
Applied Analysis (APPM 5440): Midterm 1
5.30pm – 6.45pm, Sep. 25, 2006. Closed books.

Problem 1: No motivation required for (a) and (c). Only brief motivations required
for (b) and (d). 2 points each:

(a) Define what it means for a metric space (X, d) to be complete.

(b) Set X = [0, 1] ∪ [2, 3], and Ω = [0, 1]. Is Ω open in the metric space (X, | · |)?

(c) For n ∈ N, set xn = e−1/n
(

1 + (−1)n
)

− 1/n. Give numerical values for the
quantities that exist among: lim

n→∞
xn, lim sup

n→∞

xn, and lim inf
n→∞

xn.

(d) Construct a sequence (xn)∞n=1 such that 0 ≤ xn ≤ 1 for every n, and such that
for any α ∈ [0, 1], there exists a subsequence (xnj )

∞
j=1 such that xnj → α as j → ∞.

(a) A metric space is complete if every Cauchy sequence in the space has a limit
point in the space.

(b) Ω is open. To prove this, pick x ∈ Ω, then B1/2(x) ⊆ Ω.1

(c) lim supxn = 2 and lim inf xn = 0. limxn does not exist (since the limsup and
the liminf are different).

(d) The set of all rational numbers in [0, 1] is a countable set. Let (xn)∞n=1 denote
an enumeration. This sequence satisfies the requirements.2

1Note that

B1/2(x) =

8

<

:

[0, x + 1/2) if x < 1/2
(0, 1) if x = 1/2
(x − 1/2, 1] if x > 1/2.

In fact, Ω is both open and closed.
2The sequence

xn = (0, 1/2, 0, 1/4, 2/4, 3/4, 0, 1/8, 2/8, 3/8, 4/8, 5/8, 6/8, 7/8, 0, 1/16, . . . )

works as well.



Problem 2: Define a norm on Rd by setting, for x = (x1, x2, . . . , xd) ∈ Rd,

||x|| =
∑

1≤j≤d

|xj |.

Using the fact that (R, | · |) is complete, prove that (Rd, || · ||) is complete. (3p)

Let (x(n))∞n=1 denote a Cauchy sequence in Rd. We will prove that (x(n)) has a limit
point in Rd.

First we construct the limit point x. For j = 1, 2, . . . , d, we have

(1) |x
(n)
j − x

(m)
j | ≤

d
∑

j=1

|x
(n)
j − x

(m)
j | = ||x(n) − x(m)||.

Since (x(n)) is a Cauchy sequence, it follows from (1) that (x
(n)
j )∞n=1 is a Cauchy

sequence in R. Since R is complete, each such sequence has a limit point, name this
point xj . In other words,

(2) xj = lim
n→∞

x
(n)
j .

Set x = (x1, x2, . . . , xd). Clearly x ∈ Rd.

Next we prove that the Cauchy sequence (x(n)) converges to x. Fix an ε > 0. For
each j ∈ {1, 2, . . . , d}, equation (2) assures us that there exists an Nj such that

(3) n ≥ Nj ⇒ |x
(n)
j − xj | < ε/d.

Set N = max{N1, N2, . . . , Nd}. Then, if n ≥ N , it follows from (3) that

||x(n) − x|| =
d

∑

j=1

|x
(n)
j − xj | <

d
∑

j=1

ε/d = ε.



Problem 3: Let (X, dX), (Y, dY ), and (Z, dZ) denote metric spaces, and let f : X →
Y , and g : Y → Z denote continuous functions. Prove that the function h : X → Z
that is defined by h(x) = g(f(x)) is continuous. (3p)

Let G denote an open set in Z. We will prove that h is continuous by proving that
h−1(G) is necessarily open in X.

Since g is continuous, and G is open in Z, g−1(G) is open in Y .

Since f is continuous, and g−1(G) is open in Y , f−1(g−1(G)) is open in X.

Finally note that h−1(G) = f−1(g−1(G)).



Problem 4: Let X denote the set of real numbers, and equip X with the discrete
metric dX (so that dX(x, y) = 0 if x = y, and dX(x, y) = 1 otherwise). Let (Y, dY )
denote another metric space. For each statement below, either prove that it is
necessarily true, or give a counter-example. (2p each.)

