Homework set 5 — APPM5440

2.4: Let's consider X = [-1, 1] instead. Then set f(x) = |x|, and

$$f_n(x) = \frac{1 + n x^2}{\sqrt{n + n^2 x^2}}.$$

Then $f_n \to f$ uniformly, $f_n \in C^{\infty}(X)$, and f is not differentiable. (To justify the shift we made initially, simply note that if we define $g_n \in C([0, 1])$ by $g_n(y) = f_n(2y - 1)$, then g_n is an answer to the original problem.)

2.5: Set I = [a, b]. Let $(f_n)_{n=1}^{\infty}$ be a Cauchy sequence in $C^1(I)$. Since

$$||f_n - f_m||_{\mathbf{u}} \le ||f_n - f_m||_{C^1},$$

the sequence (f_n) is Cauchy in C(I). Since C(I) is complete, there exists a function $f \in C(I)$ such that $f_n \to f$ uniformly.

Next set $g_n = f'_n$. Then

$$||g_n - g_m||_{\mathbf{u}} = ||f'_n - f'_m||_{\mathbf{u}} \le ||f_n - f_m||_{C^1},$$

so (g_n) is Cauchy in C(I). Therefore, there exists a function $g \in C(I)$ such that $g_n \to g$ uniformly.

It remains to prove that $f \in C^1(I)$, and that $f_n \to f$ in $C^1(I)$. Fix any $x \in I$, and any $h \in \mathbb{R}$ such that $x + h \in I$. Then

$$\frac{1}{h}(f(x+h) - f(x)) = \lim_{n \to \infty} \frac{1}{h}(f_n(x+h) - f_n(x))$$
$$= \lim_{n \to \infty} \frac{1}{h} \int_0^h f'_n(x+t) dt$$
$$= \lim_{n \to \infty} \frac{1}{h} \int_0^h g_n(x+t) dt.$$

Now recall that uniform convergence on a finite interval implies convergence of integrals. Since $g_n \to g$ uniformly, we therefore find that

$$\frac{1}{h}(f(x+h) - f(x)) = \frac{1}{h} \int_0^h g(x+t) dt.$$

Since g is continuous, the limit as $h \to 0$ exists, and so

$$f'(x) = \lim_{h \to 0} \frac{1}{h} (f(x+h) - f(x)) = \lim_{h \to 0} \frac{1}{h} \int_0^h g(x+t) dt = g(x).$$

This proves that $f \in C^1(I)$. To prove that $f_n \to f$ in $C^1(I)$, we note that

$$||f - f_n||_{C^1} = ||f - f_n||_{\mathbf{u}} + ||f' - f'_n||_{\mathbf{u}} = ||f - f_n||_{\mathbf{u}} + ||g - g_n||_{\mathbf{u}}.$$

By the construction of f and g, it follows that $||f - f_n||_{C^1(I)} \to 0$.

2.7: Set
$$I = [0, 1]$$
, and $\Omega = \{ f \in C(I) : \text{Lip}(f) \le 1, \int f = 0 \}$.

We will use the Arzelà-Ascoli theorem, of course.

The Lipschitz condition implies that Ω is equicontinuous. (To prove this, fix any $\varepsilon > 0$. Set $\delta = \varepsilon$. Then for any $f \in \Omega$, and $|x - y| < \delta$, we have $|f(x) - f(y)| \le \text{Lip}(f) |x - y| \le |x - y| < \varepsilon$.)

To prove that Ω is <u>bounded</u>, note that if $\int f = 0$, and f is continuous, then there must exist an $x_0 \in I$ such that $f(x_0) = 0$. Then for any $x \in I$ and any $f \in \Omega$, we have $|f(x)| = |f(x) - f(x_0)| \le \text{Lip}(f) |x - x_0| \le |x - x_0| \le 1$. So $||f||_u \le 1$.

Finally we need to prove that Ω is <u>closed</u>. Let (f_n) be a Cauchy sequence in Ω . Since C(I) is complete, there exists an $f \in C(I)$ such that $f_n \to f$ uniformly. We need to prove that $f \in \Omega$. Since $f_n \to f$ uniformly, we know both that $\text{Lip}(f) \leq \limsup_{n \to \infty} \text{Lip}(f_n) \leq 1$, and that $\int f = \lim_{n \to \infty} \int f_n = 0$. This proves that $f \in \Omega$.

