Homework set 2 — APPM5440, Fall 2012

Problem 1.8: Let (x_n) be a sequence in \mathbb{R} , let C denote the set of cluster points of (x_n) . Set $M = \sup C$, $y_k = \sup \{x_n : n \ge k\}$ and recall that

$$\limsup_{n\to\infty} x_n \lim_{k\to\infty} y_k.$$

Show that C is closed: We will prove that C is complete. (Since \mathbb{R} is complete, C is closed iff it is complete.) Let (c_j) be a Cauchy sequence in C, and set $c = \lim c_n$. We need to prove that $c \in C$. Set $n_0 = 0$. Then for $n = 1, 2, 3, \ldots$, pick an n_j such that $n_{j-1} < n_j$ and $|c_j - x_{n_j}| < 1/j$ (this is possible since each c_j is the limit of a subsequence of (x_n)). Then

$$\limsup_{j\to\infty}|c-x_{n_j}|\leq \limsup_{j\to\infty}\bigl(|c-c_j|+|c_j-x_{n_j}|\bigr)\leq \limsup_{j\to\infty}\bigl(|c-c_j|+1/j\bigr)=0.$$

So $x_{n_i} \to c$, and therefor $c \in C$.

Show that $\limsup x_n \ge \max C$: Since $M \in C$, we know there exists a sequence (x_{n_j}) such that $x_{n_j} \to M$. Then for any k, we have

$$y_k = \sup\{x_n : n \ge k\} \ge \sup\{x_{n_j} : n_j \ge k\} \ge M.$$

Now take the limsup as $k \to \infty$ to get the desired inequality.

Show that $\limsup x_n \leq \max C$: Pick any $\varepsilon > 0$. We know that for some k, we have

$$y_k \leq M + \varepsilon$$

(since if this were not true, then (x_n) would have at least one cluster point larger than M). Take the limsup as $k \to \infty$ to show that $\limsup x_n \le M + \varepsilon$. Since ε is arbitrary, we are done.

Problem 1.10: Prove that

(1)
$$\limsup_{n \to \infty} \inf_{\alpha} x_{n,\alpha} \le \inf_{\alpha} \limsup_{n \to \infty} x_{n,\alpha},$$

and that

(2)
$$\sup_{\alpha} \liminf_{n \to \infty} x_{n,\alpha} \le \liminf_{n \to \infty} \sup_{\alpha} x_{n,\alpha},$$

Solution: Set $y_n = \inf_{\alpha} x_{n,\alpha}$. Then clearly

$$y_n \le x_{n,\alpha}, \quad \forall \alpha.$$

Take the limsup of both sides:

$$\limsup y_n \le \limsup x_{n,\alpha}, \qquad \forall \alpha$$

Finally take the infimum over α , nothing that $\limsup y_n$ does not depend on α :

$$\limsup y_n \le \inf_{\alpha} \limsup x_{n,\alpha}.$$

This relation is (1).

To prove (2), analogously set $z_n = \sup_{\alpha} x_{n,\alpha}$. Then $x_{n,\alpha} \leq z_n$ for all α . Take the liminf to get $\liminf x_{n,\alpha} \leq \liminf z_n$, and finally take the sup over α to get (2).

Problem 2: Suppose that $(x_n)_{n=1}^{\infty}$ and $(y_n)_{n=1}^{\infty}$ are Cauchy sequences in a metric space (X,d). Prove that the sequence $(d(x_n,y_n))_{n=1}^{\infty}$ converges.

Solution: Set $\alpha_m = d(x_m, y_m)$. Since \mathbb{R} is complete, all we need to prove is that (α_m) is a Cauchy sequence.

Fix any two natural integers m and n. Via two applications of the triangle inequality, we obtain

$$d(x_m, y_m) \le d(x_m, x_n) + d(x_n, y_m) \le d(x_m, x_n) + d(x_n, y_n) + d(y_n, y_m).$$

It follows that

(3)
$$d(x_m, y_m) - d(x_n, y_n) \le d(x_m, x_n) + d(y_n, y_m).$$

An analogous argument shows that

(4)
$$d(x_n, y_n) - d(x_m, y_m) \le d(x_m, x_n) + d(y_n, y_m).$$

Together, (3) and (4) imply that

(5)
$$|d(x_m, y_m) - d(x_n, y_n)| \le d(x_m, x_n) + d(y_m, y_n).$$

Fix $\varepsilon > 0$. Since (x_n) and (y_n) are Cauchy, there exist N_1 and N_2 such that

(6)
$$m, n \ge N_1 \quad \Rightarrow \quad d(x_m, x_n) < \varepsilon/2,$$

(7)
$$m, n \ge N_2 \quad \Rightarrow \quad d(y_m, y_n) < \varepsilon/2.$$

Set $N = \max(N_1, N_2)$. Then (5), (6), (7) imply that

$$m, n \ge N$$
 \Rightarrow $|\alpha_m - \alpha_n| < \varepsilon/2 + \varepsilon/2 = \varepsilon.$