Applied Analysis (APPM 5440): Midterm 3 - Solutions

$5.30 \mathrm{pm}-6.50 \mathrm{pm}$, Dec. 4, 2006. Closed books.
Problem 1: No motivation required. 2 p each:
(a) Let (X, \mathcal{T}) denote a topological space. Specify the axioms that \mathcal{T} must satisfy.
(b) Let (X, \mathcal{T}) denote a topological space. Define what it means for \mathcal{T} to be Hausdorff.
(c) Let (X, \mathcal{T}) denote a topological space, let $\left(x_{n}\right)_{n=1}^{\infty}$ denote a sequence in X, and let x denote an element of X. Define what it means for x_{n} to converge to x. (\mathcal{T} is not necessarily metrizable.)

Solution: Check textbook.

Problem 2: Consider the set $X=\{a, b, c\}$, and the collection of subsets $\mathcal{T}=$ $\{\emptyset,\{a\},\{b, c\},\{a, b, c\}\}$. Is \mathcal{T} a metrizable topology? List the compact subsets of X. Give an example of a function $f: X \rightarrow \mathbb{R}$ that is continuous, and one example of a function $g: X \rightarrow \mathbb{R}$ that is not. Justify your answers briefly. (6p)

Solution: \mathcal{T} is a topology, but it is not metrizable. To prove this, we assume that there exists a metric d that generates \mathcal{T}. Set $\varepsilon=\min (d(b, a), d(b, c))$. Then $\{b\}=B_{\varepsilon / 2}(b)$ so $\{b\}$ should be an open set. However, $\{b\} \notin \mathcal{T}$.

Every subset of X is compact (since \mathcal{T} is finite, every open cover of any subset is itself finite). Thus the compact sets are

$$
\emptyset,\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\},\{a, b, c\} .
$$

The function f defined by $f(x)=1$ for $x=a, b, c$ is continuous. To prove this, let G be an open subset of \mathbb{R}. If $1 \in G$, then $f^{-1}(G)=X$ which is an open set. If $1 \notin G$, then $f^{-1}(G)=\emptyset$ which is also open.

The function g defined by

$$
g(a)=0, \quad g(b)=0, \quad g(c)=1
$$

is not continuous. To prove this, consider the open set $G=(1 / 2,3 / 2)$ in \mathbb{R}. Then $g^{-1}(G)=\{c\}$ which is not an open set in \mathcal{T}.

Problem 3: Let X denote the set of all continuous functions on the interval $I=$ $[-\pi, \pi]$. Equip X with the norm

$$
\|f\|=\int_{-\pi}^{\pi}|f(y)| d y
$$

Consider the operator $T \in \mathcal{B}(X)$ that is defined by

$$
[T f](x)=\int_{0}^{\pi} \sin (x) y^{2} f(y) d y
$$

Calculate the norm of T in $\mathcal{B}(X)$. (4p total: 2p for the correct answer α, and 1 p each for the proofs that $\alpha \leq\|T\|$ and that $\alpha \geq\|T\|$.)

Solution: We have

$$
\begin{array}{r}
\|T f\|=\int_{-\pi}^{\pi}\left|\int_{0}^{\pi} \sin (x) y^{2} f(y) d y\right| d x=\int_{-\pi}^{\pi}|\sin (x)| d x\left|\int_{0}^{\pi} y^{2} f(y) d y\right| \\
=4\left|\int_{0}^{\pi} y^{2} f(y) d y\right| \leq 4\left(\sup _{y \in I} y^{2}\right) \int_{0}^{\pi}|f(y)| d y \leq 4 \pi^{2}\|f\|
\end{array}
$$

It follows that $\|T\| \leq 4 \pi^{2}$.
To prove that $\|T\| \geq 4 \pi^{2}$, pick ${ }^{1}$ non-negative functions $f_{n} \in X$ such that $\left\|f_{n}\right\|=1$ and $\operatorname{supp}(f) \subseteq[\pi-1 / n, \pi]$. Then

$$
\begin{aligned}
\|T\|= & \sup _{\|f\|=1}\|T f\| \geq \sup _{n}\left\|T f_{n}\right\|=\sup _{n} \int_{-\pi}^{\pi}|\sin (x)| d x \int_{0}^{\pi} y^{2} f_{n}(y) d y \\
= & \sup _{n} 4 \int_{\pi-1 / n}^{\pi} y^{2} f_{n}(y) d y \geq \sup _{n} 4\left(\inf _{y \in[\pi-1 / n, \pi]} y^{2}\right) \int_{\pi-1 / n}^{\pi} f_{n}(y) d y \\
& =\sup _{n} 4(\pi-1 / n)^{2}=4 \pi^{2} .
\end{aligned}
$$

