
Applied Analysis (APPM 5440): Midterm 3 – Solutions
5.30pm – 6.50pm, Dec. 4, 2006. Closed books.

Problem 1: No motivation required. 2p each:

(a) Let (X, T ) denote a topological space. Specify the axioms that T must satisfy.

(b) Let (X, T ) denote a topological space. Define what it means for T to be Haus-
dorff.

(c) Let (X, T ) denote a topological space, let (xn)∞n=1 denote a sequence in X, and
let x denote an element of X. Define what it means for xn to converge to x. (T is
not necessarily metrizable.)

Solution: Check textbook.



Problem 2: Consider the set X = {a, b, c}, and the collection of subsets T =
{∅, {a}, {b, c}, {a, b, c}}. Is T a metrizable topology? List the compact subsets of
X. Give an example of a function f : X → R that is continuous, and one example
of a function g : X → R that is not. Justify your answers briefly. (6p)

Solution: T is a topology, but it is not metrizable. To prove this, we assume
that there exists a metric d that generates T . Set ε = min(d(b, a), d(b, c)). Then
{b} = Bε/2(b) so {b} should be an open set. However, {b} /∈ T .

Every subset of X is compact (since T is finite, every open cover of any subset is
itself finite). Thus the compact sets are

∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}.

The function f defined by f(x) = 1 for x = a, b, c is continuous. To prove this, let G
be an open subset of R. If 1 ∈ G, then f−1(G) = X which is an open set. If 1 /∈ G,
then f−1(G) = ∅ which is also open.

The function g defined by

g(a) = 0, g(b) = 0, g(c) = 1

is not continuous. To prove this, consider the open set G = (1/2, 3/2) in R. Then
g−1(G) = {c} which is not an open set in T .



Problem 3: Let X denote the set of all continuous functions on the interval I =
[−π, π]. Equip X with the norm

||f || =
∫ π

−π
|f(y)| dy.

Consider the operator T ∈ B(X) that is defined by

[Tf ](x) =
∫ π

0
sin(x) y2 f(y) dy.

Calculate the norm of T in B(X). (4p total: 2p for the correct answer α, and 1p
each for the proofs that α ≤ ||T || and that α ≥ ||T ||.)

Solution: We have

||Tf || =
∫ π

−π

∣∣∣∣
∫ π

0
sin(x) y2 f(y) dy

∣∣∣∣ dx =
∫ π

−π
| sin(x)| dx

∣∣∣∣
∫ π

0
y2 f(y) dy

∣∣∣∣

= 4
∣∣∣∣
∫ π

0
y2 f(y) dy

∣∣∣∣ ≤ 4

(
sup
y∈I

y2

) ∫ π

0
|f(y)| dy ≤ 4π2 ||f ||.

It follows that ||T || ≤ 4π2.

To prove that ||T || ≥ 4π2, pick1 non-negative functions fn ∈ X such that ||fn|| = 1
and supp(f) ⊆ [π − 1/n, π]. Then

||T || = sup
||f ||=1

||Tf || ≥ sup
n
||Tfn|| = sup

n

∫ π

−π
| sin(x)| dx

∫ π

0
y2 fn(y) dy

= sup
n

4
∫ π

π−1/n
y2 fn(y) dy ≥ sup

n
4

(
inf

y∈[π−1/n,π]
y2

) ∫ π

π−1/n
fn(y) dy

= sup
n

4 (π − 1/n)2 = 4 π2.

1In your solutions, drawing a picture of such a sequence is fine. An explicit formula is not
required, but if you insist on one, consider

fn(x) =

�
0 x ∈ [−π, π − 1/n],
2 n2 (x− (π − 1/n)) x ∈ (π − 1/n, π].



Problem 4: Let X be a Banach space with a compact subset K. Suppose that
(xn)∞n=1 is a sequence of elements in K that converges weakly to some element x ∈ K.
Is it necessarily the case that the sequence also converges in norm to x? Either prove
that this is the case, or give a counter-example. (4p)

Solution: The answer is yes. Suppose that the sequence (xn)∞n=1 satisfies the as-
sumptions of the problem, but does not converge in norm to x. Then there exists
an ε > 0, and a subsequence (xnj )

∞
j=1 such that

(1) ||x− xnj || ≥ ε, for j = 1, 2, 3, . . .

However, since (xnj ) is a sequence in a compact set, it has a subsequence (xnjk
)∞k=1

that converges in norm. Since xnjk
⇀ x, this element must be x, which is impossible

in view of (1).



Problem 5: Consider the Banach space X = l2(N), and the operator T ∈ B(X)
defined by

Tx = (1
1 x1,

1
2 x2,

1
3 x3, . . . ).

Prove that ran(T ) is not topologically closed. (4p)

Solution: We know that a one-to-one operator has closed range if and only if it is
coercive. We will prove that T is one-to-one, but not coercive.

To see that T is one-to-one, simply note that if Tx = 0, then clearly x must be zero.

Next we prove that T is not coercive. Let e(n) denote the canonical basis vectors,

e(1) = (1, 0, 0, 0, . . . ),

e(2) = (0, 1, 0, 0, . . . ),

e(3) = (0, 0, 1, 0, . . . ),
...

We have
||T e(n)|| = || 1

n
e(n)|| = 1

n
||e(n)||

so there can exist no c > 0 such that ||Tx|| ≥ c||x|| for all x.

Alternative solution: We will prove that the element

y = (1
1 , 1

2 , 1
3 , . . . ) ∈ X

belongs to ran(T ), but not to ran(T ). This proves that ran(T ) is not closed.

To prove that y ∈ ran(T ), consider the elements x(n) ∈ X defined by

x(1) = (1, 0, 0, 0, . . . ),

x(2) = (1, 1, 0, 0, . . . ),

x(3) = (1, 1, 1, 0, . . . ),
...

Set y(n) = Tx(n) so that y(n) ∈ ran(T ). Since y(n) → y, it follows that y ∈ ran(T ).

To prove that y /∈ ran(T ), note that if Tx = y, then x = (1, 1, 1, . . . ) which is not
an element of X.