2.8: We will explicitly construct a dense countable subset Ω of C([a, b]). Without loss of generality, we can assume that a = 0 and that b = 1.

For $n=1,2,\ldots$, and for $j=0,1,2,\ldots,n$, set $x_j^{(n)}=j/n$. Let Ω_n denote the subset of C(I) of functions that (1) are linear on each interval $[x_{j-1}^{(n)},x_j^{(n)}]$, and (2) take on rational values for each $x_j^{(n)}$. Since each function in Ω_n is uniquely defined by its values on the $x_j^{(n)}$'s, we can identify Ω_n by \mathbb{Q}^n . Hence Ω_n is countable.

Set $\Omega = \bigcup_{n=1}^{\infty} \Omega_n$. Since each Ω_n is countable, Ω is countable.

It remains to prove that Ω is dense in C(I). Fix any $f \in C(I)$, and any $\varepsilon > 0$. Since I is compact, f is uniformly continuous on I so there exists a $\delta > 0$ such that $|x - y| < \delta$ implies that $|f(x) - f(y)| < \varepsilon/5$. Pick an n such that $1/n < \delta$, and pick a $\varphi \in \Omega_n$ such that $|\varphi(x_j^{(n)}) - f(x_j^{(n)})| < \varepsilon/5$ for j = 0, 1, 2, ..., n. We will prove that $||\varphi - f||_{\mathbf{u}} < \varepsilon$: Fix an $x \in I$. Then pick $j \in \{1, 2, ..., n\}$ so that $x \in [x_{j-1}^{(n)}, x_j^{(n)}]$. Then

$$|f(x) - \varphi(x)| \le |f(x) - f(x_j^{(n)})| + |f(x_j^{(n)}) - \varphi(x_j^{(n)})| + |\varphi(x_j^{(n)}) - \varphi(x)|.$$

The first term is bounded by $\varepsilon/5$ due to the uniform continuity of f. The second term is bounded by $\varepsilon/5$ by the selection of φ . For the third term, we find that

$$\begin{split} |\varphi(x_j^{(n)}) - \varphi(x)| &\leq |\varphi(x_j^{(n)}) - \varphi(x_{j-1}^{(n)})| \\ &\leq |\varphi(x_j^{(n)}) - f(x_j^{(n)})| + |f(x_j^{(n)}) - f(x_{j-1}^{(n)})| + |f(x_{j-1}^{(n)}) - \varphi(x_{j-1}^{(n)})|. \end{split}$$

The first and the last terms are bounded by $\varepsilon/5$ by the selection of φ , and the middle term is bounded by $\varepsilon/5$ by the uniform continuity of f. It follows that $|f(x) - \varphi(x)| < \varepsilon$.

2.9: (a) Suppose that w(x) > 0 for $x \in (0, 1)$. We will verify that $||\cdot||_w$ is a norm:

(i) $||\lambda f||_w = \sup_x w(x)|\lambda f(x)| = |\lambda| \sup_x w(x)|f(x)| = |\lambda| ||f||_w$.

(ii) $||f + g||_w = \sup_x w(x)|f(x) + g(x)| \le \sup_x w(x)(|f(x)| + |g(x)|) \le \sup_x w(x)|f(x)| + \sup_x w(x)|g(x)| = ||f||_w + ||g||_w.$

(iii) If f = 0, then clearly $||f||_w = 0$. Conversely, if $f \neq 0$, then $f(x_0) \neq 0$ for some $x_0 \in (0, 1)$. Then $||f||_w \geq w(x_0)|f(x_0)| > 0$.