[^0]Problem 4: Let X be a Banach space with a compact subset K. Suppose that $\left(x_{n}\right)_{n=1}^{\infty}$ is a sequence of elements in K that converges weakly to some element $x \in K$. Is it necessarily the case that the sequence also converges in norm to x ? Either prove that this is the case, or give a counter-example. (4p)

Solution: The answer is yes. Suppose that the sequence $\left(x_{n}\right)_{n=1}^{\infty}$ satisfies the assumptions of the problem, but does not converge in norm to x. Then there exists an $\varepsilon>0$, and a subsequence $\left(x_{n_{j}}\right)_{j=1}^{\infty}$ such that

$$
\begin{equation*}
\left\|x-x_{n_{j}}\right\| \geq \varepsilon, \quad \text { for } j=1,2,3, \ldots \tag{1}
\end{equation*}
$$

However, since $\left(x_{n_{j}}\right)$ is a sequence in a compact set, it has a subsequence $\left(x_{n_{j_{k}}}\right)_{k=1}^{\infty}$ that converges in norm. Since $x_{n_{j_{k}}} \rightharpoonup x$, this element must be x, which is impossible in view of (1).

Problem 5: Consider the Banach space $X=l^{2}(\mathbb{N})$, and the operator $T \in \mathcal{B}(X)$ defined by

$$
T x=\left(\frac{1}{1} x_{1}, \frac{1}{2} x_{2}, \frac{1}{3} x_{3}, \ldots\right) .
$$

Prove that $\operatorname{ran}(T)$ is not topologically closed. (4p)

Solution: We know that a one-to-one operator has closed range if and only if it is coercive. We will prove that T is one-to-one, but not coercive.

To see that T is one-to-one, simply note that if $T x=0$, then clearly x must be zero.
Next we prove that T is not coercive. Let $e^{(n)}$ denote the canonical basis vectors,

$$
\begin{aligned}
& e^{(1)}=(1,0,0,0, \ldots), \\
& e^{(2)}=(0,1,0,0, \ldots), \\
& e^{(3)}=(0,0,1,0, \ldots),
\end{aligned}
$$

We have

$$
\left\|T e^{(n)}\right\|=\left\|\frac{1}{n} e^{(n)}\right\|=\frac{1}{n}\left\|e^{(n)}\right\|
$$

so there can exist no $c>0$ such that $\|T x\| \geq c\|x\|$ for all x.

Alternative solution: We will prove that the element

$$
y=\left(\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \ldots\right) \in X
$$

belongs to $\overline{\operatorname{ran}(T)}$, but not to $\operatorname{ran}(T)$. This proves that $\operatorname{ran}(T)$ is not closed.
To prove that $y \in \overline{\operatorname{ran}(T)}$, consider the elements $x^{(n)} \in X$ defined by

$$
\begin{aligned}
x^{(1)} & =(1,0,0,0, \ldots), \\
x^{(2)} & =(1,1,0,0, \ldots), \\
x^{(3)} & =(1,1,1,0, \ldots),
\end{aligned}
$$

Set $y^{(n)}=T x^{(n)}$ so that $y^{(n)} \in \operatorname{ran}(T)$. Since $y^{(n)} \rightarrow y$, it follows that $y \in \overline{\operatorname{ran}(T)}$.
To prove that $y \notin \operatorname{ran}(T)$, note that if $T x=y$, then $x=(1,1,1, \ldots)$ which is not an element of X.

[^0]: ${ }^{1}$ In your solutions, drawing a picture of such a sequence is fine. An explicit formula is not required, but if you insist on one, consider

 $$
 f_{n}(x)= \begin{cases}0 & x \in[-\pi, \pi-1 / n], \\ 2 n^{2}(x-(\pi-1 / n)) & x \in(\pi-1 / n, \pi] .\end{cases}
 $$

