Homework set 5 - APPM5440

2.4: Let's consider $X=[-1,1]$ instead. Then set $f(x)=|x|$, and

$$
f_{n}(x)=\frac{1+n x^{2}}{\sqrt{n+n^{2} x^{2}}}
$$

Then $f_{n} \rightarrow f$ uniformly, $f_{n} \in C^{\infty}(X)$, and f is not differentiable. (To justify the shift we made initially, simply note that if we define $g_{n} \in C([0,1])$ by $g_{n}(y)=f_{n}(2 y-1)$, then g_{n} is an answer to the original problem.)
2.5: Set $I=[a, b]$. Let $\left(f_{n}\right)_{n=1}^{\infty}$ be a Cauchy sequence in $C^{1}(I)$. Since

$$
\left\|f_{n}-f_{m}\right\|_{\mathrm{u}} \leq\left\|f_{n}-f_{m}\right\|_{C^{1}}
$$

the sequence $\left(f_{n}\right)$ is Cauchy in $C(I)$. Since $C(I)$ is complete, there exists a function $f \in C(I)$ such that $f_{n} \rightarrow f$ uniformly.

Next set $g_{n}=f_{n}^{\prime}$. Then

$$
\left\|g_{n}-g_{m}\right\|_{\mathrm{u}}=\left\|f_{n}^{\prime}-f_{m}^{\prime}\right\|_{\mathrm{u}} \leq\left\|f_{n}-f_{m}\right\|_{C^{1}}
$$

so $\left(g_{n}\right)$ is Cauchy in $C(I)$. Therefore, there exists a function $g \in C(I)$ such that $g_{n} \rightarrow g$ uniformly.

It remains to prove that $f \in C^{1}(I)$, and that $f_{n} \rightarrow f$ in $C^{1}(I)$. Fix any $x \in I$, and any $h \in \mathbb{R}$ such that $x+h \in I$. Then

$$
\begin{aligned}
\frac{1}{h}(f(x+h)-f(x)) & =\lim _{n \rightarrow \infty} \frac{1}{h}\left(f_{n}(x+h)-f_{n}(x)\right) \\
& =\lim _{n \rightarrow \infty} \frac{1}{h} \int_{0}^{h} f_{n}^{\prime}(x+t) d t \\
& =\lim _{n \rightarrow \infty} \frac{1}{h} \int_{0}^{h} g_{n}(x+t) d t
\end{aligned}
$$

Now recall that uniform convergence on a finite interval implies convergence of integrals. Since $g_{n} \rightarrow g$ uniformly, we therefore find that

$$
\frac{1}{h}(f(x+h)-f(x))=\frac{1}{h} \int_{0}^{h} g(x+t) d t
$$

Since g is continuous, the limit as $h \rightarrow 0$ exists, and so

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{1}{h}(f(x+h)-f(x))=\lim _{h \rightarrow 0} \frac{1}{h} \int_{0}^{h} g(x+t) d t=g(x)
$$

This proves that $f \in C^{1}(I)$. To prove that $f_{n} \rightarrow f$ in $C^{1}(I)$, we note that

$$
\left\|f-f_{n}\right\|_{C^{1}}=\left\|f-f_{n}\right\|_{\mathrm{u}}+\left\|f^{\prime}-f_{n}^{\prime}\right\|_{\mathrm{u}}=\left\|f-f_{n}\right\|_{\mathrm{u}}+\left\|g-g_{n}\right\|_{\mathrm{u}}
$$

By the construction of f and g, it follows that $\left\|f-f_{n}\right\|_{C^{1}(I)} \rightarrow 0$.
2.7: Set $I=[0,1]$, and $\Omega=\left\{f \in C(I): \operatorname{Lip}(f) \leq 1, \int f=0\right\}$.

We will use the Arzelà-Ascoli theorem, of course.

The Lipschitz condition implies that Ω is equicontinuous. (To prove this, fix any $\varepsilon>0$. Set $\delta=\varepsilon$. Then for any $f \in \Omega$, and $|x-y|<\delta$, we have $|f(x)-f(y)| \leq \operatorname{Lip}(f)|x-y| \leq|x-y|<\varepsilon$. $)$

To prove that Ω is bounded, note that if $\int f=0$, and f is continuous, then there must exist an $x_{0} \in I$ such that $f\left(x_{0}\right)=0$. Then for any $x \in I$ and any $f \in \Omega$, we have $|f(x)|=\left|f(x)-f\left(x_{0}\right)\right| \leq \operatorname{Lip}(f)\left|x-x_{0}\right| \leq\left|x-x_{0}\right| \leq 1$. So $\|f\|_{\mathrm{u}} \leq 1$.

