Applied Analysis (APPM 5440): Midterm 1
$5.30 \mathrm{pm}-6.45 \mathrm{pm}$, Sep. 25, 2006. Closed books.

Problem 1: No motivation required for (a) and (c). Only brief motivations required for (b) and (d). 2 points each:
(a) Define what it means for a metric space (X, d) to be complete.
(b) Set $X=[0,1] \cup[2,3]$, and $\Omega=[0,1]$. Is Ω open in the metric space $(X,|\cdot|)$?
(c) For $n \in \mathbb{N}$, set $x_{n}=e^{-1 / n}\left(1+(-1)^{n}\right)-1 / n$. Give numerical values for the quantities that exist among: $\lim _{n \rightarrow \infty} x_{n}, \limsup _{n \rightarrow \infty} x_{n}$, and $\liminf _{n \rightarrow \infty} x_{n}$.
(d) Construct a sequence $\left(x_{n}\right)_{n=1}^{\infty}$ such that $0 \leq x_{n} \leq 1$ for every n, and such that for any $\alpha \in[0,1]$, there exists a subsequence $\left(x_{n_{j}}\right)_{j=1}^{\infty}$ such that $x_{n_{j}} \rightarrow \alpha$ as $j \rightarrow \infty$.
(a) A metric space is complete if every Cauchy sequence in the space has a limit point in the space.
(b) Ω is open. To prove this, pick $x \in \Omega$, then $B_{1 / 2}(x) \subseteq \Omega .{ }^{1}$
(c) $\lim \sup x_{n}=2$ and $\lim \inf x_{n}=0 . \lim x_{n}$ does not exist (since the limsup and the liminf are different).
(d) The set of all rational numbers in $[0,1]$ is a countable set. Let $\left(x_{n}\right)_{n=1}^{\infty}$ denote an enumeration. This sequence satisfies the requirements. ${ }^{2}$

[^0]Problem 2: Define a norm on \mathbb{R}^{d} by setting, for $x=\left(x_{1}, x_{2}, \ldots, x_{d}\right) \in \mathbb{R}^{d}$,

$$
\|x\|=\sum_{1 \leq j \leq d}\left|x_{j}\right|
$$

Using the fact that $(\mathbb{R},|\cdot|)$ is complete, prove that $\left(\mathbb{R}^{d},\|\cdot\|\right)$ is complete. (3p)

Let $\left(x^{(n)}\right)_{n=1}^{\infty}$ denote a Cauchy sequence in \mathbb{R}^{d}. We will prove that $\left(x^{(n)}\right)$ has a limit point in \mathbb{R}^{d}.

First we construct the limit point x. For $j=1,2, \ldots, d$, we have

$$
\begin{equation*}
\left|x_{j}^{(n)}-x_{j}^{(m)}\right| \leq \sum_{j=1}^{d}\left|x_{j}^{(n)}-x_{j}^{(m)}\right|=\left\|x^{(n)}-x^{(m)}\right\| . \tag{1}
\end{equation*}
$$

Since $\left(x^{(n)}\right)$ is a Cauchy sequence, it follows from (1) that $\left(x_{j}^{(n)}\right)_{n=1}^{\infty}$ is a Cauchy sequence in \mathbb{R}. Since \mathbb{R} is complete, each such sequence has a limit point, name this point x_{j}. In other words,

$$
\begin{equation*}
x_{j}=\lim _{n \rightarrow \infty} x_{j}^{(n)} \tag{2}
\end{equation*}
$$

Set $x=\left(x_{1}, x_{2}, \ldots, x_{d}\right)$. Clearly $x \in \mathbb{R}^{d}$.
Next we prove that the Cauchy sequence $\left(x^{(n)}\right)$ converges to x. Fix an $\varepsilon>0$. For each $j \in\{1,2, \ldots, d\}$, equation (2) assures us that there exists an N_{j} such that

$$
\begin{equation*}
n \geq N_{j} \quad \Rightarrow \quad\left|x_{j}^{(n)}-x_{j}\right|<\varepsilon / d \tag{3}
\end{equation*}
$$

