Homework set 5 - APPM5440 - Fall 2016

From the textbook: 2.7, 2.8, 2.9.

Problem 1: Set $I=(0,1)$ and let $\left(f_{n}\right)_{n=1}^{\infty}$ be a sequence of continuously differentiable functions on I. Set $\Omega=\left\{f_{n}: 1 \leq n<\infty\right\}$.
(a) For a given n, suppose that

$$
\sup _{x \in I}\left|f_{n}^{\prime}(x)\right|<\infty .
$$

Prove that then f_{n} is uniformly continuous.
(b) Suppose that

$$
\sup _{x \in I} \sup _{1 \leq n<\infty}\left|f_{n}^{\prime}(x)\right|<\infty .
$$

Prove that then Ω is uniformly equicontinuous.
(c) Suppose that for every $x \in I$, there exists a $\kappa>0$ such that

$$
\sup _{1 \leq n<\infty} \sup _{y \in B_{\kappa}(x)}\left|f_{n}^{\prime}(y)\right|<\infty .
$$

Prove that then Ω is equicontinuous.
(d) Give an example of a set Ω of functions satisfying the condition in (c) that is not uniformly equicontinuous.
(e) Suppose that for a given $x \in I$, it is the case that

$$
\sup _{1 \leq n<\infty}\left|f_{n}^{\prime}(x)\right|<\infty
$$

Prove that Ω is not necessarily equicontinuous at x.
(f) Which, if any, of the examples listed in (a) - (e) represent a bounded set Ω ?

Extra problem on completeness: Fix a real number $r \in(1, \infty)$, and let X denote the set of all real-valued sequences $x=\left(x_{1}, x_{2}, x_{3}, \ldots\right)$ such that

$$
\sum_{n=1}^{\infty}\left|x_{n}\right|^{r}<\infty
$$

(a) Fix a real number $p \in[1, r)$. Define for $x \in X$, the function

$$
f(x)=\left(\sum_{n=1}^{\infty}\left|x_{n}\right|^{p}\right)^{1 / p}
$$

Show that $f(x)=\infty$ for some $x \in X$, and therefore f cannot be a norm on X.
(b) Fix a real number $p \in(r, \infty)$. Define for $x \in X$, the function

$$
f(x)=\left(\sum_{n=1}^{\infty}\left|x_{n}\right|^{p}\right)^{1 / p} .
$$

Show that $f(x)$ is finite whenever $x \in X$, and that $\|x\|=f(x)$ defines a norm on X. (Recall that you have already proven that $f(x+y) \leq f(x)+f(y)$ in an earlier homework.) Show that $(X,\|\cdot\|)$ is not a Banach space.
(c) Repeat exercise (b) for the function

$$
f(x)=\sup _{n=1,2,3, \ldots}\left|x_{n}\right| .
$$

Another problem on completeness: Set $I=[-1,1]$ and set

$$
B=\left\{f \in C(I) \cap C^{1}(I): \sup _{x \in I}|f(x)| \leq 1 \text { and } \sup _{x \in I}\left|f^{\prime}(x)\right| \leq 1\right\} .
$$

Consider the function $d: X \times X \rightarrow[0, \infty)$ given by

$$
d(f, g)=\sup _{x \in I}|f(x)-g(x)| .
$$

Show that (B, d) is a metric space that is not complete.

