Applied Analysis (APPM 5440): Midterm 3

5.30pm – 6.50pm, Dec. 4, 2006. Closed books.

Problem 1: No motivation required. 2p each:

(a) Let (X, \mathcal{T}) denote a topological space. Specify the axioms that \mathcal{T} must satisfy.

(b) Let (X, \mathcal{T}) denote a topological space. Define what it means for \mathcal{T} to be Hausdorff.

(c) Let (X, \mathcal{T}) denote a topological space, let $(x_n)_{n=1}^{\infty}$ denote a sequence in X, and let x denote an element of X. Define what it means for x_n to converge to x. (\mathcal{T} is not necessarily metrizable.)

Problem 2: Consider the set $X = \{a, b, c\}$, and the collection of subsets $\mathcal{T} = \{\emptyset, \{a\}, \{b, c\}, \{a, b, c\}\}$. Is \mathcal{T} a metrizable topology? List the compact subsets of X. Give an example of a function $f : X \to \mathbb{R}$ that is continuous, and one example of a function $g : X \to \mathbb{R}$ that is not. Justify your answers briefly. (6p)

Problem 3: Let X denote the set of all continuous functions on the interval $I = [-\pi, \pi]$. Equip X with the norm

$$||f|| = \int_{-\pi}^{\pi} |f(y)| \, dy.$$

Consider the operator $T \in \mathcal{B}(X)$ that is defined by

$$[Tf](x) = \int_0^\pi \sin(x) \, y^2 \, f(y) \, dy.$$

Calculate the norm of T in $\mathcal{B}(X)$. (4p total: 2p for the correct answer α , and 1p each for the proofs that $\alpha \leq ||T||$ and that $\alpha \geq ||T||$.)

Problem 4: Let X be a Banach space with a compact subset K. Suppose that $(x_n)_{n=1}^{\infty}$ is a sequence of elements in K that converges weakly to some element $x \in K$. Is it necessarily the case that the sequence also converges in norm to x? Either prove that this is the case, or give a counter-example. (4p)

Problem 5: Consider the Banach space $X = l^2(\mathbb{N})$, and the operator $T \in \mathcal{B}(X)$ defined by

 $Tx = (\frac{1}{1}x_1, \frac{1}{2}x_2, \frac{1}{3}x_3, \dots).$

Prove that ran(T) is not topologically closed. (4p)