Set $N=\max \left\{N_{1}, N_{2}, \ldots, N_{d}\right\}$. Then, if $n \geq N$, it follows from (3) that

$$
\left\|x^{(n)}-x\right\|=\sum_{j=1}^{d}\left|x_{j}^{(n)}-x_{j}\right|<\sum_{j=1}^{d} \varepsilon / d=\varepsilon
$$

Problem 3: Let $\left(X, d_{X}\right),\left(Y, d_{Y}\right)$, and $\left(Z, d_{Z}\right)$ denote metric spaces, and let $f: X \rightarrow$ Y, and $g: Y \rightarrow Z$ denote continuous functions. Prove that the function $h: X \rightarrow Z$ that is defined by $h(x)=g(f(x))$ is continuous. (3p)

Let G denote an open set in Z. We will prove that h is continuous by proving that $h^{-1}(G)$ is necessarily open in X.

Since g is continuous, and G is open in $Z, g^{-1}(G)$ is open in Y.
Since f is continuous, and $g^{-1}(G)$ is open in $Y, f^{-1}\left(g^{-1}(G)\right)$ is open in X.
Finally note that $h^{-1}(G)=f^{-1}\left(g^{-1}(G)\right)$.

Problem 4: Let X denote the set of real numbers, and equip X with the discrete metric d_{X} (so that $d_{X}(x, y)=0$ if $x=y$, and $d_{X}(x, y)=1$ otherwise). Let $\left(Y, d_{Y}\right)$ denote another metric space. For each statement below, either prove that it is necessarily true, or give a counter-example. (2 p each.)
(a) Let f be a function from $\left(X, d_{X}\right)$ to $\left(Y, d_{Y}\right)$. Then f is necessarily continuous.
(b) Let g be a function from $\left(Y, d_{Y}\right)$ to $\left(X, d_{X}\right)$. Then g is necessarily continuous.
(a) Yes, f is necessarily continuous. To prove this, we fix an $x \in X$ and a number $\varepsilon>0$. We will prove that there exists a $\delta>0$ such that

$$
d_{X}(x, y)<\delta \quad \Rightarrow \quad d_{Y}(f(x), f(y))<\varepsilon
$$

Pick $\delta=1 / 2$. Then if $d_{X}(x, y)<1 / 2$, we must have $x=y$, and then of course $d_{Y}(f(x), f(y))=0<\varepsilon$.
(b) No, f need not be continuous. As an example, set $Y=\mathbb{R}$ with the usual metric, and consider $g(x)=x$. Now if $x \in X$, then the set $\{x\}$ is open in $\left(X, d_{X}\right)^{3}$, but $g^{-1}(\{x\})=\{x\}$ which is not open in $\left(Y, d_{Y}\right)$.

[^1]Problem 5: Let (X, d) denote a metric space, and let Y denote a subset of X. Consider the following three sets, and three statements:
Ω_{1} is the set of all $x \in X$ for which there exists $\left(y_{n}\right)_{n=1}^{\infty} \subseteq Y$ such that $y_{n} \rightarrow x$.
$\Omega_{2}=\bigcap_{\alpha \in A} F_{\alpha}$ where $\left\{F_{\alpha}\right\}_{\alpha \in A}$ is the set of all closed sets in (X, d) that contain Y.
(\tilde{Y}, \tilde{d}) is the completion of the metric space (Y, d).
(a) $\Omega_{1} \subseteq \Omega_{2}$
(b) $\Omega_{2} \subseteq \Omega_{1}$
(c) The two metric spaces $\left(\Omega_{2}, d\right)$ and (\tilde{Y}, \tilde{d}) are isometrically isomorphic.

