Applied Analysis (APPM 5440): Final exam

7:30pm - 10:00pm, Dec. 11, 2016. Closed books.

Name:
Problem 1: (16p) No motivations required for these problems. $4 p$ each.
(a) Let X be a set, and let \mathcal{T} denote a topology on X. Define what it means for \mathcal{T} to satisfy the Hausdorff property.
(b) Let X denote a Banach space. Mark the following statements as true/false:

	TRUE	FALSE
If $\left(T_{n}\right)_{n=1}^{\infty}$ is a sequence in $\mathcal{B}(X)$ of compact operators that converges in norm to an operator T, then T is necessarily compact.		
Let $S, T \in \mathcal{B}(X)$. If S is compact, then $S T$ is compact.		
Let $S, T \in \mathcal{B}(X)$. If S is compact, then $T S$ is compact.		
Let $S, T \in \mathcal{B}(X)$. If S and T are both compact, then $S+T$ is compact.		
Let $S, T \in \mathcal{B}(X)$. If S is compact, then $S+T$ is compact.		

(c) Set $I=[0,1]$ and $X=C(I)$. (We use the standard norm on X.) Define the subset

$$
A=\left\{u \in X: u \text { is continuously differentiable and }\left\|u^{\prime}\right\| \leq 1\right\} .
$$

Describe the closure \bar{A} of A :

Is \bar{A} a compact set (yes/no)?
(d) Set $H=L^{2}([-1,1])$, and define $T \in \mathcal{B}(H)$ via $[T u](x)=2 u(-x)$. Let $S \in \mathcal{B}(H)$ be an operator for which you know that $\|S\| \leq c$, where c is some positive number. Are there any values of c for which you can say for sure that the operator $T-S$ has closed range?

Answer:

Problem 2: (16p) Let H denote a Hilbert space. Prove that for every element $\varphi \in H^{*}$, there exists a unique $y \in H$ such that

$$
\varphi(x)=(y, x), \quad \forall x \in H
$$

Problem 3: (16p) Set $I=[0, \pi]$ and let H denote the Hilbert space $H=L^{2}(I)$ with the usual norm. Define $f, g, h \in H$ via

$$
f(x)=\sin (x), \quad g(x)=\sin (3 x), \quad h(x)=x
$$

Set $N=\operatorname{Span}\{f, g\}$, and $M=N^{\perp}$. Evaluate

$$
d=\inf _{u \in M}\|h-u\|
$$

In the event that you make any computational errors, your score on this problem will depend strongly on whether you clearly describe the process you use to determine d.

Problem 4: (16p) Set $I=[0,2]$, set $X=C(I)$, and let k be a continuous function on $I \times I$. Consider the operator $T \in \mathcal{B}(X)$ defined by

$$
[T u](x)=\int_{0}^{2} k(x, y) u(y) d y, \quad x \in I .
$$

(a) State the Arzelá-Ascoli theorem.
(b) Prove that the operator T is compact.

Problem 5: (16p) Let X denote the space of all continuous functions on \mathbb{R} that are periodic with period 1. In other words, if $u \in X$, then

$$
u(x)=u(x+1), \quad \forall x \in \mathbb{R}
$$

We equip X with the norm

$$
\|u\|=\sup _{x \in[0,1]}|u(x)| .
$$

Observe that a function u in X is uniquely defined by its values on the interval $I=[0,1]$ (or on $[0,1)$, for that matter, since $u(0)=u(1))$. Define for $n=1,2,3, \ldots$ the operators

$$
\left[T_{n} u\right](x)=u(x-1 / n) .
$$

(a) (6p) Does $\left(T_{n}\right)_{n=1}^{\infty}$ converge strongly? Please motivate your answer carefully.
(b) (6p) Does $\left(T_{n}\right)_{n=1}^{\infty}$ converge in norm? Please motivate your answer carefully.
(c) (4p) Do your answers change if X is instead equipped with the norm $\|u\|=\int_{0}^{1}|u(x)| d x$?

