
Homework set 5 solutions — APPM5440 — Fall 2012

2.7: Set I = [0, 1], and Ω = {f ∈ C(I) : Lip(f) ≤ 1,
∫
f = 0}.

We will use the Arzelà-Ascoli theorem, of course.

The Lipschitz condition implies that Ω is equicontinuous. (To prove this, fix any ε > 0. Set δ = ε.
Then for any f ∈ Ω, and |x− y| < δ, we have |f(x)− f(y)| ≤ Lip(f) |x− y| ≤ |x− y| < ε.)

To prove that Ω is bounded, note that if
∫
f = 0, and f is continuous, then there must exist an

x0 ∈ I such that f(x0) = 0. Then for any x ∈ I and any f ∈ Ω, we have |f(x)| = |f(x)− f(x0)| ≤
Lip(f) |x− x0| ≤ |x− x0| ≤ 1. So ||f ||u ≤ 1.

Finally we need to prove that Ω is closed. Let (fn) be a Cauchy sequence in Ω. Since C(I)
is complete, there exists an f ∈ C(I) such that fn → f uniformly. We need to prove that
f ∈ Ω. Since fn → f uniformly, we know both that Lip(f) ≤ lim supn→∞ Lip(fn) ≤ 1, and that∫
f = limn→∞

∫
fn = 0. This proves that f ∈ Ω.
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2.8: We will explicitly construct a dense countable subset Ω of C([a, b]). Without loss of generality,
we can assume that a = 0 and that b = 1.

For n = 1, 2, . . . , and for j = 0, 1, 2, . . . , n, set x
(n)
j = j/n. Let Ωn denote the subset of C(I) of

functions that (1) are linear on each interval [x
(n)
j−1, x

(n)
j ], and (2) take on rational values for each

x
(n)
j . Since each function in Ωn is uniquely defined by its values on the x

(n)
j ’s, we can identify Ωn

by Qn+1. Hence Ωn is countable.

Set Ω =

∞∪
n=1

Ωn. Since each Ωn is countable, Ω is countable.

It remains to prove that Ω is dense in C(I). Fix any f ∈ C(I), and any ε > 0. Since I is
compact, f is uniformly continuous on I so there exists a δ > 0 such that |x− y| < δ implies that

|f(x)−f(y)| < ε/2. Pick an n such that 1/n < δ, and pick a φ ∈ Ωn such that |φ(x(n)j )−f(x
(n)
j )| <

ε/2 for j = 0, 1, 2, . . . , n. We will prove that ||φ−f ||u < ε: Fix an x ∈ I. Then pick j ∈ {1, 2, . . . , n}
so that x ∈ [x

(n)
j−1, x

(n)
j ]. Since φ is linear in this interval, there is a number α ∈ [0, 1] such that

φ(x) = αφ(x
(n)
j−1) + (1− α)φ(x

(n)
j ).

Now

(1) |f(x)− φ(x)| = |α f(x) + (1− α) f(x)− αφ(x
(n)
j−1)− (1− α)φ(x

(n)
j )|

≤ α |f(x)− φ(x
(n)
j−1)|+ (1− α) |f(x)− φ(x

(n)
j )|.

Since |f(x) − f(x
(n)
j−1)| ≤ ε/2 (by the uniform continuity) and since |f(x(n)j−1) − φ(x

(n)
j−1| < ε/2 (by

the choice of φ), we have

(2) |f(x)− φ(x
(n)
j−1)| ≤ |f(x)− f(x

(n)
j−1)|+ |f(x(n)j−1)− φ(x

(n)
j−1| < ε.

Analogously,

(3) |f(x)− φ(x
(n)
j )| ≤ |f(x)− f(x

(n)
j )|+ |f(x(n)j )− φ(x

(n)
j | < ε.