For each statement, either prove that it is necessarily true, or give a counter-example (if you give a counter-example, you do not need to justify it in detail). You may not use any theorems given in class that relate to the concept of "closure". (2p each.)
(a) Assume that $x \in \Omega_{1}$. Then there exist points $\left(y_{n}\right)_{n=1}^{\infty} \subseteq Y$ such that $y_{n} \rightarrow x$. But then if F_{α} is a closed set that contains Y, it follows that $x \in F_{\alpha}$ since $\left(y_{n}\right) \subseteq F_{\alpha}$, and F_{α} contains all its limit points. Consequently, $x \in \Omega_{2}$.
(b) Assume that $x \in \Omega_{2}$. First we note that for every $\varepsilon>0$, the set $B_{\varepsilon}(x) \cap Y$ is non-empty. (If there existed an $\varepsilon>0$ such that $B_{\varepsilon}(x) \cap Y$ were empty, then $B_{\varepsilon}(x)^{\mathrm{c}}$ would be a closed set in the collection $\left(F_{\alpha}\right)_{\alpha \in A}$, and then x could not be a member of Ω_{2}.) Consequently, we can for $n=1,2, \ldots$ pick $y_{n} \in B_{1 / n}(x) \cap Y$. Then $y_{n} \rightarrow x$, and so $x \in \Omega_{1}$.
(c) This is not true. Consider the example $X=\mathbb{Q}$ with the usual metric, and $Y=\{q \in \mathbb{Q}: 0 \leq q \leq 1\}$. Then $\tilde{Y}=\{r \in \mathbb{R}: 0 \leq r \leq 1$ and \tilde{d} is the usual metric on \mathbb{R}. Moreover, $\Omega_{2}=Y$. The sets (\tilde{Y}, \tilde{d}) and $\left(\Omega_{2}, d\right)$ cannot be isometrically isomorphic since \tilde{Y} is uncountable and Ω_{2} is countable.

Note that if (X, d) is complete, then $\left(\Omega_{2}, d\right)$ is a completion of (Y, d), and since all completions are isometrically isomorphic, (\tilde{Y}, \tilde{d}) and $\left(\Omega_{2}, d\right)$ are isometrically isomorphic.

Here is an alternative proof for (a) and (b):
Pick an $x \in X$. Set $\varepsilon=\inf \{d(x, y): y \in Y\}$. We will prove that if $\varepsilon>0$, then x belongs to neither Ω_{1} nor Ω_{2}; and if $\varepsilon=0$, then x belongs to both Ω_{1} and Ω_{2}. This proves that $\Omega_{1}=\Omega_{2}$.

Case $1, \varepsilon>0$: No sequence in Y can converge to x, so $x \notin \Omega_{1}$. Moreover, $B_{\varepsilon}(x)^{\mathrm{c}}$ is a closed set that contains Y. Hence $x \notin \Omega_{2}$.

Case 2, $\varepsilon=0$: In this case $B_{\varepsilon}(x) \cap Y$ is non-empty for every ε. By picking $y_{n} \in$ $B_{1 / n}(x) \cap Y$, we construct a sequence in Y such that $y_{n} \rightarrow x$. So $x \in \Omega_{1}$. This argument also shows that x belongs to any closed set F_{α} that contains Y, and consequently $x \in \Omega_{2}$.

[^0]: ${ }^{1}$ Note that

 $$
 B_{1 / 2}(x)= \begin{cases}{[0, x+1 / 2)} & \text { if } x<1 / 2 \\ (0,1) & \text { if } x=1 / 2 \\ (x-1 / 2,1] & \text { if } x>1 / 2\end{cases}
 $$

 In fact, Ω is both open and closed.
 ${ }^{2}$ The sequence

 $$
 x_{n}=(0,1 / 2, \quad 0,1 / 4,2 / 4,3 / 4, \quad 0,1 / 8,2 / 8,3 / 8,4 / 8,5 / 8,6 / 8,7 / 8, \quad 0,1 / 16, \ldots)
 $$

 works as well.

[^1]: ${ }^{3}$ To see that $\{x\}$ is open, simply note that $B_{1 / 2}(x)=\{x\} \subseteq\{x\}$.