(b) Assume that w(x) > 0 for $x \in [0, 1] =: I$. Set $m = \inf_{x \in I} w(x)$ and $M = \sup_{x \in I} w(x)$. Since I is compact and w is continuous, w attains both its inf and its sup, and therefore m > 0 and $M < \infty$. Then

$$||f||_{\mathbf{u}} = \sup_{x \in I} |f(x)| \ge \sup_{x \in I} \frac{w(x)}{M} |f(x)| = \frac{1}{M} ||f||_{w}.$$

and

$$||f||_{\mathbf{u}} = \sup_{x \in I} |f(x)| \le \sup_{x \in I} \frac{w(x)}{m} |f(x)| = \frac{1}{m} ||f||_{w}.$$

It follows that

$$\frac{1}{M}||f||_w \leq ||f||_{\mathbf{u}} \leq \frac{1}{m}||f||_w.$$

(c) Set $|||f||| = \sup_{x \in I} |x f(x)|$. We will prove that $||| \cdot |||$ is not equivalent to the uniform norm. Set for n = 1, 2, ...

$$f_n(x) = \begin{cases} 1 & x \in [0, 1/n], \\ 0 & x \in (1/n, 1]. \end{cases}$$

Then

$$\inf_{||f||=1} |||f||| \le \inf_{n} |||f_n||| = \inf_{n} \frac{1}{n} = 0.$$

This proves that there cannot exist a c > 0 such that $|||f||| \ge c||f||$.

(d) We will prove that the set C(I) equipped with the norm $||| \cdot |||$ is not a Banach space by constructing a Cauchy sequence with no limit point in C(I). For $n = 1, 2, \ldots$, define $f_n \in C(I)$ by

$$f_n(x) = \begin{cases} x^{-1/2} & x \in (1/n, 1], \\ \sqrt{n} & x \in [0, 1/n]. \end{cases}$$

Fix a positive integer N. Then, if $m, n \geq N$, we have

$$|||f_n - f_m||| = \sup_{x \in [0, 1/N]} x |f_n(x) - f_m(x)|$$

$$\leq \sup_{x \in [0, 1/N]} (x |f_n(x)| + x |f_m(x)|)$$

$$\leq \sup_{x \in [0, 1/N]} (x / \sqrt{x} + x / \sqrt{x}) = 2N^{-1/2}.$$

Consequently, $(f_n)_{n=1}^{\infty}$ is a Cauchy sequence. But f_n cannot converge uniformly to any function in C(I). (To prove the last contention, suppose that

 $f_n \to f$ for some $f \in C(I)$. Then $f(0) = \lim_{n \to \infty} f_n(0) = \infty$, which is a contradiction.)

Problem 1: Let $X = [0, \infty)$. Construct a sequence of functions $f_n : X \to \mathbb{R}$ that converges uniformly (and hence pointwise), but that does not converge in $L^2(X)$.

Solution: One possible choice is

$$\varphi_n(x) = \begin{cases} n^{-1/2} & x \in [0, n], \\ 0 & x \in (n, \infty). \end{cases}$$

Then $\varphi_n \to 0$ uniformly, but $||\varphi_n - 0|| = 1$ for all n.

Problem 2: Let X = [0,1]. Construct a sequence of functions $f_n : X \to \mathbb{R}$ that converges in $L^2(X)$ but such that the sequence of numbers $(f_n(x))_{n=1}^{\infty}$ does not converge for $any \ x \in X$.

Solution: For I = [a, b] an interval in X, consider the function

$$\chi_I(x) = \begin{cases} 1 & x \in I, \\ 0 & x \in X \setminus I. \end{cases}$$

Now construct intervals I_n that (1) decrease in size, and (2) march across the interval [0, 1]. For instance,

$$I_1 = [0/2, 1/2],$$

$$I_2 = [1/2, 2/2],$$

$$I_3 = [0/4, 1/4],$$

$$I_4 = [1/4, 2/4],$$

$$I_5 = [2/4, 3/4],$$

$$I_6 = [3/4, 4/4],$$

$$I_7 = [0/8, 1/8],$$

$$I_8 = [1/8, 2/8],$$

$$I_9 = [2/8, 3/8],$$

$$\vdots$$

Set $\varphi_n = \chi_{I_n}$. Then $\varphi_n \to 0$ in L^2 , but for any fixed x, the sequence of numbers $(\varphi_n(x))_{n=1}^{\infty}$ does not converge.