APPM5440 — Applied Analysis: Section exam 2

17:15 – 18:30, Oct. 30, 2012. Closed books.

Please motivate all answers unless the problem explicitly states otherwise. You may want to do Problem 5 last (it is only 20 points, and could be a lot of work).

Problem 1: (15p) State and prove the contraction mapping theorem.

Problem 2: (15p) State the Grönwall inequality.

Problem 3: (20p) Define for n = 1, 2, 3, ... the function $f_n : \mathbb{R} \to \mathbb{R}$ via

$$f_n(x) = e^{-n(x-n)^2}$$

Let N be a fixed positive integer. In the table below, mark each box corresponding with a true statement with the letter "T". No motivations required.

	Ω is equicont.	Ω is uniformly	Ω is closed	Ω is pre-compact
	for every $x \in I$	equicont. on I	in $C(I)$	in $C(I)$
$\Omega = \{f_n\}_{n=1}^N$ and $I = \mathbb{R}$				
$\Omega = \{f_n\}_{n=1}^{\infty} \text{ and } I = \mathbb{R}$				
$\Omega = \{f_n\}_{n=1}^N \text{ and } I = [-N, N]$				
$\Omega = \{f_n\}_{n=1}^{\infty}$ and $I = [-N, N]$				

Problem 4: (30p) Set I = [0, 1].

(a) Let $(f_n)_{n=1}^{\infty}$ be a sequence of functions in C(I) such that $\operatorname{Lip}(f_n) \leq 1$. Prove that if $(f_n)_{n=1}^{\infty}$ converges uniformly to a function f, then $\operatorname{Lip}(f) \leq 1$.

(b) Let $(f_n)_{n=1}^{\infty}$ be a sequence of functions in C(I) such that $\operatorname{Lip}(f_n) \leq 1$. Does (f_n) necessarily have a convergent subsequence? Please offer a proof or a counter-example.

(c) Set $\Omega = \{f \in C(I) : \text{Lip}(f) \le 1 \text{ and } f(0) = 0\}$ Is the set Ω closed? Compact? Pre-compact?

(d) Is the set $\Omega = \{f \in C(I) : ||f|| \le 1 \text{ and } \operatorname{Lip}(f) \le 1\}$ dense in the unit ball of C(I)?

Problem 5: (20p) Let f = f(x, y) be a continuous bounded real-valued function on \mathbb{R}^2 , and let g = g(x) be a continuous real-valued function on \mathbb{R} such that $||g||_{\mathfrak{u}} \leq 1$. Now consider for a positive number δ the equation

(1)
$$\begin{cases} u_1(x) = \int_0^\delta f(x,y) \left(u_2(y)\right)^2 dy + g(x), \\ u_2(x) = \frac{1}{3}u_1(x) + \frac{1}{3}(u_2(x))^2. \end{cases}$$

Show that for δ small enough, the equation (1) is guaranteed to have a unique solution pair (u_1, u_2) of continuous functions on $[0, \delta]$ such that $||u_2||_u \leq 1$. What can you say about $||u_1||_u$?