Finally we need to prove that Ω is closed. Let $\left(f_{n}\right)$ be a Cauchy sequence in Ω. Since $C(I)$ is complete, there exists an $f \in C(I)$ such that $f_{n} \rightarrow f$ uniformly. We need to prove that $f \in \Omega$. Since $f_{n} \rightarrow f$ uniformly, we know both that $\operatorname{Lip}(f) \leq \lim \sup _{n \rightarrow \infty} \operatorname{Lip}\left(f_{n}\right) \leq 1$, and that $\int f=\lim _{n \rightarrow \infty} \int f_{n}=$ 0 . This proves that $f \in \Omega$.
2.8: We will explicitly construct a dense countable subset Ω of $C([a, b])$. Without loss of generality, we can assume that $a=0$ and that $b=1$.

For $n=1,2, \ldots$, and for $j=0,1,2, \ldots, n$, set $x_{j}^{(n)}=j / n$. Let Ω_{n} denote the subset of $C(I)$ of functions that (1) are linear on each interval $\left[x_{j-1}^{(n)}, x_{j}^{(n)}\right]$, and (2) take on rational values for each $x_{j}^{(n)}$. Since each function in Ω_{n} is uniquely defined by its values on the $x_{j}^{(n)}$'s, we can identify Ω_{n} by \mathbb{Q}^{n}. Hence Ω_{n} is countable.

Set $\Omega=\bigcup_{n=1}^{\infty} \Omega_{n}$. Since each Ω_{n} is countable, Ω is countable.
It remains to prove that Ω is dense in $C(I)$. Fix any $f \in C(I)$, and any $\varepsilon>0$. Since I is compact, f is uniformly continuous on I so there exists a $\delta>0$ such that $|x-y|<\delta$ implies that $|f(x)-f(y)|<\varepsilon / 5$. Pick an n such that $1 / n<\delta$, and pick a $\varphi \in \Omega_{n}$ such that $\left|\varphi\left(x_{j}^{(n)}\right)-f\left(x_{j}^{(n)}\right)\right|<\varepsilon / 5$ for $j=0,1,2, \ldots, n$. We will prove that $\|\varphi-f\|_{\mathrm{u}}<\varepsilon$: Fix an $x \in I$. Then pick $j \in\{1,2, \ldots, n\}$ so that $x \in\left[x_{j-1}^{(n)}, x_{j}^{(n)}\right]$. Then

$$
|f(x)-\varphi(x)| \leq\left|f(x)-f\left(x_{j}^{(n)}\right)\right|+\left|f\left(x_{j}^{(n)}\right)-\varphi\left(x_{j}^{(n)}\right)\right|+\left|\varphi\left(x_{j}^{(n)}\right)-\varphi(x)\right| .
$$

The first term is bounded by $\varepsilon / 5$ due to the uniform continuity of f. The second term is bounded by $\varepsilon / 5$ by the selection of φ. For the third term, we find that

$$
\begin{aligned}
&\left|\varphi\left(x_{j}^{(n)}\right)-\varphi(x)\right| \leq\left|\varphi\left(x_{j}^{(n)}\right)-\varphi\left(x_{j-1}^{(n)}\right)\right| \\
& \quad \leq\left|\varphi\left(x_{j}^{(n)}\right)-f\left(x_{j}^{(n)}\right)\right|+\left|f\left(x_{j}^{(n)}\right)-f\left(x_{j-1}^{(n)}\right)\right|+\left|f\left(x_{j-1}^{(n)}\right)-\varphi\left(x_{j-1}^{(n)}\right)\right| .
\end{aligned}
$$

The first and the last terms are bounded by $\varepsilon / 5$ by the selection of φ, and the middle term is bounded by $\varepsilon / 5$ by the uniform continuity of f. It follows that $|f(x)-\varphi(x)|<\varepsilon$.
2.9: (a) Suppose that $w(x)>0$ for $x \in(0,1)$. We will verify that $\|\cdot\|_{w}$ is a norm:
(i) $\|\lambda f\|_{w}=\sup _{x} w(x)|\lambda f(x)|=|\lambda| \sup _{x} w(x)|f(x)|=|\lambda|| | f \|_{w}$.
(ii) $\left|\left|f+g \|_{w}=\sup _{x} w(x)\right| f(x)+g(x)\right| \leq \sup _{x} w(x)(|f(x)|+|g(x)|) \leq$ $\sup _{x} w(x)|f(x)|+\sup _{x} w(x)|g(x)|=| | f\left\|_{w}+\right\| g \|_{w}$.
(iii) If $f=0$, then clearly $\|\left. f\right|_{w}=0$. Conversely, if $f \neq 0$, then $f\left(x_{0}\right) \neq 0$ for some $x_{0} \in(0,1)$. Then $\|f\|_{w} \geq w\left(x_{0}\right)\left|f\left(x_{0}\right)\right|>0$.
(b) Assume that $w(x)>0$ for $x \in[0,1]=: I$. Set $m=\inf _{x \in I} w(x)$ and $M=\sup _{x \in I} w(x)$. Since I is compact and w is continuous, w attains both its inf and its sup, and therefore $m>0$ and $M<\infty$. Then

$$
\|f\|_{\mathrm{u}}=\sup _{x \in I}|f(x)| \geq \sup _{x \in I} \frac{w(x)}{M}|f(x)|=\frac{1}{M}\|f\|_{w} .
$$

and

$$
\|f\|_{\mathrm{u}}=\sup _{x \in I}|f(x)| \leq \sup _{x \in I} \frac{w(x)}{m}|f(x)|=\frac{1}{m}| | f \|_{w} .
$$

