Applied Analysis (APPM 5440): Midterm 1

5.30 pm - 6.45 pm, Sep. 25, 2006. Closed books.

Problem 1: No motivation required for (a) and (c). Only brief motivations required for (b) and (d). 2 points each:

(a) Define what it means for a metric space (X, d) to be complete.

(b) Set $X = [0, 1] \cup [2, 3]$, and $\Omega = [0, 1]$. Is Ω open in the metric space $(X, |\cdot|)$?

(c) For $n \in \mathbb{N}$, set $x_n = e^{-1/n} (1 + (-1)^n) - 1/n$. Give numerical values for the quantities that exist among: $\lim_{n \to \infty} x_n$, $\limsup_{n \to \infty} x_n$, and $\liminf_{n \to \infty} x_n$.

(d) Construct a sequence $(x_n)_{n=1}^{\infty}$ such that $0 \leq x_n \leq 1$ for every n, and such that for any $\alpha \in [0,1]$, there exists a subsequence $(x_{n_j})_{j=1}^{\infty}$ such that $x_{n_j} \to \alpha$ as $j \to \infty$.

(a) A metric space is complete if every Cauchy sequence in the space has a limit point in the space.

(b) Ω is open. To prove this, pick $x \in \Omega$, then $B_{1/2}(x) \subseteq \Omega$.¹

(c) $\limsup x_n = 2$ and $\liminf x_n = 0$. $\lim x_n$ does not exist (since the limsup and the limit are different).

(d) The set of all rational numbers in [0,1] is a countable set. Let $(x_n)_{n=1}^{\infty}$ denote an enumeration. This sequence satisfies the requirements.²

¹Note that

$$B_{1/2}(x) = \begin{cases} [0, x + 1/2) & \text{if } x < 1/2\\ (0, 1) & \text{if } x = 1/2\\ (x - 1/2, 1] & \text{if } x > 1/2. \end{cases}$$

In fact, Ω is both open and closed.

 2 The sequence

$$x_n = (0, 1/2, 0, 1/4, 2/4, 3/4, 0, 1/8, 2/8, 3/8, 4/8, 5/8, 6/8, 7/8, 0, 1/16, \dots)$$
 works as well.

Problem 2: Define a norm on \mathbb{R}^d by setting, for $x = (x_1, x_2, \ldots, x_d) \in \mathbb{R}^d$,

$$||x|| = \sum_{1 \le j \le d} |x_j|$$

Using the fact that $(\mathbb{R}, |\cdot|)$ is complete, prove that $(\mathbb{R}^d, ||\cdot||)$ is complete. (3p)

Let $(x^{(n)})_{n=1}^{\infty}$ denote a Cauchy sequence in \mathbb{R}^d . We will prove that $(x^{(n)})$ has a limit point in \mathbb{R}^d .

First we construct the limit point x. For j = 1, 2, ..., d, we have

(1)
$$|x_j^{(n)} - x_j^{(m)}| \le \sum_{j=1}^d |x_j^{(n)} - x_j^{(m)}| = ||x^{(n)} - x^{(m)}||.$$

Since $(x^{(n)})$ is a Cauchy sequence, it follows from (1) that $(x_j^{(n)})_{n=1}^{\infty}$ is a Cauchy sequence in \mathbb{R} . Since \mathbb{R} is complete, each such sequence has a limit point, name this point x_j . In other words,

(2)
$$x_j = \lim_{n \to \infty} x_j^{(n)}.$$

Set $x = (x_1, x_2, \dots, x_d)$. Clearly $x \in \mathbb{R}^d$.

Next we prove that the Cauchy sequence $(x^{(n)})$ converges to x. Fix an $\varepsilon > 0$. For each $j \in \{1, 2, \ldots, d\}$, equation (2) assures us that there exists an N_j such that

(3)
$$n \ge N_j \Rightarrow |x_j^{(n)} - x_j| < \varepsilon/d.$$

Set $N = \max\{N_1, N_2, \dots, N_d\}$. Then, if $n \ge N$, it follows from (3) that

$$||x^{(n)} - x|| = \sum_{j=1}^{d} |x_j^{(n)} - x_j| < \sum_{j=1}^{d} \varepsilon/d = \varepsilon.$$

Problem 3: Let (X, d_X) , (Y, d_Y) , and (Z, d_Z) denote metric spaces, and let $f : X \to Y$, and $g : Y \to Z$ denote continuous functions. Prove that the function $h : X \to Z$ that is defined by h(x) = g(f(x)) is continuous. (3p)

Let G denote an open set in Z. We will prove that h is continuous by proving that $h^{-1}(G)$ is necessarily open in X.

Since g is continuous, and G is open in Z, $g^{-1}(G)$ is open in Y.

Since f is continuous, and $g^{-1}(G)$ is open in Y, $f^{-1}(g^{-1}(G))$ is open in X. Finally note that $h^{-1}(G) = f^{-1}(g^{-1}(G))$. **Problem 4:** Let X denote the set of real numbers, and equip X with the discrete metric d_X (so that $d_X(x, y) = 0$ if x = y, and $d_X(x, y) = 1$ otherwise). Let (Y, d_Y) denote another metric space. For each statement below, either prove that it is necessarily true, or give a counter-example. (2p each.)

