Homework set 4 - APPM5440 Fall 2016 - partial solutions

Solution for 2.4: Let's consider $X=[-1,1]$ instead. Then set $f(x)=|x|$, and

$$
f_{n}(x)=\frac{1+n x^{2}}{\sqrt{n+n^{2} x^{2}}} .
$$

Then $f_{n} \rightarrow f$ uniformly, $f_{n} \in C^{\infty}(X)$, and f is not differentiable. (To justify the shift we made initially, simply note that if we define $g_{n} \in C([0,1])$ by $g_{n}(y)=f_{n}(2 y-1)$, then g_{n} is an answer to the original problem.)

Solution for 2.5: Set $I=[a, b]$. Let $\left(f_{n}\right)_{n=1}^{\infty}$ be a Cauchy sequence in $C^{1}(I)$. Since

$$
\left\|f_{n}-f_{m}\right\|_{\mathrm{u}} \leq\left\|f_{n}-f_{m}\right\|_{C^{1}},
$$

the sequence $\left(f_{n}\right)$ is Cauchy in $C(I)$. Since $C(I)$ is complete, there exists a function $f \in C(I)$ such that $f_{n} \rightarrow f$ uniformly.

Next set $g_{n}=f_{n}^{\prime}$. Then

$$
\left\|g_{n}-g_{m}\right\|_{\mathrm{u}}=\left\|f_{n}^{\prime}-f_{m}^{\prime}\right\|_{\mathrm{u}} \leq\left\|f_{n}-f_{m}\right\|_{C^{1}}
$$

so $\left(g_{n}\right)$ is Cauchy in $C(I)$. Therefore, there exists a function $g \in C(I)$ such that $g_{n} \rightarrow g$ uniformly.
It remains to prove that $f \in C^{1}(I)$, and that $f_{n} \rightarrow f$ in $C^{1}(I)$. Fix any $x \in I$, and any $h \in \mathbb{R}$ such that $x+h \in I$. Then

$$
\begin{aligned}
\frac{1}{h}(f(x+h)-f(x)) & =\lim _{n \rightarrow \infty} \frac{1}{h}\left(f_{n}(x+h)-f_{n}(x)\right) \\
& =\lim _{n \rightarrow \infty} \frac{1}{h} \int_{0}^{h} f_{n}^{\prime}(x+t) d t \\
& =\lim _{n \rightarrow \infty} \frac{1}{h} \int_{0}^{h} g_{n}(x+t) d t .
\end{aligned}
$$

Now recall that uniform convergence on a finite interval implies convergence of integrals. Since $g_{n} \rightarrow g$ uniformly, we find that

$$
\frac{1}{h}(f(x+h)-f(x))=\frac{1}{h} \int_{0}^{h} g(x+t) d t
$$

Since g is continuous, the limit as $h \rightarrow 0$ exists, and so

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{1}{h}(f(x+h)-f(x))=\lim _{h \rightarrow 0} \frac{1}{h} \int_{0}^{h} g(x+t) d t=g(x) .
$$

This proves that $f \in C^{1}(I)$. To prove that $f_{n} \rightarrow f$ in $C^{1}(I)$, we note that

$$
\left\|f-f_{n}\right\|_{C^{1}}=\left\|f-f_{n}\right\|_{\mathrm{u}}+\left\|f^{\prime}-f_{n}^{\prime}\right\|_{\mathrm{u}}=\left\|f-f_{n}\right\|_{\mathrm{u}}+\left\|g-g_{n}\right\|_{\mathrm{u}} .
$$

By the construction of f and g, it follows that $\left\|f-f_{n}\right\|_{C^{1}(I)} \rightarrow 0$.

