Solutions to homework set 6 - APPM5440, Fall 2006

2.10: Let A denote the set of functions in $C\left(\mathbb{R}^{n}\right)$ that vanish at infinity. That $A=\overline{C_{\mathrm{c}}}$ follows from the following two claims:

- Claim 1: C_{c} is dense in A.
- Claim 2: A is closed.

Proof of Claim 1: Fix an $f \in A$. We need to prove that for any $\varepsilon>0$, there exists a $g \in C_{\mathrm{c}}$ such that $\|f-g\|_{\mathrm{u}}<\varepsilon$. Fix $\varepsilon>0$. Set $R=\sup \{|x|:|f(x)| \geq$ $\varepsilon\}$ (so that $|f(x)| \leq \varepsilon$ when $|x| \geq R)$. Set for $x \in \mathbb{R}^{n}$

$$
\varphi_{R}(x)= \begin{cases}1 & |x| \in[0, R), \\ 1+R-|x| & |x| \in[R, R+1], \\ 0 & |x| \in(R, \infty),\end{cases}
$$

and set $g=f \varphi_{R}$. Then $g \in C_{\mathrm{c}}$, and $\|f-g\|_{\mathrm{u}}<\varepsilon$.
Proof of Claim 2: We will prove that $C(I) \backslash A$ is open. Fix an $f \in C(I) \backslash A$. Then for some $\varepsilon>0$, there exist $\left(x_{j}\right)_{j=1}^{\infty} \in \mathbb{R}^{n}$ such that $\left|f\left(x_{j}\right)\right| \geq \varepsilon$ for all j, and $\left|x_{j}\right| \rightarrow \infty$. Then if $h \in C(I)$, and $\|f-h\|<\varepsilon / 2$, we find that

$$
\left|h\left(x_{j}\right)\right|=\left|f\left(x_{j}\right)+\left(h\left(x_{j}\right)-f\left(x_{j}\right)\right)\right| \geq\left|f\left(x_{j}\right)\right|-\left|h\left(x_{j}\right)-f\left(x_{j}\right)\right|>\varepsilon / 2,
$$

and so $h \in C(I) \backslash A$. It follows that $B_{\varepsilon / 2}(f) \subseteq C(I) \backslash A$.
2.11: Set $g_{n}=f_{n}-f$. Then for every $x \in I, g_{n}(x) \searrow 0$. We need to prove that g_{n} converges uniformly to 0 .

Since $g_{n}(x) \searrow 0$ for every $x,\left(\left\|g_{n}\right\|_{\mathrm{u}}\right)_{n=1}^{\infty}$ is a decreasing sequence. Set $\alpha=\lim _{n \rightarrow \infty}\left\|g_{n}\right\|_{\mathrm{u}}$. If $\alpha=0$, then $g_{n} \rightarrow 0$ uniformly. Assume $\alpha \neq 0$. Then for each $n=1,2, \ldots$, there exists a point $x_{n} \in I$ such that $g_{n}\left(x_{n}\right) \geq \alpha$. Since I is compact, there exists an $x \in I$ and a subsequence n_{j} such that $x_{n_{j}} \rightarrow x$. Since $g_{n}(x) \searrow 0$, there exists an N such that $g_{N}(x)<\alpha / 2$. Since g_{N} is continuous at x, there exists an $\varepsilon>0$ such that $g_{N}(y)<3 \alpha / 4$ for all $y \in B_{\varepsilon}(x)$. But then $g_{n}(y)<3 \alpha / 4$ for all $n \geq N$ (since $g_{n}(y) \leq g_{N}(y)$ when $n \geq N)$. This contradicts the claims that $g_{n_{j}}\left(x_{n_{j}}\right) \geq \alpha$, and $x_{j} \rightarrow x$ as $j \rightarrow \infty$.
2.12: Fix an $x \in[0,1]$. Fix an $\varepsilon>0$. Since $\Omega=\left\{f_{n}\right\}$ is equicontinuous, there exists a $\delta>0$ such that if $|x-y|<\delta$, then $\left|f_{n}(x)-f_{n}(y)\right|<\varepsilon / 2$. Now, if $|x-y|<\delta$, then

$$
|f(x)-f(y)|=\lim _{n \rightarrow \infty}\left|f_{n}(x)-f_{n}(y)\right| \leq \limsup _{n \rightarrow \infty} \varepsilon / 2=\varepsilon / 2 .
$$

2.14: Set

$$
e(t)=\left|u(t)-u_{0}\right| .
$$

Then e satisfies

$$
\begin{equation*}
e(t)=\left|u(t)-u\left(t_{0}\right)\right|=\left|\int_{t_{0}}^{t} f(s, u(s)) d s\right| \leq \int_{t_{0}}^{t}|f(s, u(s))| d s . \tag{1}
\end{equation*}
$$

