Homework set 10 - APPM5440 - Solution sketches

Textbook 4.5a: The connected subsets of \mathbb{R} are the intervals of the form $(a, b),[a, b],(a, b]$, and $[a, b)$ where a and b are numbers such that $-\infty \leq a \leq$ $b \leq \infty$. A full solution consists of two steps. First, let I denote and interval of the kind described and prove that I is connected (this is easily done via contradiction). Second, let Ω denote a subset that is not an interval, then you can construct two open disjoint subsets that cover Ω. This proves that Ω is not connected.

Textbook 4.6: Prove the following results:

- Let X and Y denote two homeomorphic topological spaces. Prove that X is connected if and only if Y is connected.
- Let X and Y denote two homeomorphic topological spaces, let $f: X \rightarrow$ Y denote a homeomorphism, and let $x \in X$. Prove that f is a homeomorphism between $X \backslash\{x\}$ and $Y \backslash\{f(x)\}$.
- Prove that $\mathbb{R} \backslash\{0\}$ is not connected.
- Prove that if $y \in \mathbb{R}^{2}$, then $\mathbb{R}^{2} \backslash\{y\}$ is connected.

Assume that \mathbb{R} and \mathbb{R}^{2} are connected. Derive a contradiction from the four facts given above.

Textbook 5.1: As an example, we prove that $a=b=c$, where

$$
a=\sup _{x \neq 0} \frac{\|A x\|}{\|x\|}, \quad b=\sup _{\|x\|=1}\|A x\|, \quad c=\sup _{x \leq 1}\|A x\|
$$

First we prove that $a=b$:

$$
a=\sup _{x \neq 0} \frac{\|A x\|}{\|x\|}=\sup _{x \neq 0}\left\|A \frac{x}{\|x\|}\right\|=\sup _{\|y\|=1}\|A y\|=b
$$

It is obvious that $b \leq c$ (since the surface of the unit ball is a subset of the closed unit ball itself), so it only remains to prove that $c \leq b$. To this end, we pick a sequence of vectors x_{n} such that $\left\|x_{n}\right\| \leq 1$ and $\left\|A x_{n}\right\| \rightarrow c$. Clearly, we can pick all x_{n} 's to be non-zero. Then

$$
c=\lim \left\|A x_{n}\right\| \leq \lim \sup \frac{\left\|A x_{n}\right\|}{\left\|x_{n}\right\|}=\lim \sup \left\|A \frac{x_{n}}{\left\|x_{n}\right\|}\right\| \leq \sup _{\|y\|=1}\|A y\|=b
$$

Textbook 5.3: First note that

$$
|\delta(f)|=|f(0)| \leq \sup _{x \in[0,1]}|f(x)|=\|f\|_{\mathrm{u}}
$$

This immediately proves that δ is continuous w.r.t. the uniform norm.
A simple way to prove that δ is not continuous w.r.t. the L^{1} norm is to construct a sequence of functions $f_{n} \in C([0,1])$ such that $\left\|f_{n}\right\|_{L^{1}}=1$, but $\left|\delta\left(f_{n}\right)\right|=n$. For instance, the functions $f_{n}(x)=\left(n-n^{2} x / 2\right) \chi_{[0,2 / n]}(x)$ will do.

Problem 1: Set $X=\mathbb{R}^{n}, Y=\mathbb{R}^{m}$, and let $A \in \mathcal{B}(X, Y)$. Let

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]
$$

denote the representation of A in the standard basis. Equip X and Y with the supremum norms. Compute $\|A\|$.

Solution: This problem is solved in the text of the book.
Problem 2: Set $X=\mathbb{R}^{2}$ and $Y=\mathbb{R}$, and define $f: X \rightarrow Y$ by setting $f\left(\left[x_{1}, x_{2}\right]\right)=x_{1}$. Prove that f is continuous. Prove that f is open. Prove that f does not necessarily map close sets to close sets.

Solution: First we prove that f is continuous. We use that in a metric space, continuity and sequential continuity are equivalent. Let $x^{(n)} \rightarrow x$ in \mathbb{R}^{2}, or, in other words, $\left(x_{1}^{(n)}, x_{2}^{(n)}\right) \rightarrow\left(x_{1}, x_{2}\right)$. Then it follows immediately that

$$
f\left(x^{(n)}\right)=x_{1}^{(n)} \rightarrow x_{1}=f(x)
$$

Next we prove that f is open. Let $\Omega \subset \mathbb{R}^{2}$ be an open set. Pick a point x_{1} in $f(\Omega)$. Then for some real number x_{2}, we have $x=\left(x_{1}, x_{2}\right) \in \Omega$. Since Ω is open, there exists $\varepsilon>0$ such that $B_{\varepsilon}(x) \subseteq \Omega$. Then $\left(x_{1}-\varepsilon, x_{1}+\varepsilon\right)=$ $f\left(B_{\varepsilon}(x)\right) \subseteq f(\Omega)$, and so $f(\Omega)$ must be open. (Draw a picture of all objects in this solution!)

Finally we prove that f is not closed via a counterexample. Consider $\Omega=$ $\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1} x_{2} \geq 1\right\}$ (draw a picture!). Then Ω is closed in \mathbb{R}^{2}, but $f(\Omega)=(-\infty, 0) \cup(0, \infty)$ is not closed in \mathbb{R}.