(a) Let f be a function from (X, dX) to (Y, dY ). Then f is necessarily continuous.

(b) Let g be a function from (Y, dY ) to (X, dX). Then g is necessarily continuous.

(a) Yes, f is necessarily continuous. To prove this, we fix an x ∈ X and a number
ε > 0. We will prove that there exists a δ > 0 such that

dX(x, y) < δ ⇒ dY (f(x), f(y)) < ε.

Pick δ = 1/2. Then if dX(x, y) < 1/2, we must have x = y, and then of course
dY (f(x), f(y)) = 0 < ε.

(b) No, f need not be continuous. As an example, set Y = R with the usual metric,
and consider g(x) = x. Now if x ∈ X, then the set {x} is open in (X, dX)3, but
g−1({x}) = {x} which is not open in (Y, dY ).

3To see that {x} is open, simply note that B1/2(x) = {x} ⊆ {x}.



Problem 5: Let (X, d) denote a metric space, and let Y denote a subset of X.
Consider the following three sets, and three statements:

Ω1 is the set of all x ∈ X for which there exists (yn)∞n=1 ⊆ Y such that yn → x.

Ω2 =
⋂

α∈A

Fα where {Fα}α∈A is the set of all closed sets in (X, d) that contain Y .

(Ỹ , d̃) is the completion of the metric space (Y, d).

(a) Ω1 ⊆ Ω2

(b) Ω2 ⊆ Ω1

(c) The two metric spaces (Ω2, d) and (Ỹ , d̃) are isometrically isomorphic.

For each statement, either prove that it is necessarily true, or give a counter-example
(if you give a counter-example, you do not need to justify it in detail). You may not
use any theorems given in class that relate to the concept of “closure”. (2p each.)

(a) Assume that x ∈ Ω1. Then there exist points (yn)∞n=1 ⊆ Y such that yn → x.
But then if Fα is a closed set that contains Y , it follows that x ∈ Fα since (yn) ⊆ Fα,
and Fα contains all its limit points. Consequently, x ∈ Ω2.

(b) Assume that x ∈ Ω2. First we note that for every ε > 0, the set Bε(x) ∩ Y is
non-empty. (If there existed an ε > 0 such that Bε(x)∩ Y were empty, then Bε(x)c

would be a closed set in the collection (Fα)α∈A, and then x could not be a member
of Ω2.) Consequently, we can for n = 1, 2, . . . pick yn ∈ B1/n(x)∩ Y . Then yn → x,
and so x ∈ Ω1.

(c) This is not true. Consider the example X = Q with the usual metric, and

Y = {q ∈ Q : 0 ≤ q ≤ 1}. Then Ỹ = {r ∈ R : 0 ≤ r ≤ 1 and d̃ is the usual

metric on R. Moreover, Ω2 = Y . The sets (Ỹ , d̃) and (Ω2, d) cannot be isometrically

isomorphic since Ỹ is uncountable and Ω2 is countable.

Note that if (X, d) is complete, then (Ω2, d) is a completion of (Y, d), and since

all completions are isometrically isomorphic, (Ỹ , d̃) and (Ω2, d) are isometrically
isomorphic.

Here is an alternative proof for (a) and (b):

Pick an x ∈ X. Set ε = inf{d(x, y) : y ∈ Y }. We will prove that if ε > 0, then x
belongs to neither Ω1 nor Ω2; and if ε = 0, then x belongs to both Ω1 and Ω2. This
proves that Ω1 = Ω2.

Case 1, ε > 0: No sequence in Y can converge to x, so x /∈ Ω1. Moreover, Bε(x)c is
a closed set that contains Y . Hence x /∈ Ω2.

Case 2, ε = 0: In this case Bε(x) ∩ Y is non-empty for every ε. By picking yn ∈
B1/n(x) ∩ Y , we construct a sequence in Y such that yn → x. So x ∈ Ω1. This
argument also shows that x belongs to any closed set Fα that contains Y , and
consequently x ∈ Ω2.


