. Define an addition and a scalar multiplication operator that make
X a normed linear space.

(a) Which of the following candidates define a norm on X:
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(b) Prove that
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is a norm on X.

(c) Prove that with respect to the norm given in (b), the space X is not complete.



