Problem 1.8: Let $\left(x_{n}\right)$ be a sequence in \mathbb{R}, let C denote the set of cluster points of $\left(x_{n}\right)$. Set $M=\sup C, y_{k}=\sup \left\{x_{n}: n \geq k\right\}$ and recall that

$$
\limsup _{n \rightarrow \infty} x_{n} \lim _{k \rightarrow \infty} y_{k} .
$$

Show that C is closed: We will prove that C is complete. (Since \mathbb{R} is complete, C is closed iff it is complete.) Let $\left(c_{j}\right)$ be a Cauchy sequence in C, and set $c=\lim c_{n}$. We need to prove that $c \in C$. Set $n_{0}=0$. Then for $n=1,2,3, \ldots$, pick an n_{j} such that $n_{j-1}<n_{j}$ and $\left|c_{j}-x_{n_{j}}\right|<1 / j$ (this is possible since each c_{j} is the limit of a subsequence of $\left.\left(x_{n}\right)\right)$. Then

$$
\limsup _{j \rightarrow \infty}\left|c-x_{n_{j}}\right| \leq \limsup _{j \rightarrow \infty}\left(\left|c-c_{j}\right|+\left|c_{j}-x_{n_{j}}\right|\right) \leq \limsup _{j \rightarrow \infty}\left(\left|c-c_{j}\right|+1 / j\right)=0 .
$$

So $x_{n_{j}} \rightarrow c$, and therefor $c \in C$.

Show that $\lim \sup x_{n} \geq \max C:$ Since $M \in C$, we know there exists a sequence $\left(x_{n_{j}}\right)$ such that $x_{n_{j}} \rightarrow M$. Then for any k, we have

$$
y_{k}=\sup \left\{x_{n}: n \geq k\right\} \geq \sup \left\{x_{n_{j}}: n_{j} \geq k\right\} \geq M
$$

Now take the limsup as $k \rightarrow \infty$ to get the desired inequality.

Show that $\lim \sup x_{n} \leq \max C$: Pick any $\varepsilon>0$. We know that for some k, we have

$$
y_{k} \leq M+\varepsilon
$$

(since if this were not true, then $\left(x_{n}\right)$ would have at least one cluster point larger than M). Take the limsup as $k \rightarrow \infty$ to show that $\lim \sup x_{n} \leq M+\varepsilon$. Since ε is arbitrary, we are done.

Problem 1.10: Prove that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \inf _{\alpha} x_{n, \alpha} \leq \inf _{\alpha} \limsup _{n \rightarrow \infty} x_{n, \alpha} \tag{1}
\end{equation*}
$$

and that

$$
\begin{equation*}
\sup _{\alpha} \liminf _{n \rightarrow \infty} x_{n, \alpha} \leq \liminf _{n \rightarrow \infty} \sup _{\alpha} x_{n, \alpha}, \tag{2}
\end{equation*}
$$

Solution: Set $y_{n}=\inf _{\alpha} x_{n, \alpha}$. Then clearly

$$
y_{n} \leq x_{n, \alpha}, \quad \forall \alpha .
$$

Take the limsup of both sides:

$$
\lim \sup y_{n} \leq \lim \sup x_{n, \alpha}, \quad \forall \alpha
$$

Finally take the infimum over α, nothing that $\lim \sup y_{n}$ does not depend on α :

$$
\lim \sup y_{n} \leq \inf _{\alpha} \lim \sup x_{n, \alpha}
$$

This relation is (1).
To prove (2), analogously set $z_{n}=\sup _{\alpha} x_{n, \alpha}$. Then $x_{n, \alpha} \leq z_{n}$ for all α. Take the liminf to get $\lim \inf x_{n, \alpha} \leq \lim \inf z_{n}$, and finally take the sup over α to get (2).

Problem 2: Suppose that $\left(x_{n}\right)_{n=1}^{\infty}$ and $\left(y_{n}\right)_{n=1}^{\infty}$ are Cauchy sequences in a metric space (X, d). Prove that the sequence $\left(d\left(x_{n}, y_{n}\right)\right)_{n=1}^{\infty}$ converges.

Solution: Set $\alpha_{m}=d\left(x_{m}, y_{m}\right)$. Since \mathbb{R} is complete, all we need to prove is that $\left(\alpha_{m}\right)$ is a Cauchy sequence.

Fix any two natural integers m and n. Via two applications of the triangle inequality, we obtain

$$
d\left(x_{m}, y_{m}\right) \leq d\left(x_{m}, x_{n}\right)+d\left(x_{n}, y_{m}\right) \leq d\left(x_{m}, x_{n}\right)+d\left(x_{n}, y_{n}\right)+d\left(y_{n}, y_{m}\right)
$$

It follows that

$$
\begin{equation*}
d\left(x_{m}, y_{m}\right)-d\left(x_{n}, y_{n}\right) \leq d\left(x_{m}, x_{n}\right)+d\left(y_{n}, y_{m}\right) \tag{3}
\end{equation*}
$$

An analogous argument shows that

$$
\begin{equation*}
d\left(x_{n}, y_{n}\right)-d\left(x_{m}, y_{m}\right) \leq d\left(x_{m}, x_{n}\right)+d\left(y_{n}, y_{m}\right) \tag{4}
\end{equation*}
$$

Together, (3) and (4) imply that

$$
\begin{equation*}
\left|d\left(x_{m}, y_{m}\right)-d\left(x_{n}, y_{n}\right)\right| \leq d\left(x_{m}, x_{n}\right)+d\left(y_{m}, y_{n}\right) \tag{5}
\end{equation*}
$$

Fix $\varepsilon>0$. Since $\left(x_{n}\right)$ and $\left(y_{n}\right)$ are Cauchy, there exist N_{1} and N_{2} such that

$$
\begin{array}{ll}
m, n \geq N_{1} & \Rightarrow \quad d\left(x_{m}, x_{n}\right)<\varepsilon / 2 \\
m, n \geq N_{2} & \Rightarrow \quad d\left(y_{m}, y_{n}\right)<\varepsilon / 2 \tag{7}
\end{array}
$$

Set $N=\max \left(N_{1}, N_{2}\right)$. Then (5), (6), (7) imply that

$$
m, n \geq N \quad \Rightarrow \quad\left|\alpha_{m}-\alpha_{n}\right|<\varepsilon / 2+\varepsilon / 2=\varepsilon
$$

