APPM5440 - Applied Analysis: Section exam 1

17:15-18:30, Sep. 25, 2012. Closed books.
Please motivate all answers unless the problem explicitly states otherwise.
Problem 1: (24 points) The following questions are worth 8 points each.
(a) Specify which of the following could potentially be the set C of cluster points of a sequence $\left(x_{n}\right)_{n=1}^{\infty}$ of real numbers. Any negative answer needs a brief motivation.
(1) $C=[0,1]$.
(2) $C=(0,1)$.
(3) $C=[0, \infty)$.
(4) $C=\mathbb{Q}$ (the set of rational numbers).
(Recall that given a sequence $\left(x_{n}\right)$, its set of cluster points is defined as the set of limit points of sub-sequences of $\left(x_{n}\right)$.)
(b) Let (X, d) be a metric space. State the definition of the completion of (X, d).
(c) Which of the following statements are true (no motivations required):
(1) If $\left(x_{n}\right)_{n=1}^{\infty}$ is a sequence of real numbers, then $\limsup _{n \rightarrow \infty} x_{n}$ exists.
(2) If (X, d) is a compact metric space, and $\left(x_{n}\right)_{n=1}^{\infty}$ is a sequence in X with the property that every convergent subsequence has the same limit x, then $x_{n} \rightarrow x$.
(3) Every compact subset of a metric space is necessarily closed.
(4) If (X, d) is a compact metric space and $f: X \rightarrow(0,1)$ is continuous, then the function $g(x)=1 /(1-f(x))$ is bounded on X.
(5) Let X be a normed linear space, and the B denote the unit ball around the origin. Then B is necessarily totally bounded.

Solution:

(a) Only the set in (1) is possible. (Recall from the homework that C must be closed. The set $[0, \infty)$ is a little bit tricky since it is not closed in the set of extended real numbers. So while $C=[0, \infty]$ is possible, $C=[0, \infty)$ is not. This subquestion was graded generously. Note that a set being infinite or uncountable is unproblematic. Consider, e.g., the case where $\left(x_{n}\right)$ is an enumeration of the positive rational numbers. Then $C=[0, \infty]$.)
(b) See text.
(c) (1) is true.
(2) is true (see homework).
(3) is true.
(4) is true since a continuous function on a compact set attains its max.
(Alternatively, note that $f(X)$ must be a closed subset of $(0,1)$.)
(5) False.

Problem 2: (24 points) Suppose that $\left(X_{1}, d_{1}\right),\left(X_{2}, d_{2}\right)$, and $\left(X_{3}, d_{3}\right)$ are metric spaces, and that $f: X_{1} \rightarrow X_{2}$ and $g: X_{2} \rightarrow X_{3}$ are continuous. Prove that the composition $h=g \circ f$ defined by

$$
h: X_{1} \rightarrow X_{3}: x \mapsto g(f(x))
$$

is continuous. State explicitly which definition of continuity you use in your proof.

Solution:

Definition: A function f is continuous if the pre-image of any open set is open.
Let G be an open subset of X_{3}.
Since g is continuous, $g^{-1}(G)$ is open in X_{2}.
Since f is continuous, $f^{-1}\left(g^{-1}(G)\right)$ is open in X_{1}.
Since $f^{-1}\left(g^{-1}(G)\right)=h^{-1}(G)$, this shows that h is continuous.

Problem 3: (24 points) Set $I=[-1,1]$ and let X denote the set of real valued continuous functions on I. For $f \in X$, define the norm

$$
\|f\|=\int_{-1}^{1}|f(x)| d x
$$

Show that X is not a Banach space with respect to this norm.

Solution:

Define $f_{n} \in X$ via

$$
f_{n}(x)=\left\{\begin{array}{rl}
-1 & -1 \leq x<-1 / n \\
n x & -1 / n \leq x<1 / n \\
1 & 1 / n \leq x<1
\end{array}\right.
$$

The sequence $\left(f_{n}\right)$ is Cauchy. To prove this, suppose that $N \leq m \neq n$. Then

$$
\left\|f_{n}-f_{m}\right\|=\int_{-1}^{1}\left|f_{n}(x)-f_{m}(x)\right| d x=\int_{-1 / N}^{1 / N}\left|f_{n}(x)-f_{m}(x)\right| d x \leq \int_{-1 / N}^{1 / N} d x \leq 2 / N
$$

It remains to show that $\left(f_{n}\right)$ cannot converge to any function $g \in X$. Fix $g \in X$. Then

$$
\left\|f_{n}-g\right\|=\int_{-1}^{1}\left|f_{n}(x)-g(x)\right| d x=A_{n}+B_{n}+C_{n}
$$

where

$$
A_{n}=\int_{-1}^{-1 / n}|g(x)+1| d x, \quad B_{n}=\int_{-1 / n}^{1 / n}\left|f_{n}(x)-g(x)\right| d x, \quad C_{n}=\int_{1 / n}^{1}|g(x)-1| d x
$$

Set $M=\sup _{x \in I}|g(x)|$. Note that M is finite since I is compact. Since $\left|f_{n}(x)-g(x)\right| \leq 1+M$ it then follows that $B_{n} \leq 2 M / n$ and so $\lim _{n \rightarrow 0} B_{n}=0$. Then

$$
\lim _{n \rightarrow \infty}\left\|f_{n}-g\right\|=\int_{-1}^{0}|g(x)+1| d x+\int_{0}^{1}|g(x)-1| d x .
$$