Together, (1), (2), and (3) imply that |f(x)− φ(x)| < ε.
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2.9: (a) Suppose that w(x) > 0 for x ∈ (0, 1). Then || · ||w is a norm since:
(i) ||λf ||w = supxw(x)|λf(x)| = |λ| supxw(x)|f(x)| = |λ| ||f ||w.
(ii) ||f+g||w = supxw(x)|f(x)+g(x)| ≤ supxw(x)

(
|f(x)|+|g(x)|

)
≤ supxw(x)|f(x)|+supxw(x)|g(x)| =

||f ||w + ||g||w.
(iii) If f = 0, then clearly ||f ||w = 0. Conversely, if f ̸= 0, then f(x0) ̸= 0 for some x0 ∈ (0, 1).
Then ||f ||w ≥ w(x0)|f(x0)| > 0.

(b) Assume that w(x) > 0 for x ∈ [0, 1] =: I. Set m = infx∈I w(x) and M = supx∈I w(x). Since
I is compact and w is continuous, w attains both its inf and its sup, and therefore m > 0 and
M < ∞. Then

||f ||u = sup
x∈I

|f(x)| ≥ sup
x∈I

w(x)

M
|f(x)| = 1

M
||f ||w.

and

||f ||u = sup
x∈I

|f(x)| ≤ sup
x∈I

w(x)

m
|f(x)| = 1

m
||f ||w.

It follows that
1

M
||f ||w ≤ ||f ||u ≤ 1

m
||f ||w.

(c) Set |||f ||| = supx∈I |x f(x)|. We will prove that ||| · ||| is not equivalent to the uniform norm.
Set for n = 1, 2, . . .

fn(x) =

{
1− nx x ∈ [0, 1/n],
0 x ∈ (1/n, 1].

Then ||fn||u = 1 for all n, while |||fn||| = supx x|fn(x)| ≤ 1/n. This proves that there cannot be a
finite M such that ||f ||u ≤ M |||f |||w for all f .

(d) We will prove that the set C(I) equipped with the norm ||| · ||| is not a Banach space by
constructing a Cauchy sequence with no limit point in C(I). For n = 1, 2, . . . , define fn ∈ C(I) by

fn(x) =

{
x−1/2 x ∈ (1/n, 1],√
n x ∈ [0, 1/n].

Fix a positive integer N . Then, if m,n ≥ N , we have

|||fn − fm||| = sup
x∈[0,1/N ]

x |fn(x)− fm(x)|

≤ sup
x∈[0,1/N ]

(
x|fn(x)|+ x|fm(x)|

)
≤ sup

x∈(0,1/N)

(
x · x−1/2 + x · x−1/2

)
= 2N−1/2.

Consequently, (fn)
∞
n=1 is a Cauchy sequence.

Now suppose that (fn) converges with respect to the || · ||w norm to some function f ∈ C(I). Then
for any x ∈ I we have,

||f − fn|| ≥ x|f(x)− fn(x)|
Take the limit as n → ∞ to get

0 ≥ x|f(x)− x−1/2|.
It follows that f(x) = x−1/2 whenever x ̸= 0, and consequently ||f ||u = ∞. In other words,
f /∈ C(I). (We do not know anything about f(0), but that is OK.)
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Problem 1:

(d) The set Ω can contain a single function, for instance f(x) = sin(1/x). Note that for any fixed
x, you can find a κ (say κ = x/2) such that f ′(x) is bounded on [x− κ, x+ κ]. But this does not
imply that f is uniformly continuous.

(e) Fix a ∈ (0, 1) and set fn(x) = n (x − a)2. Then f ′
n(a) = 0 for all n. But {fn}∞n=1 is not

equicontinuous at a. (Prove this!)

(f) Note of the conditions imply that Ω is bounded. You could for instance have the sequence of
constant functions fn(x) = n. Then f ′

n(x) = 0 for all n and all x so all conditions are satisfied.
But Ω = {fn}∞n=1 is not a bounded set (with respect to the uniform norm).


