APPM5440 - Applied Analysis: Section exam 2

17:15-18:30, Oct. 30, 2012. Closed books.
Please motivate all answers unless the problem explicitly states otherwise.
You may want to do Problem 5 last (it is only 20 points, and could be a lot of work).
Problem 1: (15p) State and prove the contraction mapping theorem.
Problem 2: (15p) State the Grönwall inequality.

Problem 3: (20p) Define for $n=1,2,3, \ldots$ the function $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ via

$$
f_{n}(x)=e^{-n(x-n)^{2}} .
$$

Let N be a fixed positive integer. In the table below, mark each box corresponding with a true statement with the letter "T". No motivations required.

	Ω is equicont. for every $x \in I$	Ω is uniformly equicont. on I	Ω is closed in $C(I)$	Ω is pre-compact in $C(I)$
$\Omega=\left\{f_{n}\right\}_{n=1}^{N}$ and $I=\mathbb{R}$				
$\Omega=\left\{f_{n}\right\}_{n=1}^{\infty}$ and $I=\mathbb{R}$				
$\Omega=\left\{f_{n}\right\}_{n=1}^{N}$ and $I=[-N, N]$				
$\Omega=\left\{f_{n}\right\}_{n=1}^{\infty}$ and $I=[-N, N]$				

Problem 4: (30p) Set $I=[0,1]$.
(a) Let $\left(f_{n}\right)_{n=1}^{\infty}$ be a sequence of functions in $C(I)$ such that $\operatorname{Lip}\left(f_{n}\right) \leq 1$. Prove that if $\left(f_{n}\right)_{n=1}^{\infty}$ converges uniformly to a function f, then $\operatorname{Lip}(f) \leq 1$.
(b) Let $\left(f_{n}\right)_{n=1}^{\infty}$ be a sequence of functions in $C(I)$ such that $\operatorname{Lip}\left(f_{n}\right) \leq 1$. Does $\left(f_{n}\right)$ necessarily have a convergent subsequence? Please offer a proof or a counter-example.
(c) Set $\Omega=\{f \in C(I): \operatorname{Lip}(f) \leq 1$ and $f(0)=0\}$ Is the set Ω closed? Compact? Pre-compact?
(d) Is the set $\Omega=\{f \in C(I):\|f\| \leq 1$ and $\operatorname{Lip}(f) \leq 1\}$ dense in the unit ball of $C(I)$?

Problem 5: (20p) Let $f=f(x, y)$ be a continuous bounded real-valued function on \mathbb{R}^{2}, and let $g=g(x)$ be a continuous real-valued function on \mathbb{R} such that $\|g\|_{\mathrm{u}} \leq 1$. Now consider for a positive number δ the equation

$$
\left\{\begin{array}{l}
u_{1}(x)=\int_{0}^{\delta} f(x, y)\left(u_{2}(y)\right)^{2} d y+g(x), \tag{1}\\
u_{2}(x)=\frac{1}{3} u_{1}(x)+\frac{1}{3}\left(u_{2}(x)\right)^{2}
\end{array}\right.
$$

Show that for δ small enough, the equation (1) is guaranteed to have a unique solution pair (u_{1}, u_{2}) of continuous functions on $[0, \delta]$ such that $\left\|u_{2}\right\|_{\mathrm{u}} \leq 1$. What can you say about $\left\|u_{1}\right\|_{\mathrm{u}}$?