(a) Let f be a function from (X, d_X) to (Y, d_Y) . Then f is necessarily continuous.

(b) Let g be a function from (Y, d_Y) to (X, d_X) . Then g is necessarily continuous.

(a) Yes, f is necessarily continuous. To prove this, we fix an $x \in X$ and a number $\varepsilon > 0$. We will prove that there exists a $\delta > 0$ such that

 $d_X(x,y) < \delta \implies d_Y(f(x),f(y)) < \varepsilon.$

Pick $\delta = 1/2$. Then if $d_X(x, y) < 1/2$, we must have x = y, and then of course $d_Y(f(x), f(y)) = 0 < \varepsilon$.

(b) No, f need not be continuous. As an example, set $Y = \mathbb{R}$ with the usual metric, and consider g(x) = x. Now if $x \in X$, then the set $\{x\}$ is open in $(X, d_X)^3$, but $g^{-1}(\{x\}) = \{x\}$ which is not open in (Y, d_Y) .

Problem 5: Let (X, d) denote a metric space, and let Y denote a subset of X. Consider the following three sets, and three statements:

 Ω_1 is the set of all $x \in X$ for which there exists $(y_n)_{n=1}^{\infty} \subseteq Y$ such that $y_n \to x$.

 $\Omega_2 = \bigcap_{\alpha \in A} F_\alpha \text{ where } \{F_\alpha\}_{\alpha \in A} \text{ is the set of all closed sets in } (X, d) \text{ that contain } Y.$

 (\tilde{Y}, \tilde{d}) is the completion of the metric space (Y, d).

(a) $\Omega_1 \subseteq \Omega_2$

(b) $\Omega_2 \subseteq \Omega_1$

(c) The two metric spaces (Ω_2, d) and (\tilde{Y}, \tilde{d}) are isometrically isomorphic.

For each statement, either prove that it is necessarily true, or give a counter-example (if you give a counter-example, you do not need to justify it in detail). You may not use any theorems given in class that relate to the concept of "closure". (2p each.)

(a) Assume that $x \in \Omega_1$. Then there exist points $(y_n)_{n=1}^{\infty} \subseteq Y$ such that $y_n \to x$. But then if F_{α} is a closed set that contains Y, it follows that $x \in F_{\alpha}$ since $(y_n) \subseteq F_{\alpha}$, and F_{α} contains all its limit points. Consequently, $x \in \Omega_2$.

(b) Assume that $x \in \Omega_2$. First we note that for every $\varepsilon > 0$, the set $B_{\varepsilon}(x) \cap Y$ is non-empty. (If there existed an $\varepsilon > 0$ such that $B_{\varepsilon}(x) \cap Y$ were empty, then $B_{\varepsilon}(x)^{c}$ would be a closed set in the collection $(F_{\alpha})_{\alpha \in A}$, and then x could not be a member of Ω_2 .) Consequently, we can for $n = 1, 2, \ldots$ pick $y_n \in B_{1/n}(x) \cap Y$. Then $y_n \to x$, and so $x \in \Omega_1$.

(c) This is not true. Consider the example $X = \mathbb{Q}$ with the usual metric, and $Y = \{q \in \mathbb{Q} : 0 \le q \le 1\}$. Then $\tilde{Y} = \{r \in \mathbb{R} : 0 \le r \le 1 \text{ and } \tilde{d} \text{ is the usual metric on } \mathbb{R}$. Moreover, $\Omega_2 = Y$. The sets (\tilde{Y}, \tilde{d}) and (Ω_2, d) cannot be isometrically isomorphic since \tilde{Y} is uncountable and Ω_2 is countable.

Note that if (X, d) is complete, then (Ω_2, d) is a completion of (Y, d), and since all completions are isometrically isomorphic, (\tilde{Y}, \tilde{d}) and (Ω_2, d) are isometrically isomorphic.

Here is an alternative proof for (a) and (b):

Pick an $x \in X$. Set $\varepsilon = \inf\{d(x, y) : y \in Y\}$. We will prove that if $\varepsilon > 0$, then x belongs to neither Ω_1 nor Ω_2 ; and if $\varepsilon = 0$, then x belongs to both Ω_1 and Ω_2 . This proves that $\Omega_1 = \Omega_2$.

Case 1, $\varepsilon > 0$: No sequence in Y can converge to x, so $x \notin \Omega_1$. Moreover, $B_{\varepsilon}(x)^c$ is a closed set that contains Y. Hence $x \notin \Omega_2$.

Case 2, $\varepsilon = 0$: In this case $B_{\varepsilon}(x) \cap Y$ is non-empty for every ε . By picking $y_n \in B_{1/n}(x) \cap Y$, we construct a sequence in Y such that $y_n \to x$. So $x \in \Omega_1$. This argument also shows that x belongs to any closed set F_{α} that contains Y, and consequently $x \in \Omega_2$.