
APPM5440 — Applied Analysis: Section exam 1
17:15 – 18:30, Sep. 25, 2012. Closed books.

Please motivate all answers unless the problem explicitly states otherwise.

Problem 1: (24 points) The following questions are worth 8 points each.

(a) Specify which of the following could potentially be the set C of cluster points of a sequence
(xn)

∞
n=1 of real numbers. Any negative answer needs a brief motivation.

(1) C = [0, 1].
(2) C = (0, 1).
(3) C = [0,∞).
(4) C = Q (the set of rational numbers).
(Recall that given a sequence (xn), its set of cluster points is defined as the set of limit
points of sub-sequences of (xn).)

(b) Let (X, d) be a metric space. State the definition of the completion of (X, d).

(c) Which of the following statements are true (no motivations required):
(1) If (xn)

∞
n=1 is a sequence of real numbers, then lim sup

n→∞
xn exists.

(2) If (X, d) is a compact metric space, and (xn)
∞
n=1 is a sequence in X with the property

that every convergent subsequence has the same limit x, then xn → x.
(3) Every compact subset of a metric space is necessarily closed.
(4) If (X, d) is a compact metric space and f : X → (0, 1) is continuous, then the function

g(x) = 1/(1− f(x)) is bounded on X.
(5) Let X be a normed linear space, and the B denote the unit ball around the origin.

Then B is necessarily totally bounded.

Solution:

(a) Only the set in (1) is possible. (Recall from the homework that C must be closed. The
set [0,∞) is a little bit tricky since it is not closed in the set of extended real numbers. So
while C = [0,∞] is possible, C = [0,∞) is not. This subquestion was graded generously.
Note that a set being infinite or uncountable is unproblematic. Consider, e.g., the case
where (xn) is an enumeration of the positive rational numbers. Then C = [0,∞].)

(b) See text.

(c) (1) is true.

(2) is true (see homework).

(3) is true.

(4) is true since a continuous function on a compact set attains its max.
(Alternatively, note that f(X) must be a closed subset of (0, 1).)

(5) False.



Problem 2: (24 points) Suppose that (X1, d1), (X2, d2), and (X3, d3) are metric spaces, and that
f : X1 → X2 and g : X2 → X3 are continuous. Prove that the composition h = g ◦ f defined by

h : X1 → X3 : x 7→ g(f(x))

is continuous. State explicitly which definition of continuity you use in your proof.

Solution:

Definition: A function f is continuous if the pre-image of any open set is open.

Let G be an open subset of X3.

Since g is continuous, g−1(G) is open in X2.

Since f is continuous, f−1(g−1(G)) is open in X1.

Since f−1(g−1(G)) = h−1(G), this shows that h is continuous.



Problem 3: (24 points) Set I = [−1, 1] and let X denote the set of real valued continuous
functions on I. For f ∈ X, define the norm

||f || =
∫ 1

−1
|f(x)| dx.

Show that X is not a Banach space with respect to this norm.

Solution:

Define fn ∈ X via

fn(x) =


−1 − 1 ≤ x < −1/n

nx − 1/n ≤ x < 1/n

1 1/n ≤ x < 1

The sequence (fn) is Cauchy. To prove this, suppose that N ≤ m ̸= n. Then

||fn − fm|| =
∫ 1

−1
|fn(x)− fm(x)| dx =

∫ 1/N

−1/N
|fn(x)− fm(x)| dx ≤

∫ 1/N

−1/N
dx ≤ 2/N.

It remains to show that (fn) cannot converge to any function g ∈ X. Fix g ∈ X. Then

||fn − g|| =
∫ 1

−1
|fn(x)− g(x)| dx = An +Bn + Cn

where

An =

∫ −1/n

−1
|g(x) + 1| dx, Bn =

∫ 1/n

−1/n
|fn(x)− g(x)| dx, Cn =

∫ 1

1/n
|g(x)− 1| dx,

Set M = supx∈I |g(x)|. Note that M is finite since I is compact. Since |fn(x)− g(x)| ≤ 1 +M it
then follows that Bn ≤ 2M/n and so limn→0Bn = 0. Then

lim
n→∞

||fn − g|| =
∫ 0

−1
|g(x) + 1| dx+

∫ 1

0
|g(x)− 1| dx.

