2.7: Set $I=[0,1]$, and $\Omega=\left\{f \in C(I): \operatorname{Lip}(f) \leq 1, \int f=0\right\}$.

We will use the Arzelà-Ascoli theorem, of course.
The Lipschitz condition implies that Ω is equicontinuous. (To prove this, fix any $\varepsilon>0$. Set $\delta=\varepsilon$. Then for any $f \in \Omega$, and $|x-y|<\delta$, we have $|f(x)-f(y)| \leq \operatorname{Lip}(f)|x-y| \leq|x-y|<\varepsilon$.)

To prove that Ω is bounded, note that if $\int f=0$, and f is continuous, then there must exist an $x_{0} \in I$ such that $f\left(x_{0}\right)=0$. Then for any $x \in I$ and any $f \in \Omega$, we have $|f(x)|=\left|f(x)-f\left(x_{0}\right)\right| \leq$ $\operatorname{Lip}(f)\left|x-x_{0}\right| \leq\left|x-x_{0}\right| \leq 1$. So $\|f\|_{\mathrm{u}} \leq 1$.

Finally we need to prove that Ω is closed. Let $\left(f_{n}\right)$ be a Cauchy sequence in Ω. Since $C(I)$ is complete, there exists an $f \in C(I)$ such that $f_{n} \rightarrow f$ uniformly. We need to prove that $f \in \Omega$. Since $f_{n} \rightarrow f$ uniformly, we know both that $\operatorname{Lip}(f) \leq \lim \sup _{n \rightarrow \infty} \operatorname{Lip}\left(f_{n}\right) \leq 1$, and that $\int f=\lim _{n \rightarrow \infty} \int f_{n}=0$. This proves that $f \in \Omega$.
2.8: We will explicitly construct a dense countable subset Ω of $C([a, b])$. Without loss of generality, we can assume that $a=0$ and that $b=1$.

For $n=1,2, \ldots$, and for $j=0,1,2, \ldots, n$, set $x_{j}^{(n)}=j / n$. Let Ω_{n} denote the subset of $C(I)$ of functions that (1) are linear on each interval $\left[x_{j-1}^{(n)}, x_{j}^{(n)}\right]$, and (2) take on rational values for each $x_{j}^{(n)}$. Since each function in Ω_{n} is uniquely defined by its values on the $x_{j}^{(n)}$ s, we can identify Ω_{n} by \mathbb{Q}^{n+1}. Hence Ω_{n} is countable.

Set $\Omega=\bigcup_{n=1}^{\infty} \Omega_{n}$. Since each Ω_{n} is countable, Ω is countable.
It remains to prove that Ω is dense in $C(I)$. Fix any $f \in C(I)$, and any $\varepsilon>0$. Since I is compact, f is uniformly continuous on I so there exists a $\delta>0$ such that $|x-y|<\delta$ implies that $|f(x)-f(y)|<\varepsilon / 2$. Pick an n such that $1 / n<\delta$, and pick a $\varphi \in \Omega_{n}$ such that $\left|\varphi\left(x_{j}^{(n)}\right)-f\left(x_{j}^{(n)}\right)\right|<$ $\varepsilon / 2$ for $j=0,1,2, \ldots, n$. We will prove that $\|\varphi-f\|_{\mathrm{u}}<\varepsilon$: Fix an $x \in I$. Then pick $j \in\{1,2, \ldots, n\}$ so that $x \in\left[x_{j-1}^{(n)}, x_{j}^{(n)}\right]$. Since φ is linear in this interval, there is a number $\alpha \in[0,1]$ such that

$$
\varphi(x)=\alpha \varphi\left(x_{j-1}^{(n)}\right)+(1-\alpha) \varphi\left(x_{j}^{(n)}\right)
$$

Now

$$
\begin{align*}
|f(x)-\varphi(x)|=\mid \alpha f(x)+(1-\alpha) f(x)-\alpha & \varphi\left(x_{j-1}^{(n)}\right)-(1-\alpha) \varphi\left(x_{j}^{(n)}\right) \mid \tag{1}\\
& \leq \alpha\left|f(x)-\varphi\left(x_{j-1}^{(n)}\right)\right|+(1-\alpha)\left|f(x)-\varphi\left(x_{j}^{(n)}\right)\right| .
\end{align*}
$$

Since $\left|f(x)-f\left(x_{j-1}^{(n)}\right)\right| \leq \varepsilon / 2$ (by the uniform continuity) and since $\mid f\left(x_{j-1}^{(n)}\right)-\varphi\left(x_{j-1}^{(n)} \mid<\varepsilon / 2\right.$ (by the choice of φ), we have

$$
\begin{equation*}
\left|f(x)-\varphi\left(x_{j-1}^{(n)}\right)\right| \leq\left|f(x)-f\left(x_{j-1}^{(n)}\right)\right|+\mid f\left(x_{j-1}^{(n)}\right)-\varphi\left(x_{j-1}^{(n)} \mid<\varepsilon .\right. \tag{2}
\end{equation*}
$$

Analogously,

$$
\begin{equation*}
\left|f(x)-\varphi\left(x_{j}^{(n)}\right)\right| \leq\left|f(x)-f\left(x_{j}^{(n)}\right)\right|+\mid f\left(x_{j}^{(n)}\right)-\varphi\left(x_{j}^{(n)} \mid<\varepsilon .\right. \tag{3}
\end{equation*}
$$