Since g is continuous, at least one of the two terms must be non-zero. ${ }^{1}$

[^0]Problem 4: (28 points) Let X denote the set of sequences of real numbers $x=\left(x_{1}, x_{2}, x_{3}, \ldots\right.$) such that $\sum_{n=1}^{\infty} x_{n}^{2}<\infty$, and define for $x \in X$ the norm $\|x\|=\left(\sum_{n=1}^{\infty} x_{n}^{2}\right)^{1 / 2}$. Consider the following four subsets of X :

- Let d be a positive integer d and set $A=\left\{x=\left(x_{1}, x_{2}, \ldots, x_{d}, 0,0, \ldots\right): \sum_{n=1}^{d} x_{n}^{2} \leq 1\right\}$.
- $B=\left\{x=\left(x_{1}, x_{2}, x_{3}, \ldots\right): \sum_{n=1}^{\infty} n^{2} x_{n}^{2} \leq 1\right\}$.
- $C=\left\{x=\left(x_{1}, x_{2}, x_{3}, \ldots\right): \sum_{n=1}^{\infty} x_{n}^{2} \leq 1\right\}$.
- $D=\left\{x=\left(x_{1}, x_{2}, x_{3}, \ldots\right): \sum_{n=1}^{\infty}\left|x_{n}\right|=1\right\}$.

Which of the sets A, B, C, and D are compact?

Solution:

Set A is compact. It is isomorphic with the closed unit ball in \mathbb{R}^{d}, which is compact by the Heine-Borel theorem.

Set B is compact. We first prove that B is totally bounded. Pick $\varepsilon>0$. Pick N such that $N>2 / \varepsilon$. Then for $x \in X$, set

$$
P_{N} x=\left(x_{1}, x_{2}, \ldots, x_{N}, 0,0, \ldots\right) .
$$

For $x \in B$, we then have $\left\|x-P_{N} x\right\|^{2}=\sum_{n=N+1}^{\infty} x_{n}^{2} \leq \frac{1}{N^{2}} \sum_{n=N+1}^{\infty} n^{2} x_{n}^{2} \leq \frac{1}{N^{2}} \leq \frac{\varepsilon^{2}}{4}$.
Observe that $P_{N} B$ is compact by the Heine-Borel theorem. Let $\left\{B_{\varepsilon / 2}\left(x^{(j)}\right)\right\}_{j=1}^{J}$ denote a finite $\varepsilon / 2$-cover of $P_{N} B$. Then for any $x \in B$, we know that $\left\|x^{(j)}-P_{N} x\right\|<\varepsilon / 2$ for some $x^{(j)}$, and then

$$
\left\|x-x^{(j)}\right\| \leq\left\|x-P_{N} x\right\|+\left\|P_{N} x-x^{(j)}\right\|<\varepsilon / 2+\varepsilon / 2 .
$$

Therefore $\left\{B_{\varepsilon}\left(x^{(j)}\right)\right\}_{j=1}^{J}$ is an ε-cover of B.
Next we show that B is closed. Suppose $\left(x^{(j)}\right)_{j=1}^{\infty}$ is a Cauchy sequence in B. Since X is complete, there is an $x \in X$ such that $x^{(j)} \rightarrow x$. This in particular implies that $\lim _{j \rightarrow \infty} x_{n}^{(j)}=x_{n}$ for every j. We then find

$$
\sum_{n=1}^{\infty} n^{2} x_{n}^{2}=\sup _{N} \lim _{j \rightarrow \infty} \sum_{n=1}^{N} n^{2}\left(x_{n}^{(j)}\right)^{2} \leq \liminf _{j \rightarrow \infty} \sup _{N} \sum_{n=1}^{N} n^{2}\left(x_{n}^{(j)}\right)^{2} \leq \liminf _{j \rightarrow \infty} \sum_{n=1}^{\infty} n^{2}\left(x_{n}^{(j)}\right)^{2} \leq 1 .
$$

C is not compact. Consider the vectors

$$
\begin{equation*}
e^{(1)}=(1,0,0, \ldots) \quad e^{(2)}=(0,1,0,0, \ldots) \quad e^{(3)}=(0,0,1,0,0, \ldots) . \tag{1}
\end{equation*}
$$

We find that $e^{(j)} \in C$ for every j. Since $\left\|e^{(j)}-e^{(k)}\right\|=\sqrt{2}$ whenever $j \neq k$, the sequence $\left(e^{(j)}\right)_{j=1}^{\infty}$ cannot have a convergent subsequence. (Note that C is closed, though.)
D is not compact. The vectors $e^{(j)}$ defined in (1) all belong to D, so this counter-example works for D as well.
(For the curious, note that in addition to not being totally bounded, the set D is in fact not closed either. To show this, set $x^{(j)}=(1,1 / 2,1 / 3,1 / 4, \ldots, 1 / j, 0,0,0, \ldots)$, set $\beta_{j}=\sum_{n=1}^{j} \frac{1}{n}$, and set $y^{(j)}=\frac{1}{\beta_{j}} x^{(j)}$. Then $y^{(j)} \in D$ for every j. But $y^{(j)} \rightarrow 0$ in X (since $\left(x^{(j)}\right)$ is a bounded sequence in X and $\left.\beta_{j} \rightarrow \infty\right)$, and $0 \notin D$, so D cannot be closed.)

[^0]: ${ }^{1}$ For full marks on this problem, the last assertion did not need to get proven. But for the curious, note that this follows from elementary analysis. Suppose $g(0) \neq 1$. Set $\varepsilon=|1-g(0)| / 2$. Then pick $\delta>0$ such that $|g(x)-g(0)|<\varepsilon$ for $|x| \leq \delta$. Then $\int_{0}^{1}|g(x)-1| d x \geq \int_{0}^{\delta}|g(x)-1| d x=\delta \varepsilon>0$. If $g(0)=1$, then you can analogously prove that $\int_{-1}^{0}|g(x)+1| d x>0$.