Since g is continuous, at least one of the two terms must be non-zero. 1

1For full marks on this problem, the last assertion did not need to get proven. But for the curious, note that this
follows from elementary analysis. Suppose g(0) ̸= 1. Set ε = |1−g(0)|/2. Then pick δ > 0 such that |g(x)−g(0)| < ε

for |x| ≤ δ. Then
∫ 1

0
|g(x) − 1| dx ≥

∫ δ

0
|g(x) − 1| dx = δε > 0. If g(0) = 1, then you can analogously prove that∫ 0

−1
|g(x) + 1| dx > 0.



Problem 4: (28 points) Let X denote the set of sequences of real numbers x = (x1, x2, x3, . . . )

such that
∑∞

n=1 x
2
n < ∞, and define for x ∈ X the norm ||x|| =

(∑∞
n=1 x

2
n

)1/2
. Consider the

following four subsets of X:

• Let d be a positive integer d and set A = {x = (x1, x2, . . . , xd, 0, 0, . . . ) :
∑d

n=1 x
2
n ≤ 1}.

• B = {x = (x1, x2, x3, . . . ) :
∑∞

n=1 n
2x2n ≤ 1}.

• C = {x = (x1, x2, x3, . . . ) :
∑∞

n=1 x
2
n ≤ 1}.

• D = {x = (x1, x2, x3, . . . ) :
∑∞

n=1 |xn| = 1}.

Which of the sets A, B, C, and D are compact?

Solution:

Set A is compact. It is isomorphic with the closed unit ball in Rd, which is compact by the

Heine-Borel theorem.

Set B is compact. We first prove that B is totally bounded. Pick ε > 0. Pick N such that

N > 2/ε. Then for x ∈ X, set

PNx = (x1, x2, . . . , xN , 0, 0, . . . ).

For x ∈ B, we then have ||x− PNx||2 =
∞∑

n=N+1

x2n ≤ 1

N2

∞∑
n=N+1

n2 x2n ≤ 1

N2
≤ ε2

4
.

Observe that PNB is compact by the Heine-Borel theorem. Let {Bε/2(x
(j))}Jj=1 denote a finite

ε/2-cover of PNB. Then for any x ∈ B, we know that ||x(j) −PNx|| < ε/2 for some x(j), and then

||x− x(j)|| ≤ ||x− PNx||+ ||PNx− x(j)|| < ε/2 + ε/2.

Therefore {Bε(x
(j))}Jj=1 is an ε-cover of B.

Next we show that B is closed. Suppose (x(j))∞j=1 is a Cauchy sequence in B. Since X is complete,

there is an x ∈ X such that x(j) → x. This in particular implies that limj→∞ x
(j)
n = xn for every

j. We then find

∞∑
n=1

n2x2n = sup
N

lim
j→∞

N∑
n=1

n2(x(j)n )2 ≤ lim inf
j→∞

sup
N

N∑
n=1

n2(x(j)n )2 ≤ lim inf
j→∞

∞∑
n=1

n2(x(j)n )2 ≤ 1.

C is not compact. Consider the vectors

(1) e(1) = (1, 0, 0, . . . ) e(2) = (0, 1, 0, 0, . . . ) e(3) = (0, 0, 1, 0, 0, . . . ).

We find that e(j) ∈ C for every j. Since ||e(j) − e(k)|| =
√
2 whenever j ̸= k, the sequence (e(j))∞j=1

cannot have a convergent subsequence. (Note that C is closed, though.)

D is not compact. The vectors e(j) defined in (1) all belong to D, so this counter-example works

for D as well.

(For the curious, note that in addition to not being totally bounded, the set D is in fact not closed

either. To show this, set x(j) = (1, 1/2, 1/3, 1/4, . . . , 1/j, 0, 0, 0, . . . ), set βj =
∑j

n=1
1
n , and set

y(j) = 1
βj
x(j). Then y(j) ∈ D for every j. But y(j) → 0 in X (since (x(j)) is a bounded sequence in

X and βj → ∞), and 0 /∈ D, so D cannot be closed.)


