Homework set 9 — APPM5440

From the textbook: 4.1, 4.2, 4.3.

Problem: The Hausdorff property is only one of many so called "separability" conditions on topological spaces. As an example, we say that a topological space X is T_j , for j = 0, 1, 2, 3, 4 if:

- T_0 : Given $x, y \in X$, there either exists an open set containing x but not y, or vice versa.
- T_1 : Given $x, y \in X$, there exists an open set that contains x but not y.
- T_2 : Given $x, y \in X$, there exist disjoint open sets G, H such that $x \in G, y \in H$. (Note that T_2 is the same as Hausdorff.)
- T_3 : X is T_1 , and: Given any closed set A, and any point $x \in A^c$, there exist disjoint open sets G, H such that $x \in G$, $A \subseteq H$.
- T_4 : Given any two closed disjoint sets A and B, there exists disjoint open set G, and H such that $A \subseteq G, B \subseteq H$.

Prove that if i < j, then any T_j space is T_i . Prove that the co-finite topology is T_1 but not T_2 . Prove that a topological space is T_1 if and only if the set $\{x\}$ is closed for every $x \in X$.