Now use that

$$
\begin{align*}
|f(s, u(s))| & =\left|\left(f(s, u(s))-f\left(s, u_{0}\right)\right)+f\left(s, u_{0}\right)\right| \tag{2}\\
& \leq\left|f(s, u(s))-f\left(s, u_{0}\right)\right|+\left|f\left(s, u_{0}\right)\right| \\
& \leq K\left|u(s)-u_{0}\right|+M \\
& =K e(s)+M
\end{align*}
$$

Inserting (2) into (1) we find that

$$
e(t) \leq M\left|t-t_{0}\right|+\int_{t_{0}}^{t} K e(s) d s
$$

A direct application of Grönwall's inequality results in

$$
e(t) \leq M\left|t-t_{0}\right| e^{K\left|t-t_{0}\right|}
$$

For the last part of the problem, the exact solution of the given ODE is $u(t)=u_{0} e^{K\left(t-t_{0}\right)}$, and so

$$
\left|u(t)-u_{0}\right|=\left|u_{0}\right|\left|e^{K\left(t-t_{0}\right)}-1\right| \leq\left|u_{0}\right| K\left|t-t_{0}\right| e^{K\left|t-t_{0}\right|}
$$

since $\left|e^{\alpha}-1\right| \leq|\alpha| e^{|\alpha|}$ for all real α. Since in this example $f(t, u)=K u$, and $M=K\left|u_{0}\right|$, we see that the given solution satisfies the bound we proved.

Problem: Set $I=(0,1)$ and let $\left(f_{n}\right)_{n=1}^{\infty}$ be a sequence of continuously differentiable functions on I. Set $\Omega=\left\{f_{n}: 1 \leq n<\infty\right\}$.
(a) For a given n, suppose that

$$
\sup _{x \in I}\left|f_{n}^{\prime}(x)\right|<\infty
$$

Prove that then f_{n} is uniformly continuous.
(b) Suppose that

$$
\sup _{x \in I} \sup _{1 \leq n<\infty}\left|f_{n}^{\prime}(x)\right|<\infty
$$

Prove that then Ω is uniformly equicontinuous.
(c) Suppose that for every $x \in I$, there exists a $\kappa>0$ such that

$$
\sup _{1 \leq n<\infty} \sup _{y \in B_{\kappa}(x)}\left|f_{n}^{\prime}(y)\right|<\infty .
$$

Prove that then Ω is equicontinuous.
(d) Give an example of a set Ω of functions satisfying the condition in (c) that is not uniformly equicontinuous.
(e) Suppose that for a given $x \in I$, it is the case that

$$
\sup _{1 \leq n<\infty}\left|f_{n}^{\prime}(x)\right|<\infty
$$

Prove that Ω is not necessarily equicontinuous at x.

Solution: (a) Set $M_{a}=\sup _{x \in I}\left|f_{n}^{\prime}(x)\right|$. Fix an $\varepsilon>0$. Set $\delta=\varepsilon / M_{a}$. Then, if $|x-y|<\delta$, we have

$$
\begin{equation*}
\left|f_{n}(x)-f_{n}(y)\right|=\left|\int_{x}^{y} f_{n}^{\prime}(y) d y\right| \leq \int_{x}^{y} M d y=M_{a}|x-y|<\varepsilon . \tag{3}
\end{equation*}
$$

(b) Set $M_{b}=\sup _{x \in I} \sup _{1 \leq n<\infty}\left|f_{n}^{\prime}(x)\right|$. Fix a $\varepsilon>0$. Set $\delta=\varepsilon / M_{b}$. Then if $f_{n} \in \Omega$, and $|x-y|<\delta$, an estimate analogous to (3) shows that $\mid f_{n}(x)-$ $f_{n}(y) \mid<\varepsilon$.
(c) Fix an $x \in I$ and an $\varepsilon>0$. We need to prove that there exists a $\delta>0$ such that if $y \in B_{\varepsilon}(x)$, then $\left|f_{n}(x)-f_{n}(y)\right|<\varepsilon$ for any $f_{n} \in \Omega$. Set $M_{c}=\sup _{1 \leq n<\infty} \sup _{y \in B_{\kappa}(x)}\left|f_{n}^{\prime}(y)\right|$. Then $\delta=\min \left(\varepsilon / M_{c}, \kappa\right)$ works.
(d) $f_{n}(x)=n+1 / x$.
(e) Consider $f_{n}(x)=n(x-1 / 2)^{2}$. Then, at $x=1 / 2$, we have $\sup _{n} f_{n}^{\prime}(x)=0$ but $\Omega=\left\{f_{n}\right\}$ is not equicontinuous. (Set $\varepsilon=1$. Then given any δ, there exist n such that $f_{n}(x+\delta / 2)>\varepsilon$; in fact any $n>4 \varepsilon / \delta^{2}$ will do.)

