Homework set 3 solutions - APPM5440, Fall 2006

For problems 1.17, 1.18, 1.20, see attached notes.
Problem 1.22: First we prove that if $a, b \in S$, then either $C_{a}=C_{b}$, or the two sets are disjoint.

Case 1 - suppose that $a \sim b$. Then

$$
c \in C_{a} \quad \Leftrightarrow \quad c \sim a \quad \Leftrightarrow \quad c \sim b \quad \Leftrightarrow \quad c \in C_{b} .
$$

(In the middle equality, we used the assumption that $a \sim b$ and property (c).)
Case 2 - suppose that a and b are not equivalent. Then if $c \in C_{a}$, we know that $c \sim a$, and therefore c cannot be equivalent to b (since this would violate property (c)), and so $c \in C_{b}^{\mathrm{c}}$. Thus $C_{a} \subseteq C_{c}^{\mathrm{c}}$, which is to say that C_{a} and C_{c} are disjoint.

Next we prove that the relation

$$
\left(x_{n}\right) \sim\left(y_{n}\right) \quad \Leftrightarrow \quad \lim d\left(x_{n}, y_{n}\right)=0
$$

is an equivalence relation. Properties (a) and (b) are obvious. To prove (c), assume that $\left(x_{n}\right) \sim\left(y_{n}\right)$ and that $\left(y_{z}\right) \sim\left(z_{n}\right)$. Then

$$
\lim d\left(x_{n}, z_{n}\right) \leq \lim \left(d\left(x_{n}, y_{n}\right)+d\left(y_{n}, z_{n}\right)\right)=0
$$

which proves that $\left(x_{n}\right) \sim\left(z_{n}\right)$.
Problem 1: Assume first that Ω is dense in X. Fix an $x \in X$. By our definition of denseness, we know that there exist $y_{n} \in \Omega$ such that $y_{n} \rightarrow x$. But then clearly there exist points y_{n} in any ε-ball around x.

Assume next that for any $x \in X$, and for any $\varepsilon>0$, the set $\Omega \cap B_{\varepsilon}(x)$ is non-empty. We need to prove that Ω is dense in X. Fix any $x \in X$. For $n=1,2,3, \ldots$, pick $y_{n} \in B_{1 / n}(x) \cap \Omega$. Then $y_{n} \rightarrow x$, and so $x \in \bar{\Omega}$. Since x was arbitrary, $X=\bar{\Omega}$.

Problem 2: Assume that $\left(x_{n}\right)$ and $\left(y_{n}\right)$ are Cauchy sequences in X. We will prove that $\left(d\left(x_{n}, y_{n}\right)\right)$ is a Cauchy sequence in \mathbb{R} (since \mathbb{R} is complete, this implies that $d\left(x_{n}, y_{n}\right)$ converges). Fix $\varepsilon>0$. Since both $\left(x_{n}\right)$ and $\left(y_{n}\right)$ are Cauchy, there exist N_{1} and N_{2} such that

$$
\begin{equation*}
m, n \geq N_{1} \quad \Rightarrow \quad d\left(x_{n}, x_{m}\right)<\varepsilon / 2 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
m, n \geq N_{2} \quad \Rightarrow \quad d\left(y_{n}, y_{m}\right)<\varepsilon / 2 . \tag{2}
\end{equation*}
$$

Set $N=\max \left(N_{1}, N_{2}\right)$. Then, if $m, n \geq N$, we have

$$
\begin{equation*}
d\left(x_{n}, y_{n}\right) \leq d\left(x_{n}, x_{m}\right)+d\left(x_{m}, y_{m}\right)+d\left(y_{m}, y_{n}\right)<d\left(x_{m}, y_{m}\right)+\varepsilon, \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
d\left(x_{m}, y_{m}\right) \leq d\left(x_{m}, x_{n}\right)+d\left(x_{n}, y_{n}\right)+d\left(y_{n}, y_{m}\right)<d\left(x_{n}, y_{n}\right)+\varepsilon . \tag{4}
\end{equation*}
$$

Together, (3) and (4) imply that $\left|d\left(x_{m}, y_{m}\right)-d\left(x_{n}, y_{n}\right)\right|<\varepsilon$.

Problem 3: Let $\tilde{x}, \tilde{y}, \tilde{z} \in \tilde{X}$. That $\tilde{d}(\tilde{x}, \tilde{y})=\tilde{d}(\tilde{y}, \tilde{x})$ is obvious. Next assume that $\tilde{d}(\tilde{x}, \tilde{y})=0$, then if $\left(x_{n}\right) \in \tilde{x}$, and $\left(y_{n}\right) \in \tilde{y}$, we know that $\lim d\left(x_{n}, y_{n}\right)=0$, which is to say that $\left(x_{n}\right) \sim\left(y_{n}\right)$ and so $\tilde{x}=\tilde{y}$. To finally prove the triangle inequality, pick representatives $\left(x_{n}\right) \in \tilde{x},\left(y_{n}\right) \in \tilde{y}$, and $\left(z_{n}\right) \in \tilde{z}$. Then

$$
\tilde{d}(\tilde{x}, \tilde{z})=\lim d\left(x_{n}, z_{n}\right) \leq \lim \left(d\left(x_{n}, y_{n}\right)+d\left(y_{n}, z_{n}\right)\right)=\tilde{d}(\tilde{x}, \tilde{y})+\tilde{d}(\tilde{y}, \tilde{z})
$$