It follows that

$$
\frac{1}{M}\|f\|_{w} \leq\|f\|_{\mathrm{u}} \leq \frac{1}{m}\|f\|_{w}
$$

(c) Set $\left|\left||f| \|=\sup _{x \in I}\right| x f(x)\right|$. We will prove that $\|\|\cdot\||\mid$ is not equivalent to the uniform norm. Set for $n=1,2, \ldots$

$$
f_{n}(x)= \begin{cases}1 & x \in[0,1 / n] \\ 0 & x \in(1 / n, 1] .\end{cases}
$$

Then

$$
\inf _{\|f\|=1}\left\|| | f \left|\left\|\leq \inf _{n}\left|\left\|\mid f_{n}\right\| \|=\inf _{n} \frac{1}{n}=0 .\right.\right.\right.\right.
$$

This proves that there cannot exist a $c>0$ such that $\mid\|f\|\|\geq c\| f \|$.
(d) We will prove that the set $C(I)$ equipped with the norm $\|\|\cdot\| \mid$ is not a Banach space by constructing a Cauchy sequence with no limit point in $C(I)$. For $n=1,2, \ldots$, define $f_{n} \in C(I)$ by

$$
f_{n}(x)= \begin{cases}x^{-1 / 2} & x \in(1 / n, 1], \\ \sqrt{n} & x \in[0,1 / n] .\end{cases}
$$

Fix a positive integer N. Then, if $m, n \geq N$, we have

$$
\begin{aligned}
\left\|\left|\mid f_{n}-f_{m}\| \|\right.\right. & =\sup _{x \in[0,1 / N]} x\left|f_{n}(x)-f_{m}(x)\right| \\
& \leq \sup _{x \in[0,1 / N]}\left(x\left|f_{n}(x)\right|+x\left|f_{m}(x)\right|\right) \\
& \leq \sup _{x \in[0,1 / N]}(x / \sqrt{x}+x / \sqrt{x})=2 N^{-1 / 2} .
\end{aligned}
$$

Consequently, $\left(f_{n}\right)_{n=1}^{\infty}$ is a Cauchy sequence. But f_{n} cannot converge uniformly to any function in $C(I)$. (To prove the last contention, suppose that
$f_{n} \rightarrow f$ for some $f \in C(I)$. Then $f(0)=\lim _{n \rightarrow \infty} f_{n}(0)=\infty$, which is a contradiction.)

Problem 1: Let $X=[0, \infty)$. Construct a sequence of functions $f_{n}: X \rightarrow \mathbb{R}$ that converges uniformly (and hence pointwise), but that does not converge in $L^{2}(X)$.

Solution: One possible choice is

$$
\varphi_{n}(x)= \begin{cases}n^{-1 / 2} & x \in[0, n] \\ 0 & x \in(n, \infty) .\end{cases}
$$

Then $\varphi_{n} \rightarrow 0$ uniformly, but $\left\|\varphi_{n}-0\right\|=1$ for all n.
Problem 2: Let $X=[0,1]$. Construct a sequence of functions $f_{n}: X \rightarrow \mathbb{R}$ that converges in $L^{2}(X)$ but such that the sequence of numbers $\left(f_{n}(x)\right)_{n=1}^{\infty}$ does not converge for any $x \in X$.

Solution: For $I=[a, b]$ an interval in X, consider the function

$$
\chi_{I}(x)= \begin{cases}1 & x \in I, \\ 0 & x \in X \backslash I .\end{cases}
$$

Now construct intervals I_{n} that (1) decrease in size, and (2) march across the interval $[0,1]$. For instance,

$$
\begin{aligned}
I_{1} & =[0 / 2,1 / 2], \\
I_{2} & =[1 / 2,2 / 2], \\
I_{3} & =[0 / 4,1 / 4], \\
I_{4} & =[1 / 4,2 / 4], \\
I_{5} & =[2 / 4,3 / 4], \\
I_{6} & =[3 / 4,4 / 4], \\
I_{7} & =[0 / 8,1 / 8], \\
I_{8} & =[1 / 8,2 / 8], \\
I_{9} & =[2 / 8,3 / 8],
\end{aligned}
$$

Set $\varphi_{n}=\chi_{I_{n}}$. Then $\varphi_{n} \rightarrow 0$ in L^{2}, but for any fixed x, the sequence of numbers $\left(\varphi_{n}(x)\right)_{n=1}^{\infty}$ does not converge.

