Homework set 3 - APPM5440, Fall 2016

From the textbook: 1.17, 1.18, 1.20, 1.22, 1.27.

Solution for 1.20: Show that an NLS X is complete iff it is the case that every absolutely convergent sum converges.

Assume that X is complete: Let $\left(x_{n}\right)$ be a sequence such that $\sum_{n=1}^{\infty}\left\|x_{n}\right\|<\infty$. Set

$$
s_{m}=\sum_{n=1}^{m} x_{n}
$$

We need to show that $\left(s_{m}\right)$ converges in X. We will do this by showing that $\left(s_{m}\right)$ is Cauchy, and then the completeness of X will imply convergence. Fix $\varepsilon>0$. Then pick an N such that

$$
\sum_{n=N+1}^{\infty}\left\|x_{n}\right\|<\varepsilon
$$

Now suppose $N \leq m<k$. Then

$$
\left\|s_{m}-s_{k}\right\|=\left\|\sum_{n=m+1}^{k} x_{n}\right\| \leq \sum_{n=m+1}^{k}\left\|x_{n}\right\|<\varepsilon
$$

Assume that every absolutely convergent sum converges: Let $\left(y_{m}\right)$ be a Cauchy sequence in X. Pick a subsequence $\left(y_{m_{j}}\right)$ such that $\left\|y_{m_{j}}-y_{m_{j-1}}\right\| \leq 2^{-j}$. Set

$$
x_{1}=y_{m_{1}}
$$

and then set for $n=2,3,4, \ldots$

$$
x_{n}=y_{m_{n}}-y_{m_{n-1}} .
$$

Observe that

$$
\sum_{n=1}^{\infty}\left\|x_{n}\right\| \leq\left\|x_{1}\right\|+\sum_{n=2}^{\infty} \frac{1}{2^{n}}<\infty
$$

Next note that

$$
y_{m_{j}}=\sum_{n=1}^{j} x_{n}
$$

By assumption, we then know that $y_{m_{j}}$ converges to some limit point $y \in X$. All that remains is to show that $\left(y_{m}\right)$ also converges to y. Fix $\varepsilon>0$. Pick N such that

$$
m, k \geq N \quad \Rightarrow \quad\left\|y_{m}-y_{k}\right\|<\varepsilon / 2
$$

Then pick m_{j} such that $\left\|y-y_{m_{j}}\right\|<\varepsilon / 2$ and $m_{j} \geq N$. Then

$$
m \geq N \quad \Rightarrow \quad\left\|y-y_{m}\right\| \leq\left\|y-y_{m_{j}}\right\|+\left\|y_{m_{j}}-y_{m}\right\|<\varepsilon / 2+\varepsilon / 2=\varepsilon
$$

Solution for 1.27: Suppose x_{n} does not converge to x. Then there exists an $\varepsilon>0$ and a subsequence such that $d\left(x_{n_{j}}, x\right)>\varepsilon$. Since the space is compact, $\left(x_{n_{j}}\right)$ has a convergent subsequence. But then by assumption, this subsequence must converge to x, which is impossible since $d\left(x_{n_{j}}, x\right)>\varepsilon$ for all j.

Problem 1: We define a subset Ω of \mathbb{R} via

$$
\Omega=\{0\} \cup\left(\bigcup_{n=1}^{\infty}\left[\frac{1}{n+1 / 2}, \frac{1}{n}\right]\right) .
$$

Prove that Ω is compact.

Outline of solution: Ω is totally bounded since any bounded subset of \mathbb{R} is. That Ω is complete follows from the fact that \mathbb{R} is complete, if we can only prove that Ω is closed. An easy way to do this is to write Ω^{c} as an infinite union of open sets.

Problem 2: Consider our recurring example of the metric space \mathbb{Q} (with the standard metric), and its subset $\Omega=\left\{q \in \mathbb{Q}: q^{2}<2\right\}$.
(a) Prove the Ω is both open and closed in \mathbb{Q}.
(b) Ω is bounded. Does the claim in (a) imply that Ω is compact? If yes, then motivate, if not, then decide whether Ω is in fact compact.

Outline of solution: For (a), simply use the definition. To prove that Ω is open, pick a point $q \in \Omega$, and then construct an ε ball around it entirely contained in Ω. Then prove that Ω^{c} is open analogously. For (b), note that (a) does not imply that Ω is compact since the underlying space, \mathbb{Q} is not complete. In fact, Ω is not compact. An easy way to prove this is to prove that Ω is to construct a sequence in Ω that does not have a convergent subsequence.

Problem 3: Let X be an infinite set equipped with the discrete metric. Decide which subsets of X (if any) are compact.

Solution: A set Ω in (X, d) is compact iff it is finite. Suppose that Ω is finite, $\Omega=\left\{x_{j}\right\}_{j=1}^{n}$. Then Ω is closed (any set is) and it is also totally bounded since for any ε, the sets $\left\{B_{\varepsilon}\left(x_{j}\right)\right\}_{j=1}^{n}$ cover Ω. Conversely, suppose that Ω is infinite. Then $\left\{B_{1 / 2}(x)\right\}_{x \in \Omega}=\{\{x\}\}_{x \in \Omega}$ is an open cover of Ω without any finite subcover.

Problem 4: Consider the metric space \mathbb{R} with the usual metric.
(a) Construct an open cover of $\Omega_{1}=(0,1]$ that does not have a finite subcover.
(b) Construct an open cover of $\Omega_{2}=[0, \infty)$ that does not have a finite subcover.
(c) Construct a real-valued continuous function f on Ω_{1} that is not uniformly continuous. Demonstrate that for your choice of f, there exists an $\varepsilon>0$ such that for any $\delta>0$, there are numbers $x_{n}, y_{n} \in \Omega_{1}$ such that $d\left(x_{n}, y_{n}\right) \leq 1 / n$ and $d\left(f\left(x_{n}, y_{n}\right)\right)>\varepsilon$. Is it possible to construct such a function that is bounded? (Note: this problem was corrected by inserting a requirement that f be continuous.)

Solution:

(a) $\Omega_{1} \subset \bigcup_{n=1}^{\infty}(1 /(n+1), 1 /(n-1 / 2))$.
(b) $\Omega_{2} \subset \bigcup_{n=1}^{\infty}(n-2, n)$.
(c) Unbounded example: $f(x)=1 / x, \varepsilon=0.25, x_{n}=1 / n, y_{n}=1.5 / n$.

Bounded example: $f(x)=\cos (1 / x), \varepsilon=1, x_{n}=1 /(\pi 2 n), y_{n}=1 /(\pi(2 n+1))$.