Together, (1), (2), and (3) imply that $|f(x)-\varphi(x)|<\varepsilon$.
2.9: (a) Suppose that $w(x)>0$ for $x \in(0,1)$. Then $\|\cdot\|_{w}$ is a norm since:
(i) $\|\lambda f\|_{w}=\sup _{x} w(x)|\lambda f(x)|=|\lambda| \sup _{x} w(x)|f(x)|=|\lambda|\|f\|_{w}$.
(ii) $\left|\left|f+g \|_{w}=\sup _{x} w(x)\right| f(x)+g(x)\right| \leq \sup _{x} w(x)(|f(x)|+|g(x)|) \leq \sup _{x} w(x)|f(x)|+\sup _{x} w(x)|g(x)|=$ $\|f\|_{w}+\|g\|_{w}$.
(iii) If $f=0$, then clearly $\|f\|_{w}=0$. Conversely, if $f \neq 0$, then $f\left(x_{0}\right) \neq 0$ for some $x_{0} \in(0,1)$. Then $\|f\|_{w} \geq w\left(x_{0}\right)\left|f\left(x_{0}\right)\right|>0$.
(b) Assume that $w(x)>0$ for $x \in[0,1]=: I$. Set $m=\inf _{x \in I} w(x)$ and $M=\sup _{x \in I} w(x)$. Since I is compact and w is continuous, w attains both its inf and its sup, and therefore $m>0$ and $M<\infty$. Then

$$
\|f\|_{\mathrm{u}}=\sup _{x \in I}|f(x)| \geq \sup _{x \in I} \frac{w(x)}{M}|f(x)|=\frac{1}{M}\|f\|_{w}
$$

and

$$
\|f\|_{\mathrm{u}}=\sup _{x \in I}|f(x)| \leq \sup _{x \in I} \frac{w(x)}{m}|f(x)|=\frac{1}{m}\|f\|_{w}
$$

It follows that

$$
\frac{1}{M}\|f\|_{w} \leq\|f\|_{\mathrm{u}} \leq \frac{1}{m}\|f\|_{w}
$$

(c) Set $\left|\left||f| \|=\sup _{x \in I}\right| x f(x)\right|$. We will prove that $|\| \cdot||\mid$ is not equivalent to the uniform norm. Set for $n=1,2, \ldots$

$$
f_{n}(x)= \begin{cases}1-n x & x \in[0,1 / n] \\ 0 & x \in(1 / n, 1]\end{cases}
$$

Then $\left\|f_{n}\right\|_{\mathrm{u}}=1$ for all n, while $\left\|\left|f_{n}\| \|=\sup _{x} x\right| f_{n}(x) \mid \leq 1 / n\right.$. This proves that there cannot be a finite M such that $\|f\|_{\mathrm{u}} \leq M \mid\|f\| \|_{w}$ for all f.
(d) We will prove that the set $C(I)$ equipped with the norm $\|\|\cdot\|\|$ is not a Banach space by constructing a Cauchy sequence with no limit point in $C(I)$. For $n=1,2, \ldots$, define $f_{n} \in C(I)$ by

$$
f_{n}(x)= \begin{cases}x^{-1 / 2} & x \in(1 / n, 1] \\ \sqrt{n} & x \in[0,1 / n]\end{cases}
$$

Fix a positive integer N. Then, if $m, n \geq N$, we have

$$
\begin{aligned}
\left\|\left|\mid f_{n}-f_{m}\| \|\right.\right. & =\sup _{x \in[0,1 / N]} x\left|f_{n}(x)-f_{m}(x)\right| \\
& \leq \sup _{x \in[0,1 / N]}\left(x\left|f_{n}(x)\right|+x\left|f_{m}(x)\right|\right) \\
& \leq \sup _{x \in(0,1 / N)}\left(x \cdot x^{-1 / 2}+x \cdot x^{-1 / 2}\right)=2 N^{-1 / 2} .
\end{aligned}
$$

Consequently, $\left(f_{n}\right)_{n=1}^{\infty}$ is a Cauchy sequence.

Now suppose that $\left(f_{n}\right)$ converges with respect to the $\|\cdot\|_{w}$ norm to some function $f \in C(I)$. Then for any $x \in I$ we have,

$$
\left|\left|f-f_{n} \| \geq x\right| f(x)-f_{n}(x)\right|
$$

Take the limit as $n \rightarrow \infty$ to get

$$
0 \geq x\left|f(x)-x^{-1 / 2}\right|
$$

It follows that $f(x)=x^{-1 / 2}$ whenever $x \neq 0$, and consequently $\|f\|_{\mathrm{u}}=\infty$. In other words, $f \notin C(I)$. (We do not know anything about $f(0)$, but that is OK.)

Problem 1:

(d) The set Ω can contain a single function, for instance $f(x)=\sin (1 / x)$. Note that for any fixed x , you can find a κ (say $\kappa=x / 2$) such that $f^{\prime}(x)$ is bounded on $[x-\kappa, x+\kappa]$. But this does not imply that f is uniformly continuous.
(e) Fix $a \in(0,1)$ and set $f_{n}(x)=n(x-a)^{2}$. Then $f_{n}^{\prime}(a)=0$ for all n. But $\left\{f_{n}\right\}_{n=1}^{\infty}$ is not equicontinuous at a. (Prove this!)
(f) Note of the conditions imply that Ω is bounded. You could for instance have the sequence of constant functions $f_{n}(x)=n$. Then $f_{n}^{\prime}(x)=0$ for all n and all x so all conditions are satisfied. But $\Omega=\left\{f_{n}\right\}_{n=1}^{\infty}$ is not a bounded set (with respect to the uniform norm).

