Homework set 8 - APPM5440 - Fall 2012

From the textbook: 3.6, 3.7.

On the next page, you'll find the 2005 midterm. Problem 4 on that midterm is part of this week's homework. (Note that the questions on topological spaces are outside the syllabus for the midterm this year.)

Problem 1: Let X be a set with infinitely many members. We define a collection \mathcal{T} of subsets of X by saying that a set $\Omega \in \mathcal{T}$ if either $\Omega^{c}=X \backslash \Omega$ is finite, or if Ω is the empty set. Verify that \mathcal{T} is a topology on X. This topology is called the "co-finite" topology on X. Describe the closed sets.

Problem 2: Let X denote a finite set, and let \mathcal{T} be a metrizable topology on X. Prove that \mathcal{T} is the discrete topology on X.

Problem 3: Consider the set $X=\{a, b, c\}$, and the collection of subsets $\mathcal{T}=\{\emptyset,\{a\},\{a, b\},\{a, c\},\{a, b, c\}\}$. Is \mathcal{T} a topology? Is \mathcal{T} a metrizable topology?

Applied Analysis (APPM 5440): Midterm 2
$5.00 \mathrm{pm}-6.30 \mathrm{pm}$, Oct 26, 2005. Closed books.

Problem 1: State the Arzelà-Ascoli theorem.

Problem 2: We describe two mathematical objects below. For each description, either provide an example of such an object, or explain why it does not exist. (Brief answers, please!)
(1) A collection of functions in $C(\mathbb{R})$ that is equicontinuous but not uniformly equicontinuous.
(2) A collection of functions in $C([0,1])$ that is equicontinuous but not uniformly equicontinuous.

Problem 3: Let $X=\{a, b, c, d\}$ be a set, and let

$$
\mathcal{S}=\{\emptyset, X,\{b, d\},\{a, c\},\{d\},\{a, b, c\}\}
$$

be a collection of subsets of X.
(1) Prove that \mathcal{S} is not a topology on X.
(2) Let \mathcal{T} denote the smallest topology on X that contains \mathcal{S} (in other words, \mathcal{T} is the topology generated by the sub-base \mathcal{S}). List the sets that are contained in \mathcal{T} but not in \mathcal{S}.

Problem 4: Consider the integral equation

$$
\begin{equation*}
u(x)=\pi^{2} \sin (x)+\frac{3}{2} \int_{0}^{\cos (x)}|x-y| u(y) d y . \tag{}
\end{equation*}
$$

Prove that $\left(^{*}\right)$ has a unique solution in $C([0,1])$.
Problem 5: Let X be a topological space, let Y be a Hausdorff space, and let f and g be continuous maps from X to Y. Is it necessarily the case that the set $\Omega=\{x \in X: f(x)=g(x)\}$ is closed? Justify your answer by either giving a proof or a counter